
UNIT-III 

BOURDON GAUGES: 

Bourdon gauges are known for its very high range of differential pressure 

measurement in the range of almost 100,000 psi (700 MPa). It is an elastic type pressure 

transducer. The basic idea behind the device is that, cross-sectional tubing when deformed in 

any way will tend to regain its circular form under the action of pressure. The bourdon 

pressure gauges have a slight elliptical cross-section and the tube is generally bent into a C-

shape or arc length of about 270 degrees. The detailed diagram of the bourdon tube is shown 

below. 

 

As seen in the figure, the pressure input is given to a socket which is soldered to the 

tube at the base. The other end or free end of the device is sealed by a tip. This tip is 

connected to a segmental lever through an adjustable length link. The lever length may also 

be adjustable. The segmental lever is suitably pivoted and the spindle holds the pointer as 

shown in the figure. A hair spring is sometimes used to fasten the spindle of the frame of the 

instrument to provide necessary tension for proper meshing of the gear teeth and thereby 

freeing the system from the backlash. Any error due to friction in the spindle bearings is 

known as lost motion. The mechanical construction has to be highly accurate in the case of a 

Bourdon Tube Gauge. If we consider a cross-section of the tube, its outer edge will have a 

larger surface than the inner portion. The tube walls will have a thickness between 0.01 and 

0.05 inches. 

 

http://www.instrumentationtoday.com/pressure-transducer/2011/09/
http://www.instrumentationtoday.com/pressure-transducer/2011/09/


Working 

As the fluid pressure enters the bourdon tube, it tries to be reformed and because of a 

free tip available, this action causes the tip to travel in free space and the tube unwinds. The 

simultaneous actions of bending and tension due to the internal pressure make a non-linear 

movement of the free tip. This travel is suitable guided and amplified for the measurement of 

the internal pressure. But the main requirement of the device is that whenever the same 

pressure is applied, the movement of the tip should be the same and on withdrawal of the 

pressure the tip should return to the initial point. 

The factors affecting the sensitivity of a Bourdon gauge 

Because of the internal pressure, the near elliptic or rather the flattened section of the 

tube tries to expand as shown by the dotted line in the figure below (a). The same expansion 

lengthwise is shown in figure (b). The arrangement of the tube, however forces an expansion 

on the outer surface and a compression on the inner surface, thus allowing the tube to 

unwind. This is shown in figure (c). 

 

Like all elastic elements a bourdon tube also has some hysteresis in a given pressure 

cycle. By proper choice of material and its heat treatment, this may be kept to within 0.1 and 

0.5 percent of the maximum pressure cycle. Sensitivity of the tip movement of a bourdon 

element without restraint can be as high as 0.01 percent of full range pressure reducing to 0.1 

percent with restraint at the central pivot. 



The factors that affect the sensitivity of a Bourdon gauge are radius(R) of the bourdon 

tube, major and minor axis length (α,β) of the tube, thickness of the tube(t), area of cross 

section of the tube (A), and the Young’s modulus of the material (E), Coil length, Tip travel 

 

DESIGN OF AIR PURGE SYSTEM FOR LEVEL MEASUREMENT: 

Air Purge Method (Bubbler Level Measurement) 

Air purge method is used for level measurement. It is also known as bubbler 

method. This is one of the most popular method for hydrostatic liquid level measuring 

system. which is suitable for any type of liquid level. The Bubbler System is an inexpensive 

but accurate means of measuring the fluid level in open or vented containers, especially those 

in harsh environments such as cooling tower sumps, swimming pools, reservoirs. The system 

consists of a source of compressed air, air flow restrictor, sensing tube and pressure 

transmitter. The only component of the Bubbler System that is exposed to the elements is the 

sensing tube. 

Construction 

 

 

It is consist of a hollow tube which is inserted in the liquid of the tank. Two 

connection are made with the bubbler tube one to the pressure gauge and another to the 

regulated air supply, calibrated in terms of liquid level. a bubbler is connected in the series 

with air supply line which simply as a visual check to the flow of the supply of the air. A 

level recorder may be connected with the pressure gauge to keep continues record of liquid 

level as shown in fig. 



Working 

When there is no liquid in the tank or the liquid in the tank is below the bottom end of 

the bubbler tube and the pressure gauge indicates zero. In other words, if there is no back 

pressure because the air escapes to the atmosphere. As the liquid level in the tank increases, 

the air flow is restricted by the depth of liquid and the air pressure acting against liquid head 

appears as back pressure to the pressure gauge. 

This back pressure causes the pointer to move on a scale, calibrated in terms of liquid 

level. The full range of head pressure can be registered as level by keeping the air pressure 

fed to the tube, slightly above the maximum head in the tank. The range of the device is 

determined by the length of the tube. Because air is continuously bubbling from the bottom of 

the tube, the tank liquid does not enter the bubbler tube and hence the tube is said to be 

purging. 

Applications 

• Can be used to measure the level of the wet well to control the intake pumps. 

• Can be a replacement for ultrasonic level transmitters. 

• Can measure Specific Gravity. 

• Can measure tank level. 

Advantages 

• Reliability is better than other level measurement methods 

• Immune to surface foam, pH, conductivity, temperature, turbulence, and solids 

content. 

• The sensor is not in direct contact with liquid, offering long life and greater 

calibration stability. 

• Accuracy is good. 

• The instrument panel can be located up to several hundred feet from what is being 

measured. 

• Suitable for applications with corrosive, acidic, hazardous, volatile, molten, 

cryogenic, or radioactive liquids. 

• The purge gas (compressed air) provides complete isolation from the measured liquid. 

• Minimal Maintenance  

 

Disadvantages 

• They are not appropriate for use in non-vented vessels. 

• Their calibration gets changed according to variations in density. 

• Require compressed air.  

        

 

 



Problem:1 

 Make use of the following specifications to build an Air purge level measurement 

system. Required output voltage: 0-5V; Input level range: 100cm to 700 cm; Density= 

1.15gm/cm3 

Solution:

 

Required output voltage: 0-5V; 

 

Input level range: 100cm to 700 cm; 

Density (ρ)= 1.15gm

 

Pressure at 100cm of height = 100 x (1.15/1000) = 0.115 Kg/cm2

 

= 0.115 x 14.7 psi

 

= 1.69 psi

 

pressure at 700cm of height = 700 x (1.15/1000) = 0.805 Kg/cm2

 

= 0.805 x 14.7 psi 

= 11.9 psi 

Current at particular level = 4+[(P - Pmin)/(Pmax - Pmin)] 

 

Current at 100cm = 
16.

115.0805.0

115.0115.04
−

−+
 

= 4mA 

Current at 700cm = 
16.

115.0805.0

115.0805.04
−

−+

 
= 20mA 

 

Problem: 2 

 Build an Air purge level measurement system for the following specifications. 

Required output voltage: 0-10V; Input level range: 15cm to 120 cm; Flowing fluid: Water 

with density of 1x10-3 Kg/cm3 

 



Solution:

 

Required output voltage: 0-10V; Input level range: 15cm to 120 cm; 

 

Density (ρ) of water = 1 x 10-3Kg/cm3

 

Pressure at 15cm of height = 15cm x (1 x 10-3Kg/cm3) = 15 x 10-3Kg/cm2 

 

= 15 x 10-3Kg/cm2  x 14.7 = 0.2205psi

 

Pressure at 120cm of height = 120cm x (1 x 10-3Kg/cm3) = 0.012 Kg/cm2

 

= 0.012 x 14.7 psi

 

= 1.764 psi 

Current at particular level = 4+[(P - Pmin)/(Pmax - Pmin)] 

Current at 100cm = 

16.
2205.0764.1

2205.02205.04
−

−+

 

= 4mA 

Current at 700cm =  

16.
2205.0764.1

2205.0764.14
−

−+
 

= 20mA 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

ELECTRONIC P+I+D CONTROLLERS 

Electronic methods of realizing PID controller modes, use op amps as the primary 

circuit element. Discrete electronic components are also used to implement this function, and 

the basic principles are illustrated using op amp circuits.  

Proportional Mode 

Implementation of this mode requires a circuit that has a response given by 

0
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u(t)  = Kp ep(t) + u0 

where, up(t) = controller output in percent of full output 

Kp = proportional gain 

ep(t) = error in percent of variable range 

u0 = controller output with no error (or) controller bias. 

Controller bias: 

In a control loop, the controller bias is a constant amount of voltage or current added 

to or subtracted from the controller output. 
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Proportional band: 

The “proportional band” of a proportional controller is the range of input signals 

which will cause the output signal of the controller to vary over its whole working range.  

P
K
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If we consider both the controller output and error to be expressed in terms of voltage, 

the above equation can be represented by a summing amplifier. The op amp circuit shown 

below , is an electronic proportional controller. In this case, the electronic equation for the 

output voltage is 

                                          Vout = GPVe + V0 

Where,  

GP = R2/R1 = gain 



Vout = output voltage 

            Ve = error voltage 

V0 = output with zero error 

 

And         

range input of % 1

range output of % K
G P

P
=

 

An op amp proportional-mode controller is shown below. 

                       

Characteristics of the proportional mode  

1. If the error is zero, the output is a constant equal to )0(u  

2. If there is error, for every 1% of error, a correction of percent KP%is added to or 

   subtracted from )0(u , depending on the sign of the error. 

3. There is a band of error about zero of magnitude PB within which the output is 

                not saturated at 0% or 100%. 

Offset:  

An important characteristic of the proportional control mode is that it produces 

a permanent residual error in the operating point of the controlled variable when a 

change in load occurs. This error is referred to as offset. It can be minimized by a 

larger constant, KP , which also reduces the proportional band. 

 

Integral Mode 

  The integral mode was characterized by an equation of the form 
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where, up(t) = controller output in percent of full output 

KI = Integral gain 



ep(t) = error in percent of variable range 

u(0) = controller output at t = 0 

This equation can be implemented with op amps. A diagram of an integral controller 

is shown in the following figure. The corresponding equation relating input to output is 

 

 

       

The values of R and C can be adjusted to obtain the desired integration time. The 

initial controller output is the integrator output at t=0. The integration time constant 

determines the rate at which controller output increases when the error is constant. If it is 

made too large, the output rises so fast that overshoots of the optimum setting occur and 

cycling is produced. 

Here, 
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Characteristics of the integral mode  

1. If the error is zero, the output stays fixed at a value equal to what it was when the 

error went to zero. 

2. If the error is not zero, the output will begin to increase or decrease at a rate of 

KI percent/second for every 1% of error.  

Area Accumulation  



The integral determines the area of the function being integrated. Thus, Equation for 

integral mode can be interpreted as providing a controller output equal to the net area under 

the error-time curve multiplied by KI . The integral term accumulates error as a function of 

time. Thus, for every 1%-sec of accumulated error-time area, the output will be KI percent. 

 Derivative Mode  

The derivative mode is never used alone because it cannot provide a controller output when 

the error is zero.  

Derivative controller mode cannot be used alone, because, in derivative control mode, the 

control function is proportional to change of an error in the given time. If there is no change 

in a process (i.e. error does not change) then the control function is zero, hence derivative 

controller alone cannot bring the system to its setpoint. Also the derivative controller could 

amplify noise. 

The control mode equation can be given as, 
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where, up(t) = controller output in percent of full output 

KD= Derivative gain 

ep(t) = error in percent of variable range 

This equation can be implemented with op amps. A diagram of an derivative 

controller is shown in the following figure.  

The corresponding equation relating input to output is 
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From a practical perspective, this circuit cannot be used because it tends to be 

unstable. A simple modification is made by  placing a resistor in series with the capacitor.  

The circuit exhibits a derivative response provided the following inequality is satisfied,  

2πfR1CD << 1 

A practical derivative-mode op amp controller is shown below. And GD=RDCD 



 

Characteristics of the derivative mode  

1. If the error is zero, the mode provides no output. 

2. If the error is constant in time, the mode provides no output. 

3. If the error is changing in time, the mode contributes an output of KD percent for 

every 1%-per-second rate of change of error. 

4. For direct action, a positive rate of change of error produces a positive derivative 

mode output. 

 

COMPOSITE CONTROLLER MODES: 

 Proportional-Integral 

A simple combination of the proportional and integral circuits provides the 

proportional-integral mode of controller action. The control mode equation can be given as, 
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where, up(t) = controller output in percent of full output 

KP= proportional gain 

KI = Integral gain = KP/τI 

ep(t) = error in percent of variable range 

u(0) = controller output at t = 0 

The resulting circuit is shown below.   
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Proportional gain is  Gp= R2/R1 , and the Integration gain GI = 1/RICI. The resulting 

circuit is shown in the following figure.  



 

Proportional-Derivative  

A powerful combination of controller modes is the proportional and derivative modes.  
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where, up(t) = controller output in percent of full output 

KP= proportional gain 

KD= Derivative gain = KPτD 

ep(t) = error in percent of variable range 

u(0) = controller output at t = 0 

 

This combination is implemented using a circuit shown in Figure shown below. 

Analysis shows that this circuit responds according to the equation, 
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And 2πfmaxR3CD = 0.1 

 

PID (Three-Mode) 

 The ultimate process controller is the one that exhibits proportional, integral, and 

derivative response to the process-error input. This mode is characterized by the equation 
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where, up(t) = controller output in percent of full output 

KP= proportional gain 

KI = Integral gain = KP/τI 

KD= Derivative gain = KDτD 

ep(t) = error in percent of variable range 

u(0) = controller output at t = 0 

The electronic output voltage expression is,  
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The Electronic citcuit for PID controller is shown below.

 

 

range input in change 1%

range output in changeK
G p

p

%
=

 

 Second1 for last 1% of  Error

range output in change   K
G I

I

%
=

 

 Second1 in 1% of change Error
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and       2πfmaxR3CD = 0.1 
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Problem:3 

Construct an Electronic Proportional – Integral controller with proportional band of 

30% and an integral gain of 0.1%/(%-s) with input 0.4V to 2V and output 0-10V. 

Solution: 

Proportional band =  30%  

Kp = 100/PB = = 100/30 = 3.33% 

   The input range is 0.4V to 2V and the output range is 0-10 V.  



    

range input in change 1%

range output in changeK
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p
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G

p
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   = 0.333/ 0.016 = 20.8125 = R2/R1 

Let R1= 1 KΩ, R2 = 20.8125KΩ 

 For the integral term 

 Second1 for last 1% of  Error
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G
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= 0.01/0.016 = 0.625 s-1 

         RICI = 0.625 sec-1 ;             Let CI = 1000μF,        RI =0.625/ 1000x10-6 = 625Ω 

 
 

 Problem:4 

Construct a Proportional Derivative controller with KP=2.4%/%,  KD = 0.7%/(%/min),  

0-5V input and 0-10 ouput . 

 Solution: 

   The input range is 5 V, and the output range is 10 V.  

    

range input in change 1%

range output in changeK
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0)-(5 (1/100)

0)-(10 
G
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 For the proportional mode, a 1% input (error) means a voltage change of  

    (1/100)0.5V = 0.05V 

.   This should cause an output change of 2.4%  

    = (2.4/100) 10V = 0.24V    

   Gp = (0.24/0.05) = 4.8 

 For the derivative term 

 Second1 in 1% of change Error

range output in changeK
G D

D

%
=

 

 

  An error change of 1% per min or (0.05V/60 ) = 6.67  x 10-4V/Sec 

    0.7%  change in output range = (0.7/100)(10-0) = 0.07V 

 

0.05/60
G

D

07.0=      = 8 3 Seconds 

These results provide the following relations: 

          (R2/R1) = 4.8 

RD CD  =  83  

Let R1 = 1 k 

      R2 = 4.8 k 

            Let CD = 1000 μF ; RD = 83/1000 x 10-6 

          RD = 83k 

                  R=1k 

 

 

Problem:5 



A temperature control system inputs the controlled variable as a range from 0 to 4 V.  

The output is a heater requiring 0 to 8 V. A PID is to be used with KP= 2.4%/%,  

KI = 9%(%min), KD = 0.7%(%min). The period of the fastest expected change is estimated to 

be 8sec. Develop the PID circuit. 

Solution: 

Proportional gain KP =  2.4%/% 

   The input range is 0V to 4V and the output range is 0-8 V.  

    

range input in change 1%

range output in changeK
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   = 0.192/ 0.04 = 4.8 = R2/R1 

Let R1= 1 KΩ, R2 = 4.8KΩ 

 For the integral term, KI=9%/min = 9/60=0.15%/sec 

 Second1 for last 1% of  Error
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=  0.3 s-1 

         RICI =0.3 sec-1 ;             Let CI = 1000μF,        RI =0.3/ 1000x10-6 = 300Ω 

 For the derivative term 

 Second1 in 1% of change Error

range output in   changeK
G D

D
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D
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=

−
=

     = 8 4 Seconds 

These results provide the following relations: 

           

RD CD  =  84 Sec 

 

            Let CD = 1000 μF ; RD = 84/1000 x 10-6 

          RD = 84k 

                  R=1k 



 

The period of the fastest expected change is estimated to be 8sec. 

2πR3CD = (0.1) (8 s) = 0.8 

           RDCD = 84,  CD = 1000 μF 

R3 = 0.8/(2πCD) = 127 Ω 


