

UNIT I

Introduction

.NET technology was introduced by Microsoft, to catch the

market from the SUN's Java. Few years back, Microsoft had

only VC++ and VB to compete with Java, but Java was

catching the market very fast. With the world depending more

and more on the Internet/Web and java related tools

becoming the best choice for the web applications, Microsoft

seemed to be loosing the battle. Thousands of programmers

moved to java from VC++ and VB. To recover the

market,Microsoft announced .NET.

The .NET is the technology, on which all other Microsoft

technologies will be depending on in future.

It is a new framework platform for developing web-based and

windows-based applications within the Microsoft

environment.

.NET is not a language. (runtime and a library for execution

.net application)

.NET Environment/Platform

Visual studio .NET is an Integrated Development

Environment(IDE) from Microsoft.

It provides the tools to design ,develop, compiling and

debugging the all .net applications.

.NET Framework

.NET Framework is a computing model that makes things

easier for application development for the distributed

environment of the internet.

.NET Framework is an environment for building, deploying

and running web services and others applications. The first

version of the .Net framework was released in the year 2002.

The version was called .Net framework 1.0. The .Net

framework has come a long way since then, and the current

version is 4.8.

.NET framework comes with a single class library. Whether write the

code in C# or VB.NET or J# just use the .NET class library. There is

no classes specific to any language. Because it is support multiple

programming languages.

.NET Components/ Features of the .Net Framework:

The .NET Framework is composed of five main components:

 Common Language Runtime (CLR)

 Common Language Specification(CLS)

 Common Type System(CTS)

 Base Class Library(BCL)/Framework Class

Library(FCL)

 Microsoft Intermediate language(MSIL or IL)

CLR-stands for Common Language Runtime is a managed

execution environment that is part of Microsoft’s .NET

framework. CLR manages the execution of programs written

in different supported languages.

CLR transforms source code into a form of bytecode known as

Common Intermediate Language (CIL). At run time, CLR

handles the execution of the CIL code.

CLS- stands for Common Language Specification and it is a

subset of CTS. It defines a set of rules and restrictions that

every language must follow which runs under .NET

framework. The languages which follows these set of rules are

said to be CLS Compliant. It enables cross-language

interoperability between various programming languages.

CTS-stands for Common Type System Common The language

interoperability, and .NET Class Framework, are not possible

without all the language sharing the same data types. What

this means is that an "int" should mean the same in VB,

VC++, C# and all other .NET compliant languages. Same idea

follows for all the other data types. It is an important part of the

runtimes support for cross language integration.

BCL - stands for Base Class Library (Unified Classes) is a

subset of Framework class library (FCL). Class library is the

collection of reusable types that are closely integrated with

CLR. All .NET-based languages also access the same libraries.

The .NET Framework has an extensive set of class libraries.

This includes classes for:

• Data Access: High Performance data· access classes for

connecting to SQL Server or any other OLEDB provider.

• XML Supports: Next generation XML support that goes far

beyond the functionality of MSXML.

• Directory Services: Support for accessing Active

directory/LDPA using ADSI.

• Regular Expression: Support for above and beyond that

found in Perl 5.

• Queuing Supports: Provides a clean object-oriented set of

classes for working with MSMQ.

MSIL-stands for Microsoft Intermediate Language

A .NET programming language (C#, VB.NET, J# etc.) does

not compile into executable code; instead it compiles into an

intermediate code called MSIL or IL. A source code in

automatically converted to MSIL. The MSIL code is then

send to the CLR that converts the code to machine language

which is then run on the host machine.

Just In Time Compiler – JIT

The .Net languages , which is conforms to the Common

Language Specification (CLS), uses its corresponding runtime

to run the application on different Operating Systems .

During the code execution time, the Managed Code compiled

only when it is needed, that is it converts the appropriate

instructions to the native code for execution just before when

each function is called. This process is called Just In Time

(JIT) compilation, also known as Dynamic Translation . With

the help of Just In Time Compiler (JIT) the Common

Language Runtime (CLR) doing these tasks.

Garbage Collection (GC)

The Garbage collection is the important technique in the .Net

framework to free the unused managed code objects in the

memory and free the space to the process.

The garbage collection (GC) is new feature in Microsoft .net

framework. When a class that represents an object in the

runtime that allocates a memory space in the heap memory.

All the behavior of that objects can be done in the allotted

memory in the heap.

Microsoft was planning to introduce a method that should

automate the cleaning of unused memory space in the heap

after the life time of that object. Eventually they have

introduced a new technique "Garbage collection". It is very

important part in the .Net framework. Now it handles this

object clear in the memory implicitly. It overcomes the

existing explicit unused memory space clearance.

Assemblies

Assemblies form the fundamental units of deployment,

version control, reuse, activation scoping, and security

permissions for .NET-based applications. An assembly is a

collection of types and resources that are built to work

together and form a logical unit of functionality. Assemblies

take the form of executable (.exe) or dynamic link library (.dll)

files, and are the building blocks of .NET applications. They

provide the common language runtime with the information it

needs to be aware of type implementations.

Every Assembly create contains one or more program files

and a Manifest. There are two types program files : Process

Assemblies (EXE) and Library Assemblies (DLL). Each

Assembly can have only one entry point (that is, DllMain,

WinMain, or Main).

There are two types:

1. Private Assembly

2. Shared Assembly

1.Private Assembly It is used only by a single application,

and usually it is stored in that application's install directory.

Private Assembly cannot be references outside the scope of

the folder.

2. Shared Assembly Shared Assembly is a public assembly

that is shared by multiple applications.

Shared Assembly is one that can be referenced by more than

one application.

.Net Assembly Manifest

An Assembly Manifest is a file that containing Metadata

about .NET Assemblies. Assembly Manifest contains a

collection of data that describes how the elements in the

assembly relate to each other. It describes the relationship

and dependencies of the components in the Assembly,

versioning information, scope information and the security

permissions required by the Assembly.

Web service

 A web service is any piece of software that makes itself
available over the internet and uses a standardized

XML messaging system. XML is used to encode all
communications to a web service. For example, a
client invokes a web service by sending an XML
message, then waits for a corresponding XML
response. As all communication is in XML, web
services are not tied to any one operating system or
programming language—Java can talk with Perl;
Windows applications can talk with Unix applications.

 Web services are self-contained, modular, distributed,
dynamic applications that can be described,

published, located, or invoked over the network to
create products, processes, and supply chains. These
applications can be local, distributed, or web-based.
Web services are built on top of open standards such
as TCP/IP, HTTP, Java, HTML, and XML.

Unified Classes

 The Unified Classes (Base Class Library) is a set of
classes that provide useful functionality to CLR
programmers. The .NET Framework class library
exposes features of the runtime and simplifies the
development of .NET-based applications. In addition,
developers can extend classes by creating their own
libraries of classes. All applications (Web, Windows,
and XML Web services) access the same .NET
Framework class libraries, which are held in
namespaces. All .NET-based languages also access
the same libraries.

 The run time is responsible for managing your code
and providing services to it while it executes, playing
a role similar to that of the Visual Basic 6.0 run time.

 The .NET programming languages including Visual
Basic .NET, Microsoft Visual C# and C++ managed
extensions and many other programming languages

from various vendors utilize .NET services and
features through a common set of unified classes.

 The .NET unified classes provide foundation of which

you build your applications, regardless of the
language you use. Whether you simply concating a
string, or building a windows Services or a multiple-
tier web-based applications, you will be using these
unified classes.

 The unified classes provide a consistent method of
accessing the platforms functionality. Once you learn
to use the class library, you'll find that all tasks
follow the same uniform architecture, you no longer
need to learn and master different API architecture to

write your applications.

UNIT- II

C# Basics

Introduction

C# pronounced as 'C- Sharp'. C# is a simple, modem, object

oriented, and type safe programming language derived from

C and C++. C# is a purely object-oriented language like as

Java. It has been designed to support the key features of

.NET framework.

C# was developed by Microsoft within its .NET initiative led

by Anders Hejlsberg.

C# is designed for Common Language Infrastructure (CLI),

which consists of the executable code and runtime

environment that allows use of various high-level languages

on different computer platforms and architectures.

Features of C#

1. Simplicity All the Syntax of java is like C++. There is no

preprocessor, and much larger library. C# code

does not require header files. All code is written inline.

2. Consistent behavior C# introduced an unified type

system which eliminates the problem of varying ranges of

integer types. All types are treated as objects and developers

can extend the type system simply and easily.

3. Modern programming language

 C# supports number of modern features, such as:

 Automatic Garbage Collection

 Error Handling features

 Modern debugging features

 Robust Security features

4. Pure Object- Oriented programming language

In C#, every thing is an object. There are no more global

functions, variable and constants.

It supports all three object oriented features:

 Encapsulation

 Inheritance

 Polymorphism

5. Type Safety Type safety promotes robust programming.

Some examples of type safety are:

 All objects and arrays are initialized by zero

dynamically

 An error message will be produced , on use of any

uninitialized variable

 Automatic checking of array out of bound and etc.

6. Feature of Versioning Making new versions of software

module work with the existing applications is known as

versioning. Its achieve by the keywords new and override.

7. Compatible with other language C# enforces the .NET

common language specifications (CLS) and therefore allows

interoperation with other .NET language.

Structure of C#

C# program consists of the following things.

1. Namespace declaration

2. A Class

3. Class methods

4. Class attributes

5. The Main method

6. Statements and Expressions

7. Comments

Example

using System;

namespace HelloWorldApplication

{

class HelloWorld

{

static void Main(string[] args)

{

/* my first program in C# */

Console.WriteLine("Hello World");

}

}

}

 using System

This "using" keyword is used to contain the System

namespace in the program. Every program has

multiple using statements.

 namespace declaration

It’s a collection of classes. The HelloCSharp namespace

contains the class prog1HelloWorld.

 class declaration

The class prog1HelloWorld contains the data and

method definitions that your program.

 defines the Main method

This is the entry point for all C# programs. The main

method states what the class does when executed.

 WriteLine

 It’s a method of the Console class distinct in the System

namespace. This statement causes the message "Hello,

World!" to be displayed on the screen.

Important in C#

 C# is case sensitive.

 C# program execution starts at the Main method.

 All C# expression and statements must end with a semicolon

(;).

 File name is different from the class name. This is unlike

Java.

Data types

The variables in C#, are categorized into the following types:

 Value types

 Reference types

Value types - variables can be assigned a value directly. They

are derived from the class System.ValueType.

The value types directly contain data. Some examples are int,

char, and float, which stores numbers, alphabets, and

floating point numbers, respectively.

Example:

 int i = 75;

 float f = 53.005f;

 double d = 2345.7652;

 bool b = true;

Reference Types

The pre-defined reference types are object and string, where

object - is the ultimate base class of all other types. New

reference types can be defined using 'class', 'interface', and

'delegate' declarations. Therefore the reference types are :

Predefined Reference Types

 Object

 String

User Defined Reference Types

 Classes

 Interfaces

 Delegates

 Arrays

Object Type is the ultimate base class for all data types in

C# Common Type System (CTS). Object is an alias for

System.Object class. The object types can be assigned values

of any other types, value types, reference types, predefined or

userdefined types.

String Type allows you to assign any string values to a

variable. The string type is an alias for the System.String

class. It is derived from object type.

Ex: String str = "Tutorials Point";

Char to String

 string s1 = "hello";

 char[] ch = { 'c', 's', 'h', 'a', 'r', 'p' };

 string s2 = new string(ch);

 Console.WriteLine(s1);

 Console.WriteLine(s2);

Converting Number to String

int num = 100;

string s1= num.ToString();
Inserting String

string s1 = Wel;

string s2 = s1.insert(3,‖come‖);

// s2 = Welcome

string s3 = s1.insert(3,‖don‖);

// s3 = Weldon;

C# - Identifiers

In programming languages, identifiers are used for
identification purposes. Or in other words, identifiers are the
user-defined name of the program components. In C#, an

identifier can be a class name, method name, variable name
or label.

Rules for defining identifiers in C#:
There are certain valid rules for defining a valid C# identifier.
These rules should be followed, otherwise, we will get a
compile-time error.

 The only allowed characters for identifiers are all
alphanumeric characters([A-Z], [a-z], [0-9]), ‘_‘
(underscore). For example “geek@” is not a valid C#
identifier as it contain ‘@’ – special character.

 Identifiers should not start with digits([0-9]). For
example “123geeks” is a not a valid in C# identifier.

 Identifiers should not contain white spaces.
 Identifiers are not allowed to use as keyword unless they

include @ as a prefix. For example, @as is a valid
identifier, but “as” is not because it is a keyword.

 C# identifers allow Unicode Characters.
 C# identifiers are case-sensitive.
 C# identifers cannot contain more than 512 characters.
 Identifiers does not contain two consecutive underscores

in its name because such types of identifiers are used for
the implementation.

https://www.geeksforgeeks.org/c-keywords/

Variable

A variable is a name given to a memory location and all the

operations done on the variable effects that memory location.

The value stored in a variable can be changed during program

execution.

Type of Variables

o Local variables

o Instance variables or Non – Static Variables

o Static Variables or Class Variables

o Constant Variables

o Readonly Variables

Local Variable

A variable defined within a block or method or constructor is

called local variable.

 Example
 static void Main(String args[])

 {
 // Declare local variable
 int age = 24;
 Console.WriteLine("Student age is : " + age);
 }

Instance variables

As instance variables are declared in a class, these variables

are created when an object of the class is created and

destroyed when the object is destroyed. Unlike local variables,

we may use access specifiers for instance variables.

Example

class Marks {

 // These variables are instance variables.
 // These variables are in a class and
 // are not inside any function
 int Marks;

 // Main Method
 public static void Main(String[] args)
 {

 // first object
 Marks obj1 = new Marks();
 obj1.Marks = 90;

 // second object
 Marks obj2 = new Marks();
 obj2.Marks = 95;

 // displaying marks for first object
 Console.WriteLine("Marks for first object:");
 Console.WriteLine(obj1.Marks);

 // displaying marks for second object
 Console.WriteLine("Marks for second object:");
 Console.WriteLine(obj2.Marks);
 }
}

Static Variables or Class Variables

Static variables are also known as Class variables. These

variables are declared similarly as instance variables, the

difference is that static variables are declared using the static

keyword within a class outside any method constructor or

block.

To access static variables use class name, there is no need to

create any object of that class.

Example

class Emp {

 // static variable salary
 static double salary;
 static String name = "E.Kumaran";

 // Main Method
 public static void Main(String[] args)
 {

 // accessing static variable
 // without object
 Emp.salary = 50000;

 Console.WriteLine(Emp.name + "'s average salary:"
 +

Emp.salary);
 }
}

Constants Variables

A variable is declared by using the keyword “const” then it as

a constant variable and these constant variables can’t be

modified once after their declaration, so it’s must initialize at

the time of declaration only.

Example

Const int max=500;

Read-Only Variables

A variable is declared by using the readonly keyword then it

will be read-only variables and these variables can’t be

modified like constants but after initialization.

 It’s not compulsory to initialize a read-only variable at the

time of the declaration, they can also be initialized under the

constructor.

Example

Class rc

{

 // readonly variables

 readonly int k;

// constructor

 Public rc()

 { // initializing readonly variable k

 this.k = 90; }

Type conversion is converting one type of data to another

type. It is also known as Type Casting. In C#, type casting has

two forms

Implicit type conversion : smaller to larger integral

types int i=100; long l=i;

Explicit type conversion : Larger to small integral

types

double d = 5673.74;

 int i;

 // cast double to int.

 i = (int)d;

Boxing

When a value type is converted to object type

Ex:

 int i=100;

object o=i;

UnBoxing

 when an object type is converted to a value type, it is

called unboxing.

Ex:

object o=245;

 int j=(int)o;

Input Statements

The Console class in the System namespace provides a

function ReadLine() for accepting input from the user

and store it into a variable.

For example,

int num;

Double r;

num = Convert.ToInt32(Console.ReadLine());

r = Convert.ToDouble(Console.ReadLine());

string s = console.ReadLine();

Char c =Convert.ToChar(Console.ReadLine());

Operators - It Can be categorized based upon their

different functionality:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Conditional Operator

Arithmetic Operators

These are used to perform arithmetic/mathematical

operations on operands. The Binary Operators falling

in this category are :

 Addition: ‘+’ operator

 Subtraction: ‘-‘ operator

 Multiplication: ‘*’ operator

 Division: ‘/’ operator

 Modulus: ‘%’ operator

Example

// Addition
 result = (x + y);

 Console.WriteLine("Addition Operator: " +
 result);

 // Subtraction
 result = (x - y);

Console.WriteLine("Subtraction Operator: " +
result);

 // Multiplication
 result = (x * y);

Console.WriteLine("Multiplication Operator:

"+ result);

 // Division
 result = (x / y);

Console.WriteLine("Division Operator: " +
result);

 // Modulo
 result = (x % y);

Console.WriteLine("Modulo Operator: " +
result);

Relational Operators

Relational operators are used for comparison of two

values. Let’s see them one by one:

o ‘=='(Equal To) operator

o ‘!='(Not Equal To) operator

o ‘>'(Greater Than) operator

o <‘(Less Than) operator

o ‘>='(Greater Than Equal To) operator

o ‘<=‘(Less Than Equal To) operator

Example

 bool result;

 int x = 5, y = 10;

 // Equal to Operator

 result = (x == y);

 Console.WriteLine("Equal to Operator: " +

result);

 // Greater than Operator

 result = (x > y);

Console.WriteLine("Greater than Operator: " +

result);

 // Less than Operator

 result = (x < y);

 Console.WriteLine("Less than Operator: " +

result);

 // Greater than Equal to Operator

 result = (x >= y);

Console.WriteLine("Greater than or Equal to: "+

result);

 // Less than Equal to Operator

 result = (x <= y);

 Console.WriteLine("Lesser than or Equal to: "+

result);

 // Not Equal To Operator

 result = (x != y);

 Console.WriteLine("Not Equal to Operator: " +

result);

Logical Operators

They are used to combine two or more

conditions/constraints or to complement the

evaluation of the original condition in consideration.

They are described below:

 Logical AND: The ‘&&’ operator

 Logical OR: The ‘||’ operator

 Logical NOT: The ‘!’ operator

Example

bool a = true,b = false, result;

 // AND operator

 result = a && b;

 Console.WriteLine("AND Operator: " + result);

 // OR operator

 result = a || b;

 Console.WriteLine("OR Operator: " + result);

 // NOT operator

 result = !a;

 Console.WriteLine("NOT Operator: " + result);

Control Statements

 Decision-Making Statements

 Looping Statements

Decision Making (if, if-else, if-else-if ladder, nested if,

switch, nested switch)

Looping in programming language is a way to execute

a statement or a set of statements multiple number of
times depending on the result of condition to be
evaluated to execute statements. The result condition
should be true to execute statements within loops.

Loops are mainly divided into two categories:

Entry Controlled Loops: The loops in which condition
to be tested is present in beginning of loop body are

known as Entry Controlled Loops. while loop and for
loop are entry controlled loops.

Example

int x = 1;

 // Exit when x becomes greater than 4
 while (x <= 4)
 {
 Console.WriteLine("GeeksforGeeks");

 // Increment the value of x for
 // next iteration
 x++;
 }

Exit Controlled Loops: The loops in which the testing
condition is present at the end of loop body are termed
as Exit Controlled Loops. do-while is an exit controlled
loop.

Example

int x = 21;
 do
 {

 // The line will be printed even
 // if the condition is false
 Console.WriteLine("GeeksforGeeks");
 x++;
 }
 while (x < 20);

Structure

Structure is a value type and a collection of variables of

different data types under a single unit. It is almost

similar to a class because both are user-defined data

types and both hold a bunch of different data types.

Example

public struct Person
{
 // Declaring different data types
 public string Name;
 public int Age;
 public int Weight;

}

 static void Main(string[] args)

 {

 // Declare P1 of type Person
 Person P1;

 // P1's data
 P1.Name = "Keshav Gupta";
 P1.Age = 21;
 P1.Weight = 80;

 // Displaying the values
 Console.WriteLine("Data Stored in P1 is " +
 P1.Name + ", age is " +
 P1.Age + " and weight is " +
 P1.Weight);

 }

Difference between Class and Structure

Class Structure

Classes are of reference types. Structs are of value types.

All the reference types are
allocated on heap memory.

All the value types are
allocated on stack memory.

Allocation of large reference
type is cheaper than
allocation of large value type.

Allocation and de-allocation is
cheaper in value type as
compare to reference type.

Class has limitless features. Struct has limited features.

Class is generally used in

large programs.

Struct are used in small

programs.

Classes can contain
constructor or destructor.

Structure does not contain
constructor or destructor.

Classes used new keyword for
creating instances.

Struct can create an instance,
without new keyword.

A Class can inherit from
another class.

A Struct is not allowed to
inherit from another struct or
class.

The data member of a class
can be protected.

The data member of struct
can’t be protected.

Function member of the class
can be virtual or abstract.

Function member of the struct
cannot be virtual or abstract.

OOPS Concepts

Object-Oriented Programming offers several advantages
over the other programming models like:

1. The precise and clear modular approach for programs
offers easy understanding and maintenance.

2. Classes and objects created in the project can be used
across the project.

3. The modular approach allows different modules to
exist independently, thereby allowing several different
developers to work on different modules together.

Major core OOPS concepts:

1. Encapsulation
2. Polymorphism
3. Inheritance
4. Abstraction

Encapsulation

Encapsulation is an object-oriented programming concept
that allows programmers to wrap data and code snippets
inside an enclosure. By using the encapsulation program, you
can hide the members of one class from another class. It’s
like encircling a logical item within a package. It allows only

relevant information available and visible outside and that too
only to specific members.

Encapsulation is implemented by using access specifiers.
Access Specifier is used for defining the visibility and
accessibility of the class member in C#.

Polymorphism

Polymorphism is derived from the Greek dictionary, it means
one with many forms. Poly stands for many and Morph
means forms. It allows the class in C# to have multiple
implementations with the same name.

Polymorphism is basically divided into two parts:
1. Compile-time Polymorphism
2. Run time polymorphism

Inheritance
Inheritance is an important part of the OOPS concept. In
inheritance, we define parent and child classes. The child
class can inherit all the methods, objects and properties of
the parent class. A child class can also have its own methods
and specific implementation.

The parent class is also known as a base class and the child
class that inherits the base class is also known as derived
class.

Abstraction
Abstraction is one of the major principles of Object-oriented
programming. Abstraction allows the programmer to display
only the necessary details to the world while hiding the
others. Abstraction is achieved in C# by using the Abstract
class and interface.

A class can be declared as an abstract class by using the
“Abstract” keyword. The Abstract class in C# is always the

base class in the hierarchy. What makes them different from
the other class is that they cannot be instantiated. A C#
abstract class needs to be inherited.

Class and Object

Class and Object are the basic concepts of Object Oriented

Programming which revolve around the real-life entities.

A class is a user-defined blueprint or prototype from which

objects are created. Basically, a class combines the fields and

methods.

An object consists of :

 State: It is represented by attributes of an object. It
also reflects the properties of an object.

 Behavior: It is represented by methods of an object. It
also reflects the response of an object with other
objects.

 Identity: It gives a unique name to an object and
enables one object to interact with other objects.

Example

using System;

 class A

{

public int x=100;

}

class mprogram

{

 static void Main(string[] args) {

 A a = new A();

 Console.WriteLine("Class A variable x

is " +a.x);

}

}

Static Class

A static class can only contain static data members, static

methods, and a static constructor.It is not allowed to create

objects of the static class. Static classes are sealed, cannot

inherit a static class from another class.

Note: Not allowed to create objects.

Syntax

static class Class_Name

{

 // static data members

 // static method

}

Example

static class Author {

 // Static data members of Author
 public static string A_name = "Ankita";
 public static string L_name = "CSharp";
 public static int T_no = 84;

 // Static method of Author

 public static void details()
 {
 Console.WriteLine("The details of Author is:");
 }
}
 // Main Method
 static public void Main()
 {

 // Calling static method of Author
 Author.details();

 // Accessing the static data members of Author
 Console.WriteLine("Author name : {0} ",

Author.A_name);
 Console.WriteLine("Language : {0} ",

Author.L_name);
 Console.WriteLine("Total number of articles :

{0} ",
 Author.T_

no);
 }

Partial Class

A partial class is a special feature of C#. It provides a special

ability to implement the functionality of a single class into

multiple files and all these files are combined into a single

class file when the application is compiled using the partial

modifier keyword. The partial modifier can be applied to a

class, method, interface or structure.

Advantages:

 It avoids programming confusion (in other words better

readability).

 Multiple programmers can work with the same class using

different files.

 Even though multiple files are used to develop the class all

such files should have a common class name.

Example

Filename: partial1.cs

using System;
partial class A
{
 public void Add(int x,int y)
 {
 Console.WriteLine("sum is {0}",(x+y));
 }
}

Filename: partial2.cs
using System;
partial class A
{
 public void Substract(int x,int y)
 {
 Console.WriteLine("Subtract is {0}", (x-y));
 }
}
Filename joinpartial.cs
class Demo
{
 public static void Main()
 {
 A obj=new A();

 obj.Add(7,3);
 obj.Substract(15,12);
 }
}
Member Access Modifiers

Access modifiers provide the accessibility control for the

members of classes to outside the class. They also provide the

concept of data hiding. There are five member access

modifiers provided by the C# Language.

Modifier Accessibility

private
Members only accessible

with in class

public
Members may accessible

anywhere outside class

protected
Members only accessible

with in class and

derived class

internal
Members accessible only

within assembly

protected internal
Members accessible in

assembly, derived class

or containing program

By default all member of class have private accessibility. If we

want a member to have any other accessibility, then we must

specify a suitable access modifier to it individually.

Example:

class Demo

{
public int a;
internal int x;
protected double d;

float m; // private by default

}

Inheritance Inheritance supports the concept of

“reusability”

one class is allowed to inherit the features(fields and

methods) of another class.

Important terminology:

 Super Class: The class whose features are inherited is

known as super class(or a base class or a parent class).

 Sub Class: The class that inherits the other class is known

as subclass(or a derived class, extended class, or child class).

The subclass can add its own fields and methods

 Reusability: To create a new class and there is already a

class that includes some of the code that need to derive new

class from the existing class.

1)Single Inheritance

2) Multilevel Inheritance

3) Multiple Inheritance (interface)

4) Hierarchical Inheritance

Example

Class A

{

 Int x;

Void display()

{

System.Consolw.WriteLine(“x=”+x);

}

Class B : A

{

Display();

}

Interface

C# allows the user to inherit one interface into another

interface. When a class implements the inherited interface.

Example

using System;

// declaring an interface
public interface A {

 // method of interface
 void mymethod1();
 void mymethod2();
}

// The methods of interface A
// is inherited into interface B
public interface B : A {

 // method of interface B
 void mymethod3();
}
// Below class is inherting
// only interface B
// This class must
// implement both interfaces
class Geeks : B
{

 // implementing the method
 // of interface A
 public void mymethod1()
 {
 Console.WriteLine("Implement method 1");
 }
// Implement the method
 // of interface B
 public void mymethod3()
 {
 Console.WriteLine("Implement method 3");
 }
}

Sealed classes

Sealed classes are used to restrict the users from inheriting

the class. A class can be sealed by using the sealed keyword.

The keyword tells the compiler that the class is sealed, and

therefore, cannot be extended. No class can be derived from a

sealed class.

sealed class SealedClass {

 // Calling Function
 public int Add(int a, int b)
 {
 return a + b;
 }
}
Important

 Sealed class is used to stop a class to be inherited. You cannot

derive or extend any class from it.

 Sealed method is implemented so that no other class can overthrow

it and implement its own method.

 The main purpose of the sealed class is to withdraw the inheritance

attribute from the user so that they can’t attain a class from a sealed

class. Sealed classes are used best when you have a class with static

members.

Method Overloading

 Method Overloading is the common way of implementing

polymorphism. It is the ability to redefine a function in more

than one form. A user can implement function overloading by

defining two or more functions in a class sharing the same

name. i.e. the methods can have the same name but with

different parameters list.

Example

// adding two integer values.
 public int Add(int a, int b)
 {
 int sum = a + b;
 return sum;
 }

 // adding three integer values.
 public int Add(int a, int b, int c)
 {
 int sum = a + b + c;
 return sum;
 }
Method Overriding

Method Overriding is a technique that allows the invoking of

functions from another class (base class) in the derived class.

Creating a method in the derived class with the same

signature as a method in the base class is called as method

overriding.

Three types of keywords for Method Overriding:

1. virtual keyword: This modifier or keyword use within

base class method. It is used to modify a method in

base class for overridden that particular method in the

derived class.

2.override: This modifier or keyword use with derived class

method. It is used to modify a virtual or abstract method into

derived class which presents in base class.

3. base Keyword: This is used to access members of the base

class from derived class.

Example

// method overriding
using System;

// base class
public class web {

 string name = "Method";

 // declare as virtual
 public virtual void showdata()
 {

 Console.WriteLine("Base class: " + name);
 }
}

class stream : web {

 string s = "Method";

 public override void showdata()
 {

 base.showdata();
 Console.WriteLine("Sub Class: " + s);
 }
}

 class mc {

 static void Main()
 {

 stream E = new stream();

 E.showdata();

 }
}
Array An array is a group of homogeneous data stored to

variables And each data item is called an element of the

array.

Syntax :

type [] < Name_Array > = new < datatype > [size];

Examples
int[] intArray1 = new int[5];

int[] intArray2 = new int[5]{1, 2, 3, 4, 5};

int[] intArray3 = {1, 2, 3, 4, 5};

Jagged Arrays Jagged array is a array of arrays such that
member arrays can be of different sizes. In other words, the
length of each array index can differ.

Syntax:

data_type[][] name_of_array = new data_type[rows][]

Example:

 // Declare the Jagged Array of four elements:

 int[][] jagged_arr = new int[4][];

 // Initialize the elements
 jagged_arr[0] = new int[] {1, 2, 3, 4};
 jagged_arr[1] = new int[] {11, 34, 67};
 jagged_arr[2] = new int[] {89, 23};
 jagged_arr[3] = new int[] {0, 45, 78, 53, 99};

ArrayList is a powerful feature of C# language. It is the non-

generic type of collection which is defined in

System.Collections namespace. It is used to create a dynamic

array means the size of the array is increase or decrease

automatically according to the requirement.

Arraylist in use the program, must be add System.Collections

namespace.

Syntax:

ArrayList list_name = new ArrayList();

Example

 // Creating ArrayList
 ArrayList My_array = new ArrayList();

 // This ArrayList contains elements

 // of different types
 My_array.Add(112.6);
 My_array.Add("C# program");
 My_array.Add(null);
 My_array.Add('Q');
 My_array.Add(1231);

 // Access the array list

 foreach(var elements in My_array)

 {
 Console.WriteLine(elements);
 }

Note: Array List allow add insert remove elements, change
element.

C# String

In C#, string is a sequence of Unicode characters or array of
characters. The range of Unicode characters will be U+0000
to U+FFFF. The array of characters is also termed as the text.
So the string is the representation of the text.

String Characteristics:
 It is a reference type.
 It’s immutable(its state cannot be altered).
 It can contain nulls.

 It overloads the operator(==).

Indexers An indexer allows an instance of a class or struct to
be indexed as an array. If the user will define an indexer for a
class, then the class will behave like a virtual array. Array
access operator i.e ([]) is used to access the instance of the
class which uses an indexer.

Syntax:

[access_modifier] [return_type] this [argument_list]

{

 get

 {

 // get block code

 }

 set

 {

 // set block code

 }

}

Example
 public string this[int index]
 {

 get
 {

 return val[index];
 }

 set
 {

 val[index] = value;
 }

 IndexerCreation ic = new IndexerCreation();

 ic[0] = "C";
 ic[1] = "CPP";
 ic[2] = "CSHARP";

Properties
Properties are the special type of class members that provides

a flexible mechanism to read, write, or compute the value of a

private field. Properties can be used as if they are public data

members, but they are actually special methods called

accessors.

Accessors : The block of “set” and “get”

There are different types of properties based on the “get” and

set accessors:

 Read and Write Properties: When property contains both

get and set methods.

 Read-Only Properties: When property contains only get

method.

 Write Only Properties: When property contains only set

method.

 Auto Implemented Properties: When there is no additional

logic in the property accessors and it introduce in C# 3.0.

Delegates

A delegate is a reference type variable that holds the reference

to a method. The reference can be changed at runtime.

Delegates are especially used for implementing events and the

call-back methods. All delegates are implicitly derived from

the System.Delegate class.

A delegate will call only a method which agrees with its

signature and return type. A method can be a static method

associated with a class or can be instance method associated

with an object, it doesn’t matter.

Syntax:

[modifier] delegate [return_type] [delegate_name]

([parameter_list]);

Example

 public delegate void addnum(int a, int b);

 using System;

 class TestDelegate {
 delegate int NumberChanger(int n);

 static int num = 10;

 public static int AddNum(int p) {
 num += p;
 return num;
 }
 public static int MultNum(int q) {
 num *= q;
 return num;
 }
 public static int getNum() {
 return num;
 }
 static void Main(string[] args) {
 //create delegate instances
 NumberChanger nc1 = new NumberChanger(AddNum);
 NumberChanger nc2 = new NumberChanger(MultNum);

 //calling the methods using the delegate objects
 nc1(25);
 Console.WriteLine("Value of Num: {0}", getNum());
 nc2(5);
 Console.WriteLine("Value of Num: {0}", getNum());
 Console.ReadKey();
 }
 }
}

Events

Events are user actions such as key press, clicks, mouse

movements, etc., or some occurrence such as system

generated notifications. Applications need to respond to

events when they occur. For example, interrupts. Events are

used for inter-process communication.

Delegates with Events

C# and .NET supports event driven programming via

delegates.The events are declared and raised in a class and

associated with the event handlers using delegates within the

same class or some other class. The class containing the

event is used to publish the event. This is called the publisher

class. Some other class that accepts this event is called the

subscriber class. Events use the publisher-subscriber model.

A publisher is an object that contains the definition of the

event and the delegate. The event-delegate association is also

defined in this object. A publisher class object invokes the

event and it is notified to other objects.

A subscriber is an object that accepts the event and provides

an event handler. The delegate in the publisher class invokes

the method (event handler) of the subscriber class.

To declare an event inside a class, first of all, you must

declare a delegate type for the even as:

public delegate string BoilerLogHandler(string

str);

Following are the key points about Event,

 Event Handlers in C# return void and take two

parameters.

 The First parameter of Event - Source of Event means

publishing object.

 The Second parameter of Event - Object derived from

EventArgs.

 The publishers determines when an event is raised and

the subscriber determines what action is taken in

response.

 An Event can have so many subscribers.

 Events are basically used for the single user action like

button click.

 If an Event has multiple subscribers then event

handlers are invoked synchronously.

Versioning

This means that simply adding new members to an existing

class makes that new version of your library both source and

binary compatible with code that depends on it.

Version .NET Framework Visual Studio

C# 5.0 .NET Framework 4.5 Visual Studio 2012/2013

C# 6.0 .NET Framework 4.6 Visual Studio 2013/2015

C# 7.0 .NET Core 2.0 Visual Studio 2017

C# 8.0 .NET Core 3.0 Visual Studio 2019

UNIT -III
C# - using Libraries.

Namespace

A namespace is designed for providing a way to keep one set

of names separate from another. The class names declared in

one namespace does not conflict with the same class names

declared in another.

Syntax:

namespace namespace_name {

 // code declarations

}

The using keyword states that the program is using the

names in the given namespace. For example, we are using the

System namespace in our programs

It can also avoid prepending of namespaces with the using

namespace directive. This directive tells the compiler that the

subsequent code is making use of names in the specified

namespace

Example

using System;

using first_space;

using second_space;

namespace first_space {

 class abc {

 public void func() {

 Console.WriteLine("Inside first_space");

 }

 }

}

namespace second_space {

 class efg {

 public void func() {

 Console.WriteLine("Inside second_space");

 }

 }

}

class TestClass {

 static void Main(string[] args) {

 abc fc = new abc();

 efg sc = new efg();

 fc.func();

 sc.func();

 Console.ReadKey();

 }

}

I/O Stream

 A stream is linked to a physical device by the I/O system.

The type of streams

 Byte Streams − It includes Stream, FileStream,

MemoryStream and BufferedStream.

 Character Streams − It includes Textreader-TextWriter,

StreamReader, StreamWriter and other streams.

Predefined Streams

Three predefined streams, which are exposed by the

properties called Console.In, Console.Out,and

Console.Error, are available to all programs that use the

System namespace. Console.Out

refers to the standard output stream.

File I/O

A file is a collection of data stored in a disk with a specific

name and a directory path. When a file is opened for reading

or writing, it becomes a stream.

The stream is basically the sequence of bytes passing through

the communication path. There are two main streams: the

input stream and the output stream. The input stream is

used for reading data from file (read operation) and the

output stream is used for writing into the file (write

operation).

The System.IO namespace has various classes that are used

for performing numerous operations with files, such as

creating and deleting files, reading from or writing to a file,

closing a file etc.

 FileStream Class -The FileStream class in the System.IO

namespace helps in reading from, writing to and closing files.

This class derives from the abstract class Stream.

Using System.io;

To create a FileStream object to create a new file or open an

existing file.

Syntax

FileStream <object_name> = new FileStream(<file_name>,

<FileMode Enumerator>,<FileAccess Enumerator>,

<FileShare Enumerator>);

Example

FileStream F = new FileStream("sample.txt",

FileMode.Open, FileAccess.Read,

 FileShare.Read);

FileMode

The FileMode enumerator defines various methods for

opening files. The members of the FileMode enumerator are −

 Append − It opens an existing file and puts cursor at the

end of file, or creates the file, if the file does not exist.

 Create − It creates a new file.

 CreateNew − It specifies to the operating system, that it

should create a new file.

 Open − It opens an existing file.

 OpenOrCreate − It specifies to the operating system that it

should open a file if it exists, otherwise it should create a new

file.

 Truncate − It opens an existing file and truncates its size to

zero bytes

FileAccess

FileAccess enumerators have members: Read, ReadWrite and

Write.

FileShare

 Inheritable − It allows a file handle to pass inheritance to

the child processes

 None − It declines sharing of the current file

 Read − It allows opening the file for readin.

 ReadWrite − It allows opening the file for reading and

 writing

 Write − It allows opening the file for writing

Example

using System;

using System.IO;

namespace FileIOApplication {

 class Program {

 static void Main(string[] args) {

 FileStream F = new FileStream("test.dat",

FileMode.OpenOrCreate,

 FileAccess.ReadWrite);

 for (int i = 1; i <= 20; i++) {

 F.WriteByte((byte)i);

 }

 F.Position = 0;

 for (int i = 0; i <= 20; i++) {

 Console.Write(F.ReadByte() + " ");

 }

 F.Close();

 Console.ReadKey();

 }

 }

}

Multithreading

Multitasking is the simultaneous execution of multiple tasks

or processes over a certain time interval. Windows operating

system is an example of multitasking because it is capable of

running more than one process at a time like running Google

Chrome, Notepad, VLC player etc. at the same time.

Thread

A thread is a lightweight process, or in other words, a thread

is a unit which executes the code under the program.

Every program by default carries one thread to executes the

logic of the program and the thread is known as the Main

Thread.

Multithreading

It is a process which contains multiple threads within a single

process. Here each thread performs different activities. For

example, we have a class and this call contains two different

methods, now using multithreading each method is executed

by a separate thread. So the major advantage of

multithreading is it works simultaneously, means multiple

tasks executes at the same time. And also maximizing the

utilization of the CPU because multithreading works on time-

sharing concept mean each thread takes its own time for

execution and does not affect the execution of another thread,

this time interval is given by the operating system.

Example

public class GFG {

 // static method one

 public static void method1()

 {

 // It prints numbers from 0 to 10

 for (int I = 0; I <= 10; I++) {

 Console.WriteLine("Method1 is : {0}", I);

 // When the value of I is equal to 5 then

 // this method sleeps for 6 seconds

 if (I == 5) {

 Thread.Sleep(6000);

 }

 }

 }

 // static method two

 public static void method2()

 {

 // It prints numbers from 0 to 10

 for (int J = 0; J <= 10; J++) {

 Console.WriteLine("Method2 is : {0}", J);

 }

 }

 // Main Method

 static public void Main()

 {

 // Creating and initializing threads

 Thread thr1 = new Thread(method1);

 Thread thr2 = new Thread(method2);

 thr1.Start();

 thr2.Start();

 }

}

 Advantages of Multithreading:

It executes multiple process simultaneously.

Maximize the utilization of CPU resources.

Time sharing between multiple process.

Networking and sockets

The .NET framework provides two namespaces, System.Net

and System.Net.Sockets for network programming. The

classes and methods of these namespaces help us to write

programs,which can communicate across the network. The

communication can be either connection oriented or

connectionless. They can also be either stream oriented or

data-gram based. The most widely used protocol TCP is used

for stream-based communication and UDP is used for data-

grams based applications.

The System.Net.Sockets.Socket is an important class from the

System.Net.Sockets namespace. A Socket instance has a local

and a remote end-point associated with it. The local end-point

contains the connection information for the current socket

instance.

The .NET framework supports both synchronous and

asynchronous communication between the client and server.

A synchronous method is operating in

blocking mode, in which the method waits until the operation

is complete before it returns. But an asynchronous method is

operating in non-blocking mode, where it returns

immediately, possibly before the operation has completed.

Dns class

The System.net namespace provides this class, which can be

used to creates and send queries to obtain information about

the host server from the Internet Domain Name Service

(DNS).

Example

using System;

using System.Net;

using System.Net.Sockets;

class MyClient

{

public static void Main()

{

IPHostEntry IPHost = Dns.Resolve("www.hotmail.com");

Console.WriteLine(IPHost.HostName);

string []aliases = IPHost.Aliases;

Console.WriteLine(aliases.Length);

IPAddress[] addr = IPHost.AddressList;

Console.WriteLine(addr.Length);

for(int i= 0; i < addr.Length ; i++)

{

Console.WriteLine(addr[i]);

}

}

}

Socket

Sockets are the most powerful networking mechanism

available in .NET—HTTP is layered on top of sockets, and in

most cases WCF is too. Sockets provide more or less direct

access to the underlying TCP/IP network services.

The basic idea of a socket has been around for decades, and

appears in many operating systems. The central concept is to

present network communication through the same

abstractions as file I/O.

streams are concerned with the body of an HTTP request or

response. With sockets, the streams are at a lower level,

encompassing all the data.

Socket Programming: Synchronous Clients

The steps for creating a simple synchronous client are as

follows.

1. Create a Socket instance.

2. Connect the above socket instance to an end-point.

3. Send or Receive information.

4. Shutdown the socket

5. Close the socket

The Socket class provides a constructor for creating a Socket

instance.

public Socket (AddressFamily af, ProtocolType pt, SocketType

st)

Data handling

DBMS - Database Management System (DBMS) as a "software

system that enables users to define, create, maintain and

control access to the database.

Database languages

Database languages are special-purpose languages, which

allow one or more of the following tasks, sometimes

distinguished as sublanguages:

 Data control language (DCL) – controls access to data.

 Data definition language (DDL) – defines data types such

as creating, altering, or dropping and the relationships among

them.

 Data manipulation language (DML) – performs tasks such

as inserting, updating, or deleting data occurrences.

 Data query language (DQL) – allows searching for

information and computing derived information.

 ADO.NET

ADO.NET is the new database technology used in .NET

platform. ADO.NET is the next step in the evolution of

Microsoft ActiveX Data Objects (ADO). It does not share the

same programming model, but shares much of the ADO

functionality. The ADO.NET as a marketing term that covers

the classes in the System.Data namespace. ADO.NET is a set

of classes that expose the data access services of the .NET

Framework.

Connected Vs Disconnected

Connected

A connected environment is one in which a user or an

application is constantly connected to adata source. A

connected scenario offers the following advantages:

• A secure environment is easier to maintain.

• Concurrency is easier to control.

• Data is more likely to be current than in other scenarios.

A connected scenario has the following disadvantages:

• It must have a constant network connection.

• Scalability

Disconnected

A disconnected environment is one in which a user or an

application is not constantly connected to a source of data.

Mobile users who work with laptop computers are the

primary users in disconnected environments. Users can take

a subset of data with them on a disconnected computer, and

then merge changes back into the central data store.

A disconnected environment provides the following

advantages:

• You can work at any time that is convenient for you, and

can connect to a data source at any time to process requests.

• Other users can use the connection.

• A disconnected environment improves the scalability and

performance of applications.

A disconnected environment has the following disadvantages:

• Data is not always up to date.

• Change conflicts can occur and must be resolved.

ADVANTAGES OF ADO.NET

ADO.NET provides the following advantages over other data

access models and components:

Interoperability. ADO.NET uses XML as the format for

transmitting data from a data source to a local in-memory

copy of the data.

Maintainability. When an increasing number of users work

with an application, the increased use can strain resources.

By using n-tier applications, you can spread application logic

across additional tiers. ADO.NET architecture uses local in-

memory caches to hold copies of data, making it easy for

additional tiers to trade information.

Programmability. The ADO.NET programming model uses

strongly typed data. Strongly typed data makes code more

concise and easier to write because Microsoft Visual Studio

.NET provides statement completion.

Performance. ADO.NET helps you to avoid costly data type

conversions because of its use of strongly typed data.

Scalability. The ADO.NET programming model encourages

programmers to conserve system

resources for applications that run over the Web. Because

data is held locally in memory caches, there is no need to

retain database locks or maintain active database

connections for extended periods.

.NET DATA PROVIDER

A .NET data provider is used for connecting to a database,

executing commands, and retrieving results. Those results

are either processed directly, or placed in an ADO.NET

DataSet in order to be exposed to the user in an ad-hoc

manner, combined with data from multiple sources, or

remoted between tiers. The .NET data provider is designed to

be lightweight, creating a minimal layer between the data

source and your code, increasing performance without

sacrificing functionality. The ADO.NET object model includes

the following data provider classes:

1. SQL Server .NET Data Provider

2. OLE DB .NET Data Provider

3. Oracle .NET Data Provider

4. ODBC .NET Data Provider

5. Other Native .NET Data Provider

Windows Forms/Applications

The Windows Forms is a collection of classes and types that

encapsulate and extend the Win32 API in an organized object

model. The .NET Framework contains an entire subsystem

devoted to Windows programming called Windows Forms. The

primary support for Windows Forms is contained in the

System.Windows.Forms namespace. A form encapsulates the

basic functionality necessary to create a window, display it on

the screen, and receive messages. A form can represent any

type of window, including the main window of the application,

a child window, or even a dialog box.

The Form Class

Form contains significant functionality of its own, and it

inherits additional functionality.

Two of its most important base classes are

System.ComponentModel.Component, which supports the

.NET component model, and

System.Windows.Forms.Control. The Control class defines

features common to all Windows controls.

Creating Windows form Application

Creating a Windows Forms application is largely just a matter

of instantiating and extending theWindows Forms and GDI+

classes. In a nutshell, you typically complete the following

steps:

1. Create a new project defining the structure of a Windows

Forms application.

2. Define one or more Forms (classes derived from the Form

class) for the windows

in your application.

3. Use the Designer to add controls to your forms (such as

textboxes and checkboxes), and

then configure the controls by setting their properties and

attaching event handlers.

4. Add other Designer-managed components, such as menus

or image lists.

5. Add code to your form classes to provide functionality.

6. Compile and run the program

Web Forms/Application

Web Forms are the heart and soul of ASP.NET. Web Forms

are the User Interface (UI) elements that give Web

applications their look and feel. Web Forms are similar to

Windows Forms in that they provide properties, methods, and

events for the controls that are placed onto them.

Web Forms are made up of two components: the visual

portion (the ASPX file), and the code behind the form, which

resides in a separate class file.

The Purpose of Web Forms

Web Forms and ASP.NET were created to overcome some of

the limitations of ASP. Thesenew strengths include:

• Separation of HTML interface from application logic

• A rich set of server-side controls that can detect the browser

and send out appropriate markup language such as HTML

• Less code to write due to the data binding capabilities of the

new server-side .NET controls

• Event-based programming model that is familiar to

Microsoft Visual Basic programmers

• Compiled code and support for multiple languages, as

opposed to ASP which was interpreted as Microsoft Visual

Basic Scripting (VBScript) or Microsoft Jscript.

•Allows third parties to create controls that provide additional

functionality

Exception Handling

An exception is an unwanted or unexpected event, which

occurs during the execution of a program i.e at runtime, that

disrupts the normal flow of the program’s instructions.

This unwanted event is known as Exception.

Errors:

Errors are unexpected issues that may arise during computer

program execution.

Errors cannot be handled.

All Errors are exceptions.

Exceptions:

Exceptions are unexpected events that may arise during run-

time.

Exceptions can be handled using try-catch mechanisms.

All exceptions are not errors.

Exceptions provide a way to transfer control from one part of

a program to another. C# exception handling is built upon

four keywords: try, catch, finally, and throw.

 try − A try block identifies a block of code for which

particular exceptions is activated. It is followed by one or

more catch blocks.

 catch − A program catches an exception with an exception

handler at the place in a program where you want to handle

the problem. The catch keyword indicates the catching of an

exception.

 finally − The finally block is used to execute a given set of

statements, whether an exception is thrown or not thrown.

For example, if you open a file, it must be closed whether an

exception is raised or not.

 throw − A program throws an exception when a problem

shows up. This is done using a throw keyword.

Exception Hierarchy

All the exceptions are derived from the base class Exception

which gets further divided into two branches as

ApplicationException and SystemException.

 SystemException is a base class for all CLR or program code

generated errors.

 ApplicationException is a base class for all application

related exceptions.

There are different kinds of exceptions which can be

generated in C# program:

Divide By Zero exception: It occurs when the user attempts

to divide by zero

Out of Memory exceptions: It occurs when then the

program tries to use excessive memory

Index out of bound Exception: Accessing the array element

or index which is not present in it.

Stackoverflow Exception: Mainly caused due to infinite

recursion process

Null Reference Exception : Occurs when the user attempts

to reference an object which is of NULL type.

Example

public void division(int num1, int num2) {

 try {

 result = num1 / num2;

 }

 catch (DivideByZeroException e) {

 Console.WriteLine("Exception caught: {0}", e);

 }

UNIT – IV

Advanced featured using in C#

Web Services -WS

A web service is any piece of software that makes itself

available over the internet and uses a standardized XML

messaging system. XML is used to encode all

communications to a web service.

Web services are self-contained, modular, distributed,

dynamic applications that can be described, published,

located, or invoked over the network to create products,

processes, and supply chains. These applications can be

local, distributed, or web-based. Web services are built on top

of open standards such as TCP/IP, HTTP, Java, HTML, and

XML.

Web services are XML-based information exchange systems

that use the Internet for direct application-to-application

interaction. These systems can include programs, objects,

messages, or documents. A web service is a collection of open

protocols and standards used for exchanging data between

applications or systems.

Components of Web Services

The basic web services platform is XML + HTTP. All the

standard web services work using the following components −

 SOAP (Simple Object Access Protocol)

 UDDI (Universal Description, Discovery and Integration)

 WSDL (Web Services Description Language)

Working process

A web service enables communication among various

applications by using open standards such as HTML, XML,

WSDL, and SOAP. A web service takes the help of −

 XML to tag the data

 SOAP to transfer a message

 WSDL to describe the availability of service.

Web services allow applications to share data. Web services

can be called across platforms and operating systems

regardless of programming language. .NET is Microsoft's

platform for XML Web services.

Web Service Applications

There are several web service available with .Net Framework, such

as:

1) Validation Controls:

1. E-mail address validator,

2. Regular expression validator,

3. Range Validator, etc.

2) Login Controls:

1. Create user

2. Delete user

3. Manage users, etc.

Some Web services are also available on internet , which are free and

offer application-components like:

 Currency Conversion

 Weather Reports

 Language Translation

 Search Engines

 Document Convertor, etc.

Some are paid and can be use by authorized sites, such as:

 Credit and Debit card payment

 Net Banking, etc.

Web Service Architecture

Creating Web Service

To create and expose ASP.NET Web Servies by authoring and

saving text files with the file extension ―asmx within the

virtual path of an ASP.NET Web Application.

To understand the concept of Web Services we have given an

example of Web Service,which provides the current time of

day on its machine.

Declaring WebMethod methods

A WebMethod represents a method for web. WebMethod has

six properties they are :

1) Description

2) MessageName

3) EnableSession

4) CacheDuration

5) TransactionOption

6) BufferResponse

Create web service

URL:

https://www.tutorialspoint.com/asp.net/asp.net_web_service

s.htm

Windows Services

Windows Services is previously called as NT Service. The Idea

of creating a windows service application is two fold one is to

create a long running application and the other is service

applications are the application that run directly in the

windows session itself.

Windows Services are non-UI software applications that run

in the background. Windows services are usually started

when an operating system boots and scheduled to run in the

background to execute some tasks. Windows services can

also be started automatically or manually. You can also

manually pause, stop and restart Windows services.

https://www.tutorialspoint.com/asp.net/asp.net_web_services.htm
https://www.tutorialspoint.com/asp.net/asp.net_web_services.htm

There are basically two types of Services that can be created

in .NET Framework. Services that are only service in a

process are assigned the type Win32OwnProcess. Services

that share a process with another service are assigned the

type Win32ShareProcess.The type of the service can be

queried. There are other types of services which are

occasionally used they are mostly for hardware, Kernel, File

System.

The Main method for your service application must issue the

Run command for the services your project contains. The Run

method loads the services into the Services Control Manager

on the appropriate server. If you use the Windows Services

project template, this method is written for you automatically.

Window service application development can be divided to two

phases. One is the development of Service functionality and

the last phases is about the development. The 3 Mainclasses

involved in Service development are:

 System.ServiceProcess.ServiceBase

 System.ServiceProcess.ServiceProcessInstaller

 ServiceController

Developing Window Service

To develop and run a Window Service application on .NET

frame to the he following steps.

Step 1: Create Skeleton of the Service

Step 2: Add functionality to your service

Step 3: Install and Run the Service

Step 4: Start and Stop the Service

Create a Windows service Application

Refer the following url:

 https://docs.microsoft.com/en-

us/dotnet/framework/windows-services/walkthrough-

creating-a-windows-service-application-in-the-component-

designer

https://dotnetcoretutorials.com/2019/09/19/creating-

windows-services-in-net-core-part-1-the-microsoft-way/

Messaging

.Net Frame work has given a bunch of classes and interfaces

to work with MSMQ(Microsoft Message Queuing System)
server very easily, and comfortably using C#.

MSMQ enables your applications to communicate across
heterogeneous networks and systems, even if the system is
offline for some time.

Using MSMQ, the sender should not wait for the response
from the receiver, he can send the next command to the
receiver, by that time the first message will go in a queue and
be displayed at the receiver end.

Microsoft Windows Message Queuing makes it easy for
application developers to communicate with application
programs quickly and reliably by sending and receiving
messages.

A message is unit of data exchanged between two computers.
A message queue is a container that holds messages while
they are in transit. The message queue manager acts as the
middleman in relaying a message from its source to its
destination.

A queue`s main purpose is to provide routing and guarantee
the delivery of messages, if the recipient is not available when
a message is sent, the queue holds the message until it can
be successfully delivered.

https://docs.microsoft.com/en-us/dotnet/framework/windows-services/walkthrough-creating-a-windows-service-application-in-the-component-designer
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/walkthrough-creating-a-windows-service-application-in-the-component-designer
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/walkthrough-creating-a-windows-service-application-in-the-component-designer
https://docs.microsoft.com/en-us/dotnet/framework/windows-services/walkthrough-creating-a-windows-service-application-in-the-component-designer
https://dotnetcoretutorials.com/2019/09/19/creating-windows-services-in-net-core-part-1-the-microsoft-way/
https://dotnetcoretutorials.com/2019/09/19/creating-windows-services-in-net-core-part-1-the-microsoft-way/

Message switching is a connectionless network switching
technique where the entire message is routed from the source
node to the destination node, one hop at a time. It was a
precursor of packet switching.

Process

Packet switching treats each message as an individual unit.
Before sending the message, the sender node adds the
destination address to the message. It is then delivered
entirely to the next intermediate switching node. The
intermediate node stores the message in its entirety, checks
for transmission errors, inspects the destination address and
then delivers it to the next node. The process continues till
the message reaches the destination.

In the switching node, the incoming message is not discarded
if the required outgoing circuit is busy. Instead, it is stored in
a queue for that route and retransmitted when the required
route is available.This is called store and forward network.

The following diagram represents routing of two separate
messages from the same source to same destination via
different routes, using message switching –

Advantages and Disadvantages of Message Switching

Advantages

 Sharing of communication channels ensures better
bandwidth usage.It reduces network congestion due to
store and forward method. Any switching node can

store the messages till the network is available.

 Broadcasting messages requires much less bandwidth
than circuit switching.

 Messages of unlimited sizes can be sent.

 It does not have to deal with out of order packets or
lost packets as in packet switching.

Disadvantages

 In order to store many messages of unlimited sizes,
each intermediate switching node requires large
storage capacity.

 Store and forward method introduces delay at each
switching node. This renders it unsuitable for real time
applications.

 Message Routing Between Sites

Client

Site C

Site D

Site A

Site B

C-D Routing Link

A-B Routing Link

C-B Routing Link

B-D Routing Link

 Routing

When a device has multiple paths to reach a destination, it

always selects one path by preferring it over others. This

selection process is termed as Routing.

Routing is done by special network devices called routers or it

can be done by means of software processes. The software

based routers have limited functionality and limited scope.

Reflection

Reflection objects are used for obtaining type information at

runtime. The classes that give access to the metadata of a

running program are in the System.Reflection namespace.

The System.Reflection namespace contains classes that allow

you to obtain information about the application and to

dynamically add types, values, and objects to the application.

Applications of Reflection

Reflection has the following applications −

 It allows view attribute information at runtime.

 It allows examining various types in an assembly and

 instantiate these types.

 It allows late binding to methods and properties

 It allows creating new types at runtime and then performs

 some tasks using those types.

Reflection is a process to get metadata of a type at runtime.
The System.Reflection namespace contains required classes
for reflection such as:

Class Description

Assembly

describes an assembly which is a reusable,

versionable, and self-describing building block of a

common language runtime application

AssemblyName Identifies an assembly ith a unique name

ConstructorInfo
Describes a class constructor and gives access to the

metadata

MethodInfo
Describes the class method and gives access to its

metadata

ParameterInfo
Describes the parameters of a method and gives

access to its metadata

EventInfo
Describes the event info and gives accessto its

metadata

PropertyInfo
Discovers the attributes of a property and provides

access to property metadata

MemberInfo
Obtains information about the attributes of a

member and provides access to member metadata

Viewing Metadata

The MemberInfo object of the System.Reflection class needs

to be initialized for discovering the attributes associated with

a class.

System.Reflection.MemberInfo info = typeof(MyClass);

C# Type Properties

Property Description

Assembly Gets the Assembly for this type.

AssemblyQualifiedName
Gets the Assembly qualified name for
this type.

Attributes
Gets the Attributes associated with
the type.

BaseType Gets the base or parent type.

FullName
Gets the fully qualified name of the
type.

IsAbstract
is used to check if the type is
Abstract.

C# Type Methods

Method Description

GetConstructors()
Returns all the public

constructors for the Type.

GetConstructors(BindingFlags)
Returns all the constructors
for the Type with specified
BindingFlags.

GetFields()
Returns all the public fields
for the Type.

GetFields(BindingFlags)
Returns all the public
constructors for the Type with
specified BindingFlags.

GetMembers()
Returns all the public
members for the Type.

GetMembers(BindingFlags)
Returns all the members for
the Type with specified

BindingFlags.

GetMethods()
Returns all the public
methods for the Type.

GetMethods(BindingFlags)
Returns all the methods for
the Type with specified
BindingFlags.

GetProperties()
Returns all the public
properties for the Type.

GetProperties(BindingFlags)
Returns all the properties for
the Type with specified
BindingFlags.

GetType() Gets the current Type.

GetType(String)
Gets the Type for the given
name.

Example

C# Reflection Example: Get Type

 using System;

 public class ReflectionExample

 {

 public static void Main()

 {

 int a = 10;

 Type type = a.GetType();

 Console.WriteLine(type);

 }

 }

COM

Component Object Model (COM) is a method to facilitate

communication between different applications and

languages. COM is used by developers to create re-usable

software components, link components together to build

applications, and take advantage of Windows services. COM

objects can be created with a variety of programming

languages. Object-oriented languages, such as C++, provide

programming mechanisms that simplify the implementation

of COM objects. The family of COM technologies includes

COM+, Distributed COM (DCOM) and ActiveX® Controls.

COM (Component Object Model) was the first programming

model that provided component based approach to software

development. This component based approach of COM

allowed us to develop small, logical reusable and standalone

modules that integrates into a single application. But these

components could not be displayed over a network. So these

drawback produce another model that is DCOM

(Distributed COM).

The DCOM programming model enables you to display COM

components over a network and easily distribute

applications across platforms. DCOM components also help

in two-tier client/server applications. These models also have

some drawbacks that help the development of the COM+

approach.

Creating COM components in .NET

The following steps explain the way to create the COM

server in C#:

 Create a new Class Library project.

 Create a new interface, say IManagedInterface, and

declare the methods required. Then provide the Guid

(this is the IID) for the interface using the

GuidAttribute defined in

System.Runtime.InteropServices. The Guid can be

created using the Guidgen.exe.

 Define a class that implements this interface. Again

provide the Guid (this is the CLSID) for this class

also.

 Mark the assembly as ComVisible. For this go to

AssemblyInfo.cs file and add the following statement

[assembly: ComVisible (true)]. This gives the

accessibility of all types within the assembly to

COM.

 Build the project. This will generate an assembly in

the output path. Now register the assembly using

regasm.exe (a tool provided with the .NET

Framework) - regasm \bin\debug\ComInDotNet.dll

\tlb:ComInDotNet.tlb this will create a TLB file after

registration.

 Alternatively this can be done in the Project

properties --> Build --> check the Register for COM

interop.

The COM server is ready. Now a client has to be created. It

can be in any language. If the client is .NET, just add the

above created COM assembly as a reference and use it.

Localization

Call COM components from .NET

COM components and .NET Components have a different

internal architecture. For both of them to communicate with

each other, the inter-operation feature is required, this

feature is called interoperability. Enterprises that have

written their business solutions using the old native COM

technology need a way for re-using these components in the

new .NET environment.

.NET components communicate with COM using RCW

(Runtime Callable Wrapper)

RCW:- RCW Means Runtime Callable Wrappers, The Common

Language Runtime (CLR) exposes COM objects through a

proxy called the Runtime Callable Wrapper (RCW). Although

the RCW appears to be an ordinary object to .NET clients, it's

primary function is to marshal calls between a .NET client

and a COM object.

To use a COM component,



Right click the Project and click on Add References.

 Select the COM tab

 And at last select COM component

 Globalization and Localization

Globalization is the process of designing and

developing applications that function for multiple

cultures.

Localization is the process of customizing your

application for a given culture and locale.

Globalization

Globalization involves designing and developing a

world-ready app that supports localized interfaces and

regional data for users in multiple cultures. Before

beginning the design phase, you should determine

which cultures your app will support. Although an app

targets a single culture or region as its default, you can

design and write it so that it can easily be extended to

users in other cultures or regions.

As developers, we all have assumptions about user

interfaces and data that are formed by our cultures. For

example, for an English-speaking developer in the United

States, serializing date and time data as a string in the

format MM/dd/yyyy hh:mm:ss seems perfectly reasonable.

However, deserializing that string on a system in a different

culture is likely to throw a FormatException exception or

produce inaccurate data. Globalization enables us to

identify such culture-specific assumptions and ensure that

they do not affect our app's design or code.

Strings

The handling of characters and strings is a central focus of

globalization, because each culture or region may use

different characters and character sets and sort them

differently. This section provides recommendations for using

strings in globalized apps.

Use Unicode internally

By default, .NET uses Unicode strings. A Unicode string

consists of zero, one, or more Char objects, each of which

represents a UTF-16 code unit. There is a Unicode

representation for almost every character in every character

set in use throughout the world.

Localization

Localization is the process of translating an application's

resources into localized versions for each culture that the

application will support. You should proceed to the

localization step only after completing the Localizability

Review step to verify that the globalized application is ready

for localization.

An application that is ready for localization is separated into

two conceptual blocks: a block that contains all user

interface elements and a block that contains executable

code. The user interface block contains only localizable

user-interface elements such as strings, error messages,

dialog boxes, menus, embedded object resources, and so on

for the neutral culture. The code block contains only the

application code to be used by all supported cultures. The

common language runtime supports a satellite assembly

resource model that separates an application's executable

code from its resources. For more information about

implementing this model, see Resources in .NET.

For each localized version of your application, add a new

satellite assembly that contains the localized user interface

block translated into the appropriate language for the target

culture. The code block for all cultures should remain the

same. The combination of a localized version of the user

interface block with the code block produces a localized

version of your application.

The Windows Software Development Kit (SDK) supplies the

Windows Forms Resource Editor (Winres.exe) that allows

you to quickly localize Windows Forms for target cultures.

Cultures and Locales

The language needs to be associated with the particular

region where it is spoken, and this is done by using locale

(language + location). For example: fr is the code for French

language. fr-FR means French language in France. So, for

specifies only the language whereas fr-FR is the locale.

Similarly, fr-CA defines another locale implying French

language and culture in Canada. If we use only fr, it implies

a neutral culture (i.e., location neutral).

Set culture information

Application level -In web.config file

<configuration>

 <system.web>

 <globalization culture="fr-FR" uiCulture="fr-FR"/>

 </system.web>

</configuration>

Resource Files

 A resource file is an XML file that contains the strings that

you want to translate into different languages or paths to

images.

 The resource file contains key/value pairs. Each pair is an

individual resource. Key names are not case sensitive.

e.g. A resource file might contain a resource with the key

Button1 and the value Submit

Resource files in ASP. NET have an .resx extension. At run

time, the .resx file is compiled into an assembly.

Global Resource Files

 You create a global resource file by putting it in the

reserved folder App_GlobalResources at the root of the

application.

 Any .resx file that is in the App_GlobalResources

folder has global scope.

Local Resource Files

A local resources file is one that applies to only one ASP. NET
page or user control (an ASP. NET file that has a file-name
extension of .aspx, .ascx, or .master).

Unit-V

Distributed application

A distributed system contains multiple nodes that are

physically separate but linked together using the network.

All the nodes in this system communicate with each other

and handle processes in tandem. Each of these nodes

contains a small part of the distributed operating system

software.

Types of Distributed Systems

The nodes in the distributed systems can be arranged in the

form of client/server systems or peer to peer systems. Details

about these are as follows:

Client/Server Systems

In client server systems, the client requests a resource and

the server provides that resource. A server may serve multiple

clients at the same time while a client is in contact with only

one server. Both the client and server usually communicate

via a computer network and so they are a part of distributed

systems.

Peer to Peer Systems

The peer to peer systems contains nodes that are equal

participants in data sharing. All the tasks are equally divided

between all the nodes. The nodes interact with each other as

required as share resources. This is done with the help of a

network.

Advantages of Distributed Systems

 All the nodes in the distributed system are connected to

each other. So nodes can easily share data with other

nodes.

 More nodes can easily be added to the distributed

system i.e. it can be scaled as required.

 Failure of one node does not lead to the failure of the

entire distributed system. Other nodes can still

communicate with each other.

 Resources like printers can be shared with multiple

nodes rather than being restricted to just one.

Disadvantages of Distributed Systems

 It is difficult to provide adequate security in distributed

systems because the nodes as well as the connections

need to be secured.

 Some messages and data can be lost in the network

while moving from one node to another.

 The database connected to the distributed systems is

quite complicated and difficult to handle as compared to

a single user system.

 Overloading may occur in the network if all the nodes of

the distributed system try to send data at once.

Refer URL:

https://www.tutorialspoint.com/software_archit

ecture_design/distributed_architecture.htm

https://www.tutorialspoint.com/software_architecture_design/distributed_architecture.htm
https://www.tutorialspoint.com/software_architecture_design/distributed_architecture.htm

Distributed Applications

Enterprises and users demand distributed applications.

Distributed applications allow objects to talk across process

boundaries. Often, distributed applications also meet the

following objectives:

 Establish communication between objects that run in

different application domains and processes, whether on the

same computer or across the Internet.

 Enable enterprise application integration by

establishing communication between objects that run on

heterogeneous architectures.

 Enable application availability by making sure that

portions of an application run even if some components are

busy or have failed.

 Provide increased security and scalability by dividing

the application into several layers (or tiers).

Evolution of Distributed Applications

A well-designed distributed application has the potential to

be more connected, more available, more scalable, and more

robust than an application where all components run on a

single computer. This is a desirable model for an enterprise

application.

Traditionally, there have been several efforts to design

frameworks for developing distributed applications. A few

well-known frameworks are Distributed Computing

Environment/Remote Procedure Calls (DEC/RPC),

Microsoft Distributed Component Object Model (DCOM),

Common Object Request Broker Architecture (CORBA), and

Java Remote Method Invocation (RMI). Some of these

implementations are widely deployed in enterprises.

However, modern business requirements are different from

those of earlier days. Today, businesses seek solutions that

can be developed rapidly, that integrate well with their

legacy applications, and that interoperate well with their

business partners. Each of the technologies already

mentioned failed to satisfy one or more of these

requirements.

In 2000, Microsoft introduced the .NET Framework for

designing next-generation distributed applications. As you'll

explore more in this book, the .NET Framework is

specifically targeted to meet the needs of modern business,

whether the need is rapid development or integration or

interoperability.

Using the .NET Framework to Develop Distributed

Applications

The .NET Framework provides various mechanisms to

support distributed application development. Most of this

functionality is present in the following three namespaces

of the Framework Class Library (FCL):

 The System.Net Namespace—This namespace

includes classes to create standalone listeners and

custom protocol handlers to start from scratch and

create your own framework for developing a

distributed application. Working with the

System.Net namespace directly requires a good

understanding of network programming.

 The System.Runtime.Remoting Namespace—This

namespace includes the classes that constitute the

.NET remoting framework. The .NET remoting

framework allows communication between objects

living in different application domains, whether or

not they are on the same computer. Remoting

provides an abstraction over the complex network

programming and exposes a simple mechanism for

inter-application domain communication. The key

objectives of .NET remoting are flexibility and

extensibility.

 The System.Web.Services Namespace—This

namespace includes the classes that constitutes the

ASP.NET Web services framework. ASP.NET Web

services allow objects living in different application

domains to exchange messages through standard

protocols such as HTTP and SOAP. ASP.NET Web

services, when compared to remoting, provide a

much higher level of abstraction and simplicity. The

key objectives of ASP.NET Web services are the ease

of use and interoperability with other systems.

 Both .NET remoting and ASP.NET Web services

provide a complete framework for designing

distributed applications. Most programmers will

use either .NET remoting or ASP.NET Web services

rather than build a distributed programming

framework from scratch with the System.Net

namespace classes.

 The functionality offered by .NET remoting and

ASP.NET Web services appears very similar. In fact,

ASP.NET Web services are actually built on the

.NET remoting infrastructure. It is also possible to

use .NET remoting to design Web services. Given

the amount of similarity, how do you choose one

over the other in your project? Simply put, the

decision depends on the type of application you

want to create. You'll use

 .NET Remoting when both the end points (client

and server) of a distributed application are in your

control. This might be a case when an application

has been designed for use within a corporate

network.

 ASP.NET Web services when one end point of a

distributed application is not in your control. This

might be a case when your application is

interoperating with your business partner's

application.

Refer URL:

https://www.pearsonitcertification.com/articles/ar

ticle.aspx?p=31490

https://www.pearsonitcertification.com/articles/article.aspx?p=31490
https://www.pearsonitcertification.com/articles/article.aspx?p=31490

General Remote Process

Suppose, you have an application running on one computer, and you want

to use the functionality exposed by a type that is stored on another

computer. The following illustration shows the general remote process.

 Channel

Server Side

Object

Remoting

Client side

Object

Remoting

Proxy

If both sides of the relationship are configured properly, a client merely

creates a new instance of the server class.

The remoting system creates a proxy object that represents the class and

returns the client object a reference to the proxy. When a client calls a

method, the remoting infrastructure fields the call, checks the type

information, and sends the call over the channel to the server process.

A listening channel picks up the request and forwards it to the server

remoting system, which locates(or creates, if necessary)and calls the

requested object.

The process is then reversed, as the server remoting system bundles the

response into a message that the server channel sends to the client

channel. Finally, the client remoting system returns the result of the call to

the client object through the proxy.

Example

We need three file to demonstrate the distributed application.

1. Remote Component

2. Server

3. Client

In the remote Component we will implement all our logics of the business.

this will be the component, we use in our application remotely. All the

remote components must extent MarshallByRefObject. This class is for

Remoting objects, that need to be marshal by reference. This includes well

known SingleCall and WellKnown Singleton WebService objects and client

Activated Objects.

Hello.cs

using Systems;

namespace shibi.remoteApp

{

 public class Hello : System.MarshallByRefObject

{

 public Hello()

{

Console.WriteLine(“Constructor called”);

}

~Hello()

{

 Console.WriteLine(“Destructor called”);

}

public string sayHello(string name)

{

Console.WriteLine(“sayHello called”);

return”Hello, “+name);

 }

 }

}

We will start with a remote component that returns string, which

concatenates Hello with the string passed by the client.

Here, we kept the namespace as shibi.remoteApp and claa “Hello” which

inherits,

System.MarshalByRefObject.

In the Constructor we simply wrote “Constructor called” in the console

and in the Destructor we wrote “Destructor called”. We have incorporated

one business method in which we concatenated the string supposed to

send from the client side Hello, and return the concatenated string. Save

this file as Hello.cs. Now, we are ready to create library file.

Compile it using the following command:

csc/target:Library Hello.cs

You will get a Hello.dll in your working directory. This is the remote object

that we are going to use as the distributed component.

XML

XML stands for Extensible Markup Language. It is a text-

based markup language derived from Standard

Generalized Markup Language (SGML).

XML tags identify the data and are used to store and

organize the data, rather than specifying how to display it

like HTML tags, which are used to display the data. XML

is not going to replace HTML in the near future, but it

introduces new possibilities by adopting many successful

features of HTML.

There are three important characteristics of XML that

make it useful in a variety of systems and solutions −

 XML is extensible − XML allows you to create your

own self-descriptive tags, or language, that suits your

application.

 XML carries the data, does not present it − XML

allows you to store the data irrespective of how it will

be presented.

 XML is a public standard − XML was developed by an

organization called the World Wide Web Consortium

(W3C) and is available as an open standard.

Serialization

Serialization is the process of converting an object into a

stream of bytes. In this article, I will show you how to

serialize object to XML in C#. XML serialization converts

the public fields and properties of an object into an XML

stream.

XML serialization converts (serializes) the public fields

and properties of an object, and the parameters and

return values of methods, into an XML stream that

conforms to a specific XML Schema definition language

(XSD) document. XML serialization results in strongly

typed classes with public properties and fields that are

converted to a serial format (in this case, XML) for storage

or transport.

Because XML is an open standard, the XML stream can

be processed by any application, as needed, regardless of

platform. For example, XML Web services created using

ASP.NET use the XmlSerializer class to create XML

streams that pass data between XML Web service

applications throughout the Internet or on intranets.

Conversely, deserialization takes such an XML stream

and reconstructs the object.

XML serialization can also be used to serialize objects

into XML streams that conform to the SOAP specification.

SOAP is a protocol based on XML, designed specifically to

transport procedure calls using XML.

 Namespaces to use XmlSerializer

using System.Xml.Serialization

Deserializing XML Data

Deserialization is the process of taking XML-formatted

data and converting it to a .NET framework object: the

reverse of the process shown above. Providing that the

XML is well-formed and accurately matches the structure

of the target type, deserialization is a relatively

straightforward task.

In the example below, the XML output of the preceding

examples is hard-coded into a string, but it could be

fetched from a network stream or external file. The

XmlSerializer class is used to deserialize the string to an

instance of the Test class, and the example then prints

the fields to the console. To obtain a suitable stream that

can be passed into the XmlSerializer’s constructor, a

StringReader (from the System.IO namespace) is

declared.

Refer URL: http://csharp.net-

informations.com/xml/xml-serialization-tutorial.htm

XML Technology

Two strategies to make use of XML technology, These two strategies

are given below

1. DOM

2. SAX

DOM is an API for Document Object Model. DOM is designed to

provide a means of manipulating data within an XML document.

DOM provides a representation of an XML document as tree.

DOM also reads entire XML document into the memory, storing all the

data in nodes, so the entire document is very fast to access, it is all in

memory for the length of its existence in the DOM tree. Each node

represents a piece of the data pulled from the original document

The significant drawback of DOM is that it reads the entire document

into the memory, resources can become very heavily taxed often

slowing down or even crippling an application. If it is a small

document, the DOM technology is perfect, but if it is a heavy one, we

will have to go for the other one called SAX.

Unsafe Mode

Unsafe code in C# is the part of the program that runs outside

the control of the Common Language Runtime (CLR) of the

.NET frameworks. The CLR is responsible for all of the

background tasks that the programmer doesn’t have to worry

about like memory allocation and release, managing stack etc.

Using the keyword “unsafe” means telling the compiler that

the management of this code will be done by the programmer.

Making a code content unsafe introduces stability and

security risks as there are no bound checks in cases of arrays,

memory related errors can occur which might remain

unchecked etc.

http://csharp.net-informations.com/xml/xml-serialization-tutorial.htm
http://csharp.net-informations.com/xml/xml-serialization-tutorial.htm

A programmer can make the following sub-programs as

unsafe:

 Code blocks

 Methods

 Types

 Class

 Struct

Example

 unsafe
 {
 int x = 10;
 int* ptr;
 ptr = &x;

 // displaying value of x using pointer
 Console.WriteLine("Inside the unsafe code

 block");
 Console.WriteLine("The value of x is " +
 *ptr);
 } // end

The unsafe code or the unmanaged code is a code block

that uses a pointer variable.

Pointers

A pointer is a variable whose value is the address of

another variable i.e., the direct address of the memory

location. similar to any variable or constant, you must

declare a pointer before you can use it to store any

variable address.

Syntax

type *var-name;

Following are valid pointer declarations

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

Graphical Device Interface (GDI)

Graphics Device Interface + (GDI+) is a graphical

subsystem of Windows that consists of an application

programming interface (API) to display graphics and

formatted text on both video display and printer.

GDI+ acts as an intermediate layer between applications

and device drivers for rendering two-dimensional

graphics, images and text.

GDI was the tool by which the what you see is what you

get (WYSIWYG) capability was provided in Windows

applications. GDI+ is an enhanced C++-based version of

GDI. GDI+ helps the developer to write device-

independent applications by hiding the details of graphic

hardware. It also provides graphic services in a more

optimized manner than earlier versions. Due to its object-

oriented structure and statelessness, GDI+ provides an

easy and flexible interface developers can use to interact

with an application's graphical user interface (GUI).

Although GDI+ is slightly slower than GDI, its rendering

quality is better.

The GDI+ services can be categorized into 2D vector

graphics, imaging and typography. Vector graphics

include drawing primitives like rectangles, lines and

curves. These primitives are drawn using objects of a

specific class, which has all the information required.

Imaging involves displaying complex images that cannot

be displayed using vector graphics and performing image

operations such as stretching and skewing. Simple text

can be printed in multiple fonts, sizes and colors using

typography services of GDI+.

The features included in GDI+ are:

 Gradient brushes used for filling shapes, paths

and regions using linear and path gradient pushes

 Cardinal splines for creating larger curves formed

out of individual curves

 Independent path objects for drawing a path

multiple times

 A matrix object tool for transforming (rotating,

translating, etc.) graphics

 Regions stored in world coordinates format, which

allows them to undergo any transformation stored

in a transformation matrix

 Alpha blending to specify the transparency of the

fill color

 Multiple image formats (BMP, IMG, TIFF, etc.)

supported by providing classes to load, save and

manipulate them

 Sub-pixel anti-aliasing to render text with a

smoother appearance on a liquid crystal display

(LCD) screen

Managed and Unmanaged Code

Code written in the Microsoft .NET development

environment is divided into two categories: managed and

unmanaged. In brief, code written in the .NET Framework

that is being managed by the common language runtime

(CLR) is called managed code. Code this is not being

managed by the CLR is called unmanaged code.

Managed code enjoys many rich features provide by the

CLR, including automatic memory management and

garbage collection, cross-language integration, language

independence, rich exception handling, improved

security, debugging and profiling, versioning, and

deployment. With the help of garbage collector (GC), the

CLR automatically manages the life cycle of the objects.

When the GC finds that an object has not been used after

a certain amount of time, the CLR frees resources

associated with that object automatically and removes

the object from the memory. You can also control the life

cycle of the objects programmatically.

To write both managed and unmanaged applications

using Microsoft Visual Studio .NET. You can use Visual

C++ to write unmanaged code in Visual Studio .NET.

Managed Extensions to C++ (MC++) is the way to write

C++ managed code. Code written using C# and Visual

Basic .NET is managed code.

Messenger Application

The Server, which will watch any changes in the network and pass the

message from the client applications over the network. As the client of

that Server, we are giving a messenger which will behave very similar to

the Yahoo or MSN messenger.

Windows service keeps the track of the client connected to it with

particular address and port (This is the server and heart of the entire

application). Whatever may be the client application, you can connect to

the server with generalized code. We have used the Messenger

application as the client to this server.

Structured Application

There are three projects in this application. ServerService,

ServerApplication and MessengerApplication. ServerService is to install the

Windows service in the Server Application and the MessengerApplication

as client.

The “ServerApplication” project contains the following classes:

1. ApplicationLog

2. ApplicationTrace

3. DiscoveryService(Windows Service)

4. DicoveryCache

5. DiscoverServiceconfiguration

6. DiscoveryClient

7. DiscoveryUnicastClient

8. DicoveryMultiCastClient

9. DiscoveryClientConnection

10. MessageConnection

11. Network

12. NetworkAddress

13. NetworkAdapter

14. TcpAsyncListener

15. UdpListener

16. TcpConnection

17. DiscoveryMessages

18. Messengerreader

19. MessageWriter

The ServerService contains StartService.cs.

The client application(Messenger application)contains:

1. MessengerApp

2. MessengerConnection

3. MessengerMessages

4. MessebgerService

5. MessengerUser

6. TcpServer

7. UserInfo

8. EndPointHelper

9. User

10. MessengerWindow

11. LoginDialog.

First, you compile the Server application to get a Class Library(DLL file).

Add the reference of this dll file to the Server Service to get the console

“ServerService.exe”file. Next step is to add the Server Application.dll file to

the Messenger Application and complie it to get the Messenger

application.exe file.

Application usages

First, you must start the ServerService in your local machine. Start the

service from the command line or from the Service in Administration

Tools.

If the service is started properly, you are ready to start your messenger.

Now, you decide the mode in which you have to run the messenger

application. It has two modes:

1. UniCast

2. MultiCast.

This can be set in your configuration file.

Requrement Model

As the life cycle of the project begins, the first and primary requirement is

to build requirement model of the application. This will give you fair idea

about the client requirements and will have to be fulfilled by your

application. Next is the analysis model, where you will analyze the

requirement model and make it in standard structure, to implement the

coding.

Once the analysis model completes, next step is the construction model.

Here, you will start the coding and implement all the interfaces you made

in the analysis model.

The last step is the Testing model. In this phase, you will test whether your

application is fulfilling all the needs according to the requirement model,

and whether it can withstand the trust given by the user.

Client Watcher

 As you start the system, the application should start listening to

the client.

 The application should work in two modes (a) one to one

connection (b) one to many connections.

 The application can be configured for the connection by the user.

 The user accessing this application has to be cached and this user

information should be available to all clients listening to this

application.

 This application should be responsible for the data transferring

across the network.

 The clients(users)will be across the network, under one server.

 Each client will be given unique ID across the network for

identification.

 Before connecting to the client, the application should check

whether the client`s computer will support this application and it

has enough memory to process.

 The client can be different application and using common code it

should be connected to the server, once the client is registered

with the Client Watcher, it should be available to all clients.

Discovery service

The main part of the service is the windows service, which will be

using all other classes. So it will be better to explain all other classes

before we create the Windows Service(Discovery Service). Between

that, we cannot define all the method before implementing in the

code. This documented in the static structure model.

As you recollect from the requirement model, there was a

requirement to distinguish the service as Unicast or Multicast as the

configuration setting. Moreover, we have defined a class for the

service called DiscoveryServiceConfiguration to fulfil that.

Server Service

We define Windows Service as DiscoveryService.cs. However, if we

are developing the startup file for this service in the same directory,

we want to start other service using this installer, we will be forced to

recompile the entire project again, which contains too many other

files.

Therefore, it is better to isolate the installer in separate project. Let

this project be ServerService and the Windows Service is in project,

ServerApplication.

First, we will have a look at the Installer. Using this Installer, you can

start the service. Using this class you can run the service using

CommandLine and as Windows Service.

The StartService class has a Main class, where it will take the

CommandLine string. If it is CommandLine, it will Instantiate the

DiscoveryService class and call Start method. It will wait for “enter”, to

stop the service.

The StartServiceInstaller class is the Installer class. We can create the

Installer class by the Code given below.

namespace ServerService

{

using System;

using System.Component Model;

using System.Configuration.Install;

using System.ServiceProcess;

using NetSamples.Common.Discovery;

public class StartService

{

public StartService()

{

}

public static void Main(string[] args)

{

#if DEBUG

if (args.Length > 0 && args[0] == “CommandLine”)

{

DiscoveryService d = new DiscoveryService();

d.Start();

Console.WriteLine(“Press Enter to stop the service…”);

Console.readLine();

d.Stop();

return;

}

#endif

ServiceBase.Run(new DiscoveryServeryService ());

}

}

[RunInstallerAttribute(true)]

public class StartService : Installer

{

private ServiceInstaller serviceInstaller;

private ServiceProcessInstaller processInstaller;

public DiscoveryServiceInstaller()

{

serviceInstaller = new Service nstaller();

//The services will be started manually.

serviceInstaller.StartType = ServiceStartMode.Manul;

//SrviceName must same as of ServiceBase derived classes.

serviceInstaller.SeviceName = ‘shibi.startServer”;

processInstaller = new ServiceProcessInstaller();

processInstaller.Account = ServiceAccount.LocalSystem;

//Add installer to collection.Order is not important.

Installer.Add(serviceInstaller);

Installers.Add(processInstaller);

}

}

}

 ---oOo---

	// Equal to Operator
	result = (x == y);
	Console.WriteLine("Equal to Operator: " + result);
	// Greater than Operator
	result = (x > y);
	Console.WriteLine("Greater than Operator: " + result);
	// Less than Operator
	result = (x < y);
	Console.WriteLine("Less than Operator: " + result);
	// Greater than Equal to Operator
	result = (x >= y);
	Console.WriteLine("Greater than or Equal to: "+ result);
	// Less than Equal to Operator
	result = (x <= y);
	Console.WriteLine("Lesser than or Equal to: "+ result);
	// Not Equal To Operator
	result = (x != y);
	Console.WriteLine("Not Equal to Operator: " + result);
	Decision Making (if, if-else, if-else-if ladder, nested if, switch, nested switch)
	Looping in programming language is a way to execute a statement or a set of statements multiple number of times depending on the result of condition to be evaluated to execute statements. The result condition should be true to execute statements withi...
	Loops are mainly divided into two categories:
	Entry Controlled Loops: The loops in which condition to be tested is present in beginning of loop body are known as Entry Controlled Loops. while loop and for loop are entry controlled loops.
	Example
	Exit Controlled Loops: The loops in which the testing condition is present at the end of loop body are termed as Exit Controlled Loops. do-while is an exit controlled loop.
	OOPS Concepts
	Encapsulation
	Polymorphism
	Inheritance
	Abstraction

	Process
	Advantages and Disadvantages of Message Switching
	Advantages
	 It does not have to deal with out of order packets or lost packets as in packet switching.
	Disadvantages

