
CSPC404 - DATABASE MANAGEMENT SYSTEMS

Dr. L.R. Sudha

Associate Professor/CSE

28-05-2025 1

Introduction
• DBMS = database + management system
 = collection of interrelated data + Set of programs to manage

 database

• Defn: A database-management system is a collection of interrelated
data and a set of programs to manage those data.

 Management means - Definition of database
 Construction of database
 Manipulation of database

• Goal of a DBMS

 To provide a convenient and efficient way to store and retrieve
database information

• Examples of DBMS : Oracle, MySQL, SQL Server, DB2 …
28-05-2025 2

Database Applications

• Banking: customer information, accounts, loans, all transactions

• Airlines, railways, bus: reservations, schedules

• Universities: student registration, faculty information, grades

• Inventories: customers, products, orders, stock

• Manufacturing: production, inventory, orders

• Human resources: employee records, salaries, tax deductions

• Social-media: records of users, connections between users (such as

friend/follows information), posts made by users, rating/like

information about posts, etc.
28-05-2025 3

Course Objectives

• To understand the fundamentals of DBMS and E-R Diagrams.

• To impart the concepts of the Relational model and SQL.

• To disseminate the knowledge on various Normal Forms.

• To inculcate the fundamentals of transaction management and

Query processing.

• To familiarize on the current trends in data base technologies

28-05-2025 4

Course Outcomes

1. Understand the fundamental concepts of Database Management Systems
and Entity Relationship Model and develop ER Models.

2. Build SQL Queries to perform data creation and data manipulation
operations on databases.

3. Understand the concepts of functional dependencies, normalization and
apply such knowledge to the normalization of a database.

4. Identify the issues related to Query processing and Transaction
management in database management systems.

5. Analyze the trends in data storage, query processing and concurrency
control of modern database technologies.

28-05-2025 5

28-05-2025 6

Importance of DBMS subject

• One of the subjects in GATE exam.

• If you Qualify GATE
➢ Post Graduation from most reputed engineering colleges in India

such as IIT/NIT

➢ Eligible for Rs.12400/- stipend every month for the next two years
during your post-graduation

➢ Numerous PSU such as BHEL, GAIL, NLC, NTPC, BPCL, etc., are
using the GATE score for choosing candidates for their organizations.

28-05-2025 7

UNIT – I : Introduction

• File System vs. DBMS

• Views of data

• Data Models

• Database Languages

• Database Management System Services

• Overall System Architecture

• Data Dictionary

• Entity – Relationship (E-R)

• Enhanced Entity Relationship Model.
28-05-2025 8

1. File System vs. DBMS
• Earlier days database is managed by file system.

• Instead of using files why DBMS is used?

Disadvantages in File Processing

1. Data redundancy and inconsistency.

2. Difficult in accessing data.

3. Data isolation.

4. Data integrity.

5. Atomicity problem

6. Concurrent access is not possible.

7. Security Problems.

28-05-2025 9

28-05-2025 10

• SQL – Structured Query Language

• CREATE TABLE statement is used to create a new table in the
database.

• To create a table, you have to

➢ name of table

➢define its columns

➢Define datatype of each column.

• Syntax:

28-05-2025 11

1.Data redundancy and inconsistency

• Redundancy - Same data in many places, multiple copies of same data

Example
➢ Consider a database in University with sections Academics, Hostel,

Accounts, Result
➢ Name, Roll No, Phone number of a student may appear in all files

• This redundancy leads to higher storage and access cost. In addition, it
may lead to data inconsistency

➢ various copies of the same data may not match

Example
➢ a changed phone number may be reflected in Hostel file but not

elsewhere in the system.

28-05-2025 12

2.Difficulty in accessing data
• Conventional file-processing environments do not allow needed data to be

retrieved in a convenient and efficient manner.

• It needs application programs to access data.

Example

• Suppose that one of the university clerks needs to find out the names of all
students who live within a particular postal-code area.

• Ask a programmer to write the necessary application program.

• Days later, the same clerk needs a list of students who have taken at least
60 credit hours.

• Once again the clerk will ask a programmer to write the necessary
application program.

• So as time goes by, system acquires more application programs.

28-05-2025 13

3. Data isolation
• Because data are scattered in various files, and files may be in different

formats

4. Integrity problems
• The data values stored in the database must satisfy certain types of

consistency constraints.
Example
 In university system,
 Register No of students must be unique
 Address – not null

 In Banking System,
 Account balance of a customer never fall below minimum balance.

28-05-2025 14

5. Atomicity problems (ALL or Nothing)
➢A computer system, like any other device, is subject to failure.
➢In many applications, it is crucial that, if a failure occurs, the

data be restored to the consistent state that existed prior to the
failure.

Example

➢ Consider a banking system with a program to transfer Rs.5000
from account A to account B.

➢If a system failure occurs during the execution of the program, it
is possible that the Rs.5000 was debited from the balance of
account A but was not credited to the balance of account B

➢This results in an inconsistent database state.

➢So, the funds transfer must be atomic—it must happen in its
entirety or not at all.

➢ It is difficult to ensure atomicity in a conventional file-processing
system.28-05-2025 15

6. Concurrent-access anomalies – multiple access
at the same time
• Suppose a registration program maintains a count of students registered

for a course in order to enforce limits on the number of students
registered.

• When a student registers, the program reads the current count for the
courses, verifies that the count is not already at the limit, adds one to the
count.

• Suppose two students register concurrently, with the count at 39. The two
program executions may both read the value 39, and both would then
write back 40, leading to an incorrect increase of only 1, instead of 2.

• Furthermore, suppose the course registration limit was 40; in the above
case both students would be registered, leading to a violation of the limit
of 40 students.

28-05-2025 16

7. Security problems
• Data should be secured from unauthorized access

• Not every user of the database system should be able to access all the
data.

• For example, in a university,

➢Accounts section staff should not be able to access academic
records.

➢a student should not be able to see the payroll details.

• Enforcing such security constraints is difficult.

28-05-2025 17

1. Any management with the file system,
user has to write the application
programs

Not required to write the application
programs for managing the database.

2. File system gives the details of
the data representation and Storage
of data.

2. DBMS provides an abstract view of
data that hides the details

3. In File system storing and retrieving of
data cannot be done efficiently.

3. DBMS is efficient to store and
retrieve the data.

4. Redundant data can be present No redundant data

5. Less data consistency More data consistency

6. Concurrent access to the data in the
file system has many problems.

4. DBMS takes care of Concurrent
access using someform of locking.

7. File system doesn’t provide crash
recovery mechanism.

5. DBMS has crash recovery
mechanism

FILE SYSTEM DBMS

28-05-2025 18

2. VIEWS OF DATA

• To study the terminology and basic concepts that are used in DBMS.

➢Data Models

➢Data Abstraction

➢Instances and Schemas

• Main purpose of a database system is to provide users with an
abstract view of the data.

• That is, the system hides certain details of how the data are stored
and maintained.

28-05-2025 19

Data Models
• Collection of conceptual tools used to describe the structure of a

database.

• By structure of a database we mean data, relationships and
constraints that apply to the data.

• Some data models also include
➢ Set of basic operations such as insert, delete, modify, retrieve.
➢ Dynamic aspect or behavior of a database application.

• behavior - Specify a set of valid user-defined operations that are
allowed on the database objects - (fundamental to object-oriented
data models)

28-05-2025 20

• 4 Categories

28-05-2025 21

1. Relational Model
• The relational model uses a collection of tables to represent both

data and the relationships among those data.

• Each table has multiple columns and rows.

• Each column has a unique name called as fields, or attributes.

• Each row is called as record/tuple

• Row is in fixed format

- records of a particular type

 (or)

- fixed number of fields, or attributes.

• Tables are also known as relations.

• The relational data model is the most widely used data model.

28-05-2025 22

28-05-2025 23

2. Entity-Relationship Model

• The entity-relationship (E-R) data model describes data as
entity, attribute and relationships .

• Entity is a real-world thing or object.

• It can be an object

 with a physical existence - a person, car, house, employee …

 or

 with a conceptual existence - an account, a job, course…

28-05-2025 24

• Attributes - describes the property of an entity

• Each attribute will have a value

 Example: name, street_address, city --- customer database

 Acc-no, balance --- account database

 name,designation,age,bpay ----- employee database

• Relationship - Relationship tells how two entities are related.

 Association between entities

 Example: student study in a college.

28-05-2025 25

3. Semi-structured Data Model
• This type of data model is different from the other three data models

• This model gives flexibility in storing the data.

• The data is not constrained by a fixed schema

➢In this model entities may or may not have the same
attributes or properties
➢Some entities may have missing attributes while others may

have an extra attribute.
➢Size and type of the same attributes in a group may differ

• The Extensible Markup Language, XML, is used for representing the
semistructured data.

28-05-2025 26

28-05-2025 27

4. Object-Based Data Model

• After the development of object oriented programming, object
based data model was developed.

• Concept of objects is integrated into relational databases.

• So this model can be seen as an extension of relational model.

• Allow procedures/methods to be stored in the database system and
executed by the database system.

• This can be seen as extending the relational model with
encapsulation concept.

• In this model, two are more objects are connected through links.

28-05-2025 28

Example

• We have two objects Employee and Department.

• The attributes like Name, Job_title of the employee and the
methods which will be performed by that object are stored as a
single object.

• The two objects are connected through a common attribute i.e
the Dept_id

28-05-2025 29

Data Abstraction
• Data abstraction generally refers to

➢ the suppression/hiding of details of data organization and
storage
➢ and highlighting of essential features.

• One of the main characteristics of the database approach.

• Use - different users can perceive data at their preferred level of details.

• Database system developers use complex data structures to represent
data in the database.

• Since many database-system users are not computer trained, developers

hide the complexity from users through several levels of data abstraction

28-05-2025 30

• 3 levels of data abstraction

28-05-2025 31

• Physical level - The lowest level of abstraction describes how the data
are actually stored.

• Logical level - The next-higher level of abstraction describes what data
are stored in the database, and what relationships exist among those
data.

• View level - The highest level of abstraction describes only part of the
entire database

28-05-2025 32

Schemas, Instances
• Database schema describes the overall design of a database.

• It is not expected to change frequently.

• Most data models have certain conventions for displaying schemas as
diagrams.

• These diagrams are called as schema diagram.

Example

 schema diagram of relational model.

28-05-2025 33

• The collection of information stored in the database at a particular
moment is called an instance of the database.

• The concept of database schemas and instances can be understood
by comparing with a program written in a programming language.

• A database schema corresponds to the variable declarations in a
program.

• An instance of a database schema corresponds to the values of the
variables in a program at a point of time.

• Each variable has a particular value at a given instant.

28-05-2025 34

Types of Schema
1. physical schema describes the database design at the physical level,

2. logical schema describes the database design at the logical level.

3. subschemas describes different views of the database

• Of these, the logical schema is most important since programmers
construct applications by using the logical schema.

• The physical schema is hidden beneath the logical schema and can be
changed easily without affecting application programs.

28-05-2025 35

3. Database Languages

28-05-2025 36

• DDL is used to specify the database schema

• DML is used to access or manipulate data in the database

• DCL is used to control access privilege in Databases.

• TCL is used to manage the changes made by DML statements

28-05-2025 37

Data Definition Language (DDL)

• DDL is used for specifying the database schema. –
structure/skeleton of the database

• It is used for creating tables, indexes, constraints etc. in database.

• Processing of DDL statements, just like those of any other programming
language, generates some output.

• The output of the DDL is placed in a special file called as data dictionary,
which contains metadata—that is, data about data.

Example : number of schemas and tables, their names,

 constraints, columns in each table, etc.

28-05-2025 38

• The data dictionary can be accessed and updated only by the database
system itself (not a regular user).

• The database system consults the data dictionary before reading or
modifying actual data.

Data Definition Languages (DDL) Commands:

• Create: To create a new table or a new database.

• Alter: To alter or change the structure of the database table.

• Drop: To delete a table, index, or views from the database.

• Truncate: To delete the records or data from the table, but its
structure remains as it is.

• Rename: To rename an object from the database.

• Comment: To add comments in a table.

28-05-2025 39

Consistency/Integrity Constraints
• Integrity constraints are a set of rules. It is used to maintain the

quality of information.

• The data values stored in the database must satisfy certain consistency
constraints.

• The DDL provides facilities to specify such constraints.

• The database system checks these constraints every time the database is
updated.

Example :

 account balance of a department must never be negative.

Types:
1. Domain Constraints
2. Entity Integrity Constraints
3. Referential Integrity Constraints
4. Authorization

28-05-2025 40

1. Domain Constraints

• A domain of possible values must be associated with every
attribute by restricting the type, the format, or the range of
values.

• Valid set of values for an attribute.

• Domain constraints are the most elementary form of integrity
constraint.

• They are tested easily by the system whenever a new data item
is entered into the database.

28-05-2025 41

2. Entity Integrity Constraints - Unique, primary key

• Ensures uniqueness of each record or row in the data table.

• No duplicate rows should be in a table.

• There must be a value in the primary key field. It should not be
Null

• This is because the primary key value is used to identify individual
rows in a table.

• If there were null values for primary keys, it would mean that we
could not identify those rows.

28-05-2025 42

3. Referential Integrity

• A referential integrity constraint is specified between two tables.

• It is to ensure valid relationship between two tables.

• Referential integrity is combination of a primary key and a foreign key.

• The main concept of REFERENTIAL INTEGRITY is that it does not allow
to add any record in a table that contains the foreign key unless the
reference table containing a corresponding primary key value.

• In the Referential integrity constraints, if a foreign key in Table 1 refers to
the Primary Key of Table 2, then every value of the Foreign Key in Table 1
must be available in Table 2.

28-05-2025 43

28-05-2025 44

4. Authorization

• To differentiate users based on the type of access they are permitted
in the database.

Types of authorization:
1. read authorization - which allows reading, but not modification,

of data;
2. insert authorization - which allows insertion of new data, but not

modification of existing data;
3. Update authorization - which allows modification, but not

deletion, of data;
4. delete authorization - which allows deletion of data.

• We may assign the user all, none, or a combination of these types of
authorization.

28-05-2025 45

Data Manipulation Language (DML)
• DML is used to access or manipulate the data in the database.

• (ie) is used to retrieve the data from the database, insert new data
into the database, update and delete the existing data from the
database.

Data Manipulation Language is mainly of two types:

• Procedural DML: This type of DML describes what data is to be
accessed and how to get that data.

• Declarative DML or Non-procedural DML: This type of DML only
describes what data is to be accessed without specifying how to get
it.

28-05-2025 46

Data Manipulation Language (DML) Commands:

• Select: To retrieve or access data from the database table.

• Insert: To insert the records into the table.

• Update: To change/update the existing data in a table.

• Delete: To delete records from the table.

• MERGE - To perform UPSERT operation (insert or update)

• CALL - To call a PL/SQL or Java subprogram

• EXPLAIN PLAN - To explain the access path to data

• LOCK TABLE - To control concurrency

28-05-2025 47

Data Control Language(DCL)

• DCL is used to control privilege in Databases.

• It is mainly used for revoking and granting user access on a
database.

 Data Control Language (DCL) Commands:

• Grant: To grant access privileges to users to the database.

• Revoke: To take back permissions from the user .

28-05-2025 48

Transaction Control Languages(TCL)
• Transaction Control language is a language to manage the changes

made by DML statements

Transaction Control Language (TCL) Commands:

• Commit: This command is used to save the changes made by DML
commands in database .

• Rollback: This command is used to restore changes made to the
database which was last committed.

• SAVEPOINT - It identifies a point in a transaction to which you can later roll
back

• SET TRANSACTION - to initiate a database transaction.

28-05-2025 49

• Original Modify

Rollback Commit

28-05-2025 50

Roll

No

Name Grade

01 AA S

02 BB A

03 CC C

04 DD B

Roll

No

Name Grade

01 AA S

02 BB A

03 CC C

04 DD S

Roll

No

Name Grade

01 AA S

02 BB A

03 CC C

04 DD B

Roll

No

Name Grade

01 AA S

02 BB A

03 CC C

04 DD S

Roll No Name Grade

01 AA S

02 BB A

03 CC C

04 DD B

28-05-2025 51

Roll No Name Grade

01 AA S

02 BB A

03 CC C

04 DD S

4. Architecture of a database system

• Components
A. Database Users and User Interfaces
B. Query processor
C. Storage Manager

28-05-2025 52

28-05-2025 53

A. Database Users and User Interfaces

• There are four different types of database-system users. They are
differentiated by the way they interact with the system.

1. Naive users

• Unsophisticated users who interact with the system by using predefined
user interfaces, such as web or mobile applications.

• Example for user interface is form interface where the user can fill in
appropriate fields of the form.

• Naive users may also view/read reports generated from the database.

28-05-2025 54

2. Application programmers

• Computer professionals who write application programs.

• Application programmers can choose from many tools to develop user
interfaces.

3. Sophisticated users

• Interact with the system without writing programs

• Instead, they form their requests either using

 a database query language

 (or)

 tools such as data analysis software

• Analysts who submit queries to explore data in the database fall in this
category.

28-05-2025 55

4. Database Administrator (DBA)

• Has central control of both the data and the programs that access those
data

• Functions of DBA include:

i. Schema definition
 by executing a set of statements in DDL.

ii. Storage structure and access-method definition
➢Schema and physical-organization modification
➢Granting of authorization for data access
➢Routine maintenance

28-05-2025 56

• Schema and physical-organization modification.

➢To reflect the changing needs of the organization

➢ To alter the physical organization to improve performance.

• Granting of authorization for data access.

➢To regulate which parts of the database various users can access.

➢The authorization information is kept in a special system structure that
the database system consults whenever a user tries to access the data
in the system.

• Routine maintenance

➢ Backing up the database periodically to prevent loss of data.

➢Ensuring that enough free disk space is available, and upgrading disk
space as required.

➢Monitoring jobs running on the database and ensuring that
performance is not degraded by very expensive tasks submitted by
some users.28-05-2025 57

B. The Query Processor

 3 Components

• DDL interpreter, interprets DDL statements and records the definitions in
the data dictionary.

• DML compiler, translates DML statements into low-level instructions that
the query-evaluation engine understands.

• A query can be translated into any number of evaluation plans that all give
the same result.

• The DML compiler performs query optimization; that is, it picks the lowest
cost evaluation plan .

• Query evaluation engine, executes low-level instructions generated by the
DML compiler.

28-05-2025 58

C. Storage Manager

• Provides the interface between the low-level data stored in the database and the
application programs and queries submitted to the system.

• The storage manager components include:

➢Authorization and integrity manager, tests for the satisfaction of integrity
constraints and authority of users to access data.

➢Transaction manager ensures that

✓the consistency of the database

✓concurrent transactions proceed without conflicts.

➢File manager, manages

✓ the allocation of space on disk storage
✓ the data structures used to represent information stored on disk.

➢Buffer manager, responsible for

✓fetching data from disk storage into main memory
✓deciding what data to keep in cache memory.

 The buffer manager is a critical part of the database system, since it enables the
database to handle data sizes that are much larger than the size of main memory.28-05-2025 59

• The storage manager implements several data structures

➢Data files to store the database

➢Data dictionary, to store metadata about the structure of the database,
in particular the schema of the database.

➢Indices, to provide fast access to data items. (Like the index in
textbook)

➢ Statistical and descriptive data about the relations and attributes,

✓ number of tuples/records in each relation

✓ number of distinct values for each attribute

28-05-2025 60

UNIT II

UNIT – II Relational Approach
• Relational Model Relational Data Structure

• Relational Data Integrity – Domain Constraints – Entity Integrity – Referential
Integrity

• Keys

• Relational Algebra : Fundamental operations - Additional Operations

• Relational Calculus : Tuple Relational Calculus – Domain Relational Calculus

• SQL – Basic Structure – Set operations – Aggregate Functions – Null values –
Nested Sub queries

• Derived Relations – Views – Modification of the database

• Joined Relations

• Data Definition Language

• Triggers.

Example of a Instructor Relation

Attribute

• The set of allowed values for each attribute is called the
domain of the attribute

• Attribute values are (normally) required to be atomic; that is,
indivisible

• The special value null is a member of every domain. Indicated
that the value is “unknown”

• The null value causes complications in the definition of many
operations

• Order of tuples is irrelevant (tuples may be stored in an arbitrary
order)

Database schema & Instance

• Database schema --is the logical structure of the database.

• Database instance --is a snapshot of the data in the database at
a given instant of time.

Example
➢schema:

instructor(ID, name, dept_name, salary)

➢Instance:

Relational Algebra

• A procedural language consisting of a set of operations that take one or
two relations as input and produce a new relation as their result.

• Six basic / fundamental operators

➢select: σ - sigma

➢project: Π - pi

➢Cartesian product: x - cross product

➢Set Operations

✓union: ∪

✓Set intersection ∩

✓set difference: –

➢Join ⋈

➢rename: ρ

• Unary Relational Operations - select, project, rename

Select Operation

• The select operation selects tuples that satisfy a given predicate.

• Notation: σp(r)

p is called the selection predicate, r is relation name

Example:

1. Select tuples of the instructor relation where the instructor is in the
“Physics” department.

σdept_name=“Physics” (instructor)

2. Find all instructors with salary greater than $90,000

• We allow comparisons using =, ≠, >, ≥. <. ≤ in the selection
predicate.

• We can combine several predicates into a larger predicate by
using the connectives:

∧(and), ∨(or), ¬(not)

Example:

• Find the instructors in Physics with a salary greater $90,000

Project Operation

• A unary operation that returns its argument relation, with certain attributes left out.

• Show desired attributes given in the list and eliminate the other attributes

Notation:

where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by erasing the
columns that are not given in the list

• Duplicate rows removed from result, since relations are sets.

Composition of Relational Operations
• Relational-algebra expressions

can be formed by compining relational-algebra operations

Example

• Find the names of all instructors in the Physics department.

• Instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation

• Just like composing arithmetic operations (such as +, −, ∗, and ÷) into
arithmetic expressions.

Cartesian-Product Operation
• Allows to combine/merge information from any two relations.

• Notation r1 × r2

where r1 and r2 are relation names

Example

• The Cartesian product of the relations instructor and teaches is written as:

instructor X teaches

• Concatenates each tuple from the instructor relation with each tuple from
the teaches relation

• If same attribute name appear in the schemas of both r1and r2, the name of the
relation will be attached with the attribute.

➢instructor.ID

➢teaches.ID

Join Operation
• To combine a select operation and a Cartesian-Product

operation into a single operation

• Notation r ⋈θ s

• θ is a predicate on attributes in the schema R ∪ S.

Example:

• Associate every instructor with every course that was taught,
regardless of whether that instructor taught that course.

This is equivalent to

Set Operations – Union, Intersection, Set Difference

Union

• Notation : r ∪ s

• For r ∪ s to be valid

1. r,s must have the same arity(same number of attributes)

2. The attribute domains must be compatible. The types of
the ith attributes of both input relations must be the same, for each i.

Example:

To find all courses taught in the Fall 2017 semester, or in the
Spring 2018 semester, or in both

Intersection
• The set-intersection operation allows us to find tuples that are in both the

input relations.

• Notation: r ∩ s

Example

• Find the set of all courses taught in both the Fall 2017 and the Spring 2018
semesters.

Set Difference

• The set-difference operation allows us to find tuples that are in one relation
but are not in another.

• Notation r – s

Example:

Find all courses taught in the Fall 2017 semester, but not in the Spring 2018
semester

Assignment Operation

• It is a convenient way to express complex queries.

• It is used to assign part of a relational-algebra expression to
temporary relation variables.

• It is denoted by ←

• It works like assignment in a programming language.

Example: Find all instructor in the “Physics” and Music
department.

• With the assignment operation, a query can be written as a sequential
program consisting of a series of assignments followed by an expression
whose value is displayed as the result of the query.

Rename Operation
• To give a name to the results of relational-algebra expressions

that we can use to refer to them.

• The rename operator, ρ,is provided for that purpose

• The expression:

returns the result of expression E under the name x

• Another form of the rename operation:

returns the result of expression E under the name x, and with the
attributes renamed to A1, A2,…, An.

• This form of the rename operation can be used to give names to
attributes in the results of relational algebra

• Consider the employee database

• Give an expression in the relational algebra to express each of the
following queries:

a. Find the name of each employee who lives in city “Miami”.

b. Find the name of each employee whose salary is greater than
$100000.

c. Find the name of each employee who lives in “Miami” and whose
salary is greater than $100000.

• Find the names and cities of residence of all employees who work for
“First Bank Corporation”.

• Find the names, street address, and cities of residence of all
employees who work for “First Bank Corporation” and earn more
than $10,000.

• a. Find the ID and name of each employee who works for “BigBank”.

• b. Find the ID, name, and city of residence of each employee who
works for “BigBank”.

• c. Find the ID, name, street address, and city of residence of each
employee who works for “BigBank” and earns more than $10000.

• d. Find the ID and name of each employee in this database who lives
in the same city as the company for which she or he works.

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

• a.Find all loan numbers with a loan value greater than $10,000.

• b. Find the names of all depositors who have an account with a value
greater than $6,000.

• c. Find the names of all depositors who have an account with a value
greater than $6,000 at the “Uptown” branch.

1. Find the names of all branches located in “Chicago”.

2. Find the names of all borrowers who have a loan in branch “Downtown”.

3. Find each loan number with a loan amount greater than $10000.

4. Find the ID of each depositor who has an account with a balance
greater than $6000.

5. Find the ID of each depositor who has an account with a balance greater

than $6000 at the “Uptown” branch.

Normalization

1

• Normalization is a process of organizing the data in multiple related

tables to avoid

➢ data redundancy

➢ insertion anomaly

➢ update anomaly

➢& deletion anomaly

2

Types of Normal Forms

3

Different ways to perform Normalization

• using Functional Dependency

 1NF

 2NF

 3NF

 3.5NF

• using Multivalued Dependency

 4NF

• using Join Dependency

 5NF

4

Normalization using Functional Dependencies

• First Normal Form (1NF)

➢ A relation will be in 1NF if it contains atomic value (indivisible).

➢ It should not have any composite attributes & multivalued attribute

• Example : Customer

5

Solutions

1. Insert new attributes for each sub-attribute of composite attributes.

2. Determine maximum allowable values for a multi-valued attribute & Insert new
attributes

6

3. Insert new records for the multivalued attributes

4. Remove the multi-valued attribute that violates 1NF and place it in a
separate relation along with the primary key of given original relation

7

2NF
• A relation is in 2NF,
➢ if it is in 1NF, and
➢ every non_ prime attribute of relation is fully functionally dependent on

primary key.

• A relation can violate 2NF only when it has more than one attribute
in combination as a primary key.

• If relation has only single attribute as a primary key, then the relation
will definitely be in 2NF.

8

• Example: Depositor_Account

• In this relation schema,

➢access_date, balance and bname are non - prime attributes. access_date is
fully dependent on primary key (cid and ano).

➢balance and bname are not fully dependent on primary key.

➢ They depend on ano only.

➢So, this relation is not in Second normal form.

• This relation contains following functional dependencies.

➢FD1 : {cid, ano} -> {access_date, balance, bname}

➢FD2 : ano -> {balance, bname} 9

Solution
➢Decompose the relation in such a way that, resultant relations do not have

any partial functional dependency.

➢For this purpose,

✓remove the partially dependent non-prime attributes that violates 2NF in
relation.

✓Place them in a new relation along with the prime attribute on which
they fully depend.

1.account

2.balance

10

3NF
• A relation schema R is in 3NF,

➢ if it is in Second normal form

➢no non-prime attribute of relation is transitively dependent on primary key

• Third normal form ensures that all the non-prime attributes of a relation directly
depend on the primary key.

• This relation contains following functional dependencies.

FD1 : ano -> {balance, bname, baddress}

FD2 : bname -> baddress

11

• In this relation , following transitive FD exists in baddress which is a
nonprime attribute

• ano->bname, bname->baddress ⇔ ano->baddress

Solution:

• Decompose the relation in such a way that, resultant relations do not have
any non-prime attribute transitively dependent on primary key.

• For this purpose,

➢Remove the transitively dependant non-prime attributes that violates 3NF from
relation.

➢Place them in a new relation along with the non-prime attribute due to which
transitive dependency occurred.

➢The primary key of new relation will be the non-prime attribute.

12

• In our example, baddress is transitively dependent on ano due to
non-prime attribute bname.

• So, remove baddress and place it in separate relation called branch
along with the non-prime attribute bname.

• For relation branch, bname will be a primary key.

13

Boyce Codd normal form (BCNF) / 3.5 NF

o It is stricter than 3NF.

o A table is in BCNF if

➢ It is in 3 NF

➢ In every functional dependency, determinant is super key of the table.

14

Multivalued Dependencies ->>

15

Fourth normal form (4NF)

• A relation will be in 4NF

➢ if it is in Boyce Codd normal form (BCNF) and

➢ has no multi-valued dependency.

• Table should have at least 3 attributes(columns)

• Two attributes in a table are independent of one another, but both
depend on a third attribute.

• For a dependency , if for a single value of A, multiple values of B and
multiple values of C exists, then the relation is said to be in multi-
valued dependency.

16

• Example

• The given STUDENT relation is in 3NF, but the COURSE and HOBBY are two

independent entity. Hence, there is no relationship between COURSE and HOBBY.

• In the relation, a student with STU_ID, 21 contains

• two courses, Computer and Math

 STU_ID ->> COURSE

• two hobbies, Dancing and Singing

 STU_ID ->> HOBBY

• So there is a Multi-valued dependency on STU_ID, which leads to unnecessary

repetition of data.

• To make the above table into 4NF, we can decompose it into two tables:

17

18

Join Dependency
• Generalization concept of multivalued dependency.

• Let R is a schema of relation r.

• R1, R2,… be the decomposition of R and the relations are r1, r2…

respectively

• The relation r is said to satisfy join dependency

 if and only if the join of r1, r2… is equal to relation r

 ie lossless decomposition

19

Normalization using Join Dependency

• A relation is in 5NF if

➢ it is in 4NF

➢ no join dependency or no lossless decomposition.

• Also called as project-join normal form (PJNF)

20

21

Domain-key normal form or DKNF
• It is a normal form in which database contains only two constraints which

are:

➢domain constraints,

➢key constraints.

• The function of domain constraint is to specify the permissible values for a
given attribute

• The main function of a key constraint is to specify the attributes which
uniquely identify a row in a given table.

• Relationships which are impossible to express in foreign keys will violate
the Domain Key Normal Form.

• Also called as 6NF
22

1. Which of the following is TRUE?
(A) Every relation in 3NF is also in BCNF
(B) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every
key of R
(C) Every relation in BCNF is also in 3NF
(D) No relation can be in both BCNF and 3NF

2. Which of the following is NOT a superkey in a relational schema with attributes V, W, X,
Y, Z and primary key V Y ?

(A) V X Y Z
(B) V W X Z
(C) V W X Y
(D) V W X Y Z

3. Let R (A, B, C, D, E, P, G) be a relational schema in which the following functional dependencies
are known to hold: AB → CD, DE → P, C → E, P → C and B → G. The relational schema R is

(A) in BCNF
(B) in 3NF, but not in BCNF
(C) in 2NF, but not in 3NF
(D) not in 2NF

23

UNIT IV

1

Unit IV Topics

• Query Processing Overview

• Estimation of Query Processing Cost - Join strategies

• Transaction Processing – Concepts and States

• implementation of Atomicity and Durability

• Concurrent Executions

• Serializability

• implementation of Isolation :
➢Testing for Serializability

➢Concurrency control

✓Lock Based Protocol

✓Timestamp Based Protocols.

2

1.Query Processing
• Query processing refers to the range of activities involved in

extracting data from a database.

• The basic steps are:

1. Parsing and translation.

2. Optimization.

3. Evaluation.

3

1. Parsing and translation

• This is the first action the system must take in query processing.

• This is to translate a given query into its internal form ie a relational-
algebra expression .

• This translation process is similar to the work performed by the
parser of a compiler.

• In generating the internal form of the query,

➢ parser checks the syntax of the user’s query,

➢verifies that the relation names appearing in the query are names of the
relations in the database.

• The system then

➢ i) constructs a parse-tree representation of the query

➢ ii) translates into a relational-algebra expression.
4

Example:

➢select balance from account where balance <2500;

➢This query can be translated into either of the following relational-algebra

expressions:

✓balance2500(balance(account))

✓balance(balance2500(account))

5

2. Optimization

➢Finding/choosing an evaluation plan with lowest estimation

3 steps
1. Generating logically equivalent expressions

• Use equivalence rules to transform an expression into an equivalent one.

• Query: Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000.

6

2. Annotating resultant expressions to get alternative query plans
➢ state the algorithm to be used for a specific operation, (linear scan/binary scan)

➢ state indices to use.

• A relational algebra operation annotated with instructions on how to evaluate it
is called an evaluation primitive.

• A sequence of primitive operations that can be used to evaluate a query is a
query-execution plan or query-evaluation plan

7

3. Choosing the cheapest plan based on estimated cost
Cost is estimated using statistical information from the database catalog

• number of tuples in each relation,

• size of tuples,

• number of blocks containing tuples

• number of distinct values that appear in r for attribute A

• average number of records that satisfy equality on A

Evaluation

Query-execution engine
• This takes a query-evaluation plan,
• It executes that plan and returns the output of the query.

8

2. Estimation of Query Processing Cost

• Cost is generally measured as total elapsed time for answering query
• Many factors contribute to time cost

• disk accesses, CPU, or even network communication

• Typically disk access is the predominant cost, and is also relatively
easy to estimate.

• Measured by taking into account
• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

• Cost to write a block is greater than cost to read a block
• data is read back after being written to ensure that the write was successful

9

• Costs depends on the size of the buffer in main memory
• Having more memory reduces need for disk access

• For simplicity
• use number of block transfers from disk as the cost measure

• ignore the difference in cost between sequential and random I/O

• ignore CPU costs

• Real systems take CPU cost into account, differentiate between
sequential and random I/O, and take buffer size into account

• We do not include cost to writing output to disk in our cost
formulae

10

3.Transaction Processing

• The term transaction refers to a collection of operations that form

a single logical unit of work.

Example

Transfer of money from one account to another is a

transaction consisting of two updates, one to each

account.

Definition:

• A transaction is a unit of program execution that accesses and

possibly updates various data items.

11

Transaction Concept

• Usually, a transaction is initiated by a user program written

➢in a high-level data-manipulation language (typically SQL),

➢or programming language (for example, C++, or Java), with embedded
database accesses in JDBC or ODBC.

• A transaction is delimited by statements

➢begin transaction and end transaction.

• All operations to execute must be

➢ between the begin transaction and end transaction.

• This collection of steps must appear to the user as a single,
indivisible unit.

12

Properties of the transactions - ACID Properties

• Atomicity. Either all operations of the transaction reflect in database or none .

• Consistency. Refers to correctness. Transaction must preserves the

consistency of the database.

➢ To preserve consistency the execution of transaction should take place in

isolation

• Isolation. During the execution of concurrent multiple transactions, the system

must guarantee that, every pair of transactions is unaware of other transactions

executing concurrently in the system.

➢Consider Ti and Tj are the 2 transactions

➢ It should appears to Ti that

✓ either Tj finished execution before Ti started

✓ or Tj started execution after Ti finished.
13

• Durability. After a transaction completes successfully, the changes it has made to
the database should be permanent, even if there are system failures.

• Example

 Transaction to transfer $50 from account A to account B:

14

• Atomicity requirement — if the transaction fails after step 3 and before
step 6, the system should ensure that its updates are not reflected in the
database.

• Consistency requirement – the sum of A and B is unchanged by the
execution of the transaction.

• Isolation requirement — if between steps 3 and 6, another transaction is
allowed to access the partially updated database, it will see an inconsistent
database

• Durability requirement — once the user has been notified that the
transaction has completed (i.e., the transfer of the 50 has taken place), the
updates to the database by the transaction must persist despite failures.

15

Transaction State

Transaction must be in one of the following states:

• Active : If a transaction is in execution then it is said to be in active state.

It doesn’t matter which step is in execution,

until the transaction is executing, it remains in active state.

• Partially committed : After all the statement has been executed then it is said to
be in partially committed state.

All the read and write operations performed on the main memory (local memory)
instead of the actual database.

• Failed: If a failure occurs during transaction either a hardware failure or a

software failure then the transaction goes into failed state from the active state.

16

• Aborted: After the transaction has been rolled back

Database will be restored to its state prior to the start of the transaction.

• Committed: After successful completion of all statements.

All the changes made in the local memory during partially committed state

are permanently stored in the database.

17

4. Implementation of Atomicity and Durability

• A transaction may not always complete its execution successfully. Such a

transaction is termed aborted.

• If we are to ensure the atomicity property, an aborted transaction must have

no effect on the state of the database.

• Thus, any changes that the aborted transaction made to the database must be

undone.

• Once the changes caused by an aborted transaction have been undone, we

say that the transaction has been rolled back.

• It is the responsibility of the recovery management component to manage

transaction aborts.

18

Shadow-database scheme

19

The shadow-database scheme:
• Assume that only one transaction is active at a time.

• A pointer called db_pointer always points to the current consistent copy of
the database.

• All updates are made on a shadow copy of the database, and db_pointer is
made to point to the updated shadow copy only after the transaction reaches
partial commit and all updated pages have been flushed to disk.

• In case transaction fails, old consistent copy pointed to by db_pointer can be
used, and the shadow copy can be deleted.

• Useful for text editors, but extremely inefficient for large databases: executing
a single transaction requires copying the entire database

20

• Maintaining a log

• Each database modification made by a transaction is first recorded in the log.

• We record the identifier of the transaction performing the modification, the

identifier of the data item being modified, and both the old value (prior to

modification) and the new value (after modification) of the data item.

• Only then is the database itself modified.

• Maintaining a log provides the possibility of redoing a modification to ensure

atomicity and durability as well as the possibility of undoing a modification to

ensure atomicity in case of a failure during transaction execution.

• A transaction that completes its execution successfully is said to be committed.

• A committed transaction that has performed updates transforms the database into a

new consistent state, which must persist even if there is a system failure.

21

• Once a transaction has committed, we cannot undo its effects by

aborting it.

• The only way to undo the effects of a committed transaction is to

execute a compensating transaction.

• For instance, if a transaction added 2000 to an account, the

compensating transaction would subtract 2000 from the account.

• However, it is not always possible to create such a compensating

transaction. Therefore, the responsibility of writing and executing a

compensating transaction is left to the user, and is not handled by the

database system.

22

5. Concurrent Executions
• Allowing multiple transactions to update data concurrently

Advantages

• Increased processor and disk utilization:

✓ one transaction can be using the CPU

✓while another is reading from or writing to the disk

✓This gives better transaction throughput

• Reduced average response time for transactions:

✓There may be a mix of transactions running on a system, some short and some

long.

✓If transactions run serially, a short transaction may have to wait for a preceding

long transaction to complete. This can lead to unpredictable delays in running a

transaction.

✓But in concurrent executions short transactions need not wait behind long ones.
23

• When several transactions run concurrently,

✓ the isolation property may be violated,

✓ database inconsistent

• The database system must control the interaction among the concurrent transactions to prevent
them from destroying the consistency of the database.

• It does so through a variety of mechanisms called concurrency-control schemes.

Schedules

• This represents the chronological order in which instructions are executed in the system.

• A schedule for a set of transactions

✓ must consist of all instructions of those transactions,

✓and must preserve the order in which the instructions appear in each individual
transaction.

• Two types of schedules

24

1. Serial schedule:
➢Instructions belonging to one single transaction appear together in that

schedule.
➢A serial schedule is always consistent.
➢If a schedule S has T1 and T2, possible serial schedules are

✓T1 followed by T2 (T1->T2) or
✓T2 followed by T1 ((T2->T1).

➢A serial schedule has low throughput and less resource utilization

2. Concurrent schedule

• Instructions of one transaction are interleaved with Instructions of other

transactions of a schedule

• If two transactions are running concurrently, the operating system may execute

one transaction for a little while, then perform a context switch, execute the

second transaction for some time, and then switch back to the first transaction for

some time, and so on.

25

• With multiple transactions, the CPU time is shared among all the

transactions.

• Several execution sequences are possible, since the various

instructions from both transactions may now be interleaved.

• In general, it is not possible to predict exactly how many instructions

of a transaction will be executed before the CPU switches to another

transaction.

• Concurrency can lead to inconsistency in the database.

26

27

Serial Schedule Concurrent Schedule

In both Schedules, the sum A + B is preserved

A = 1000 B = 2000

Let T1 transfer 50 from A to B, and T2 transfer 10% of the balance from A to B.

• Not all concurrent executions result in a correct state.

• After the execution of this schedule, we arrive at a state where the final

values of accounts A and B are not same (950 and 2100), respectively.

• This final state is an inconsistent state.

28

• If control of concurrent execution is left entirely to the operating system, many

possible schedules, including ones that leave the database in an inconsistent state,

such as the one just described, are possible.

• It is the job of the database system to ensure that any schedule that is executed will

leave the database in a consistent state.

• The concurrency-control component of the database system carries out this task

29

• Checking correctness of schedules

• When multiple transactions are running concurrently then there is a

possibility that the database may be left in an inconsistent state.

• Serializability is a concept that helps us to check which schedules are

serializable. A serializable schedule is the one that always leaves the

database in consistent state.

• A (concurrent) schedule is serializable if it is equivalent to a serial schedule.

• Types of serializability

1. conflict serializability

2. view serializability

30

6. Serializability

Conflict Serializability

• A schedule is conflict serializable if it is conflict equivalent to a serial schedule

• If a schedule S can be transformed into a schedule S´ by a series of swaps of non-
conflicting instructions, we say that S and S´ are conflict equivalent

• Conflicting operations: Two operations are said to be conflicting if following all

conditions satisfy:

They belong to different transactions

They operate on the same data item

At least one of them is a write operation

• If the conflicting operations are in the same order then it is conflict equivalent
31

Example: –

• Conflicting operations pair (R1(A), W2(A))

because they belong to two different transactions on same data
item A and one of them is write operation.

• W2(A)) and (W1(A), R2(A)) pairs are also conflicting.

• (R1(A), W2(B)) pair is non-conflicting because they operate on
different data item.

• ((W1(A), W2(B)) pair is non-conflicting.

32

• Consider the following schedule:

33

Two transactions of schedule S1

• Conflict Operations
• R1(A),W2(A)

• W1(A),R2(A)

• W1(A), W2(A)

• R1(B), W2(B)

• W1(B),W2(B)

Check the order

• Order is maintained in a serial schedule

• So conflict serializable

34

S: R1(x), R2(x) ,W1(x) ,R1(y), W2(x), W1(y)

Transactions
T1 : R1(x), W1(x) ,R1(y), W1(y)
T2: R2(x) ,W2(x)

Serial Schedules

T1 T2: R1(x), W1(x) ,R1(y), W1(y), R2(x) ,W2(x)
T2 T1: R2(x) ,W2(x),R1(x), W1(x) ,R1(y), W1(y)

Conflict operations

1. R1(x), W2(x)

2. R2(x) W1(x)

3. W1(x), W2(x)

Check the order

Not maintaining the order. So not conflict serializable

35

36

Precedence Graph

• Simple and efficient method for determining conflict serializability of a schedule.

• It is a directed graph, constructed from schedule .

• This graph consists of a pair G = (V, E) where

➢V is a set of vertices (Nodes)

➢ E is a set of edges.

• No. of Vertices = No. of transactions in the schedule.

• Edges - for all conflict operations draw a directed edge. Label it with the

dataitem

• If R1(A), W2(A) are the 2 operations direction of the edge is from V1 to V2

• If W2(A), R1(A) are the 2 operations direction of the edge is from V2 to V1

• If the precedence graph for schedule S has a cycle, then the

schedule S is not conflict serializable.

• If the graph contains no cycles, then the schedule S is conflict
serializable.

• Eg.

• Conflict operations

1. R1(x), W2(x)

2. R2(x) W1(x)

3. W1(x), W2(x)

37

S: R1(x), R2(x) ,W1(x) ,R1(y), W2(x), W1(y)

x

x

View Serializability
• A schedule S is view serializable it is view equivalent to a serial schedule.

• Let S and S´ be two schedules with the same set of transactions. S and S´ are view
equivalent if the following three conditions are met:

1. For each data item Q, if transaction Ti reads the initial value of Q in schedule
S, then transaction Ti must, in schedule S´, also read the initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in schedule S, and
that value was produced by transaction Tj (if any), then transaction Ti must
in schedule S´ also read the value of Q that was produced by transaction Tj .

3. For each data item Q, the transaction performs the final write(Q) operation

 in schedule S, must perform the final write(Q) operation in schedule S´.

38

Let
• T1 T2

• A B

• S S’

• R W

• R - S : T1 A ----- S’: T1 A (first)

• W - S: T1 A ----- S’: T1 A (last)

• Producer Consumer

S: T1 A W T2 A R ------ S’ : T1 A W T2 A R

39

• ie

• S1: R1(A), W2(B)

• S2: R2(A), W1(B)

• S1 : W1(B) R2(B)

Suppose B is a dataitem produced by transaction T2 and used by transaction
T1 in S2 - not view serializable

40

41

S1 S2 are view serializable
Every conflict serializable schedule is also view serializable.
But a schedule which is view-serializable but not conflict serializable.

• Like conflict serializability we can also draw precedence graph

• For each dataitem

edge from first read transaction to first write transaction

edges to last write transaction.

Prove whether the following schedule is view serializable

42

• Draw the precedence graph and determine conflict serializability

43

7. Concurrency Control
i) Lock-Based Protocols

• A lock is a mechanism to control concurrent access to a data item

• Data items can be locked in two modes :

 1. exclusive (X) mode.

 Data item can be both read and write.

 X-lock is requested using lock-X instruction.

 2. shared (S) mode.

 Data item can only be read.

 S-lock is requested using lock-S instruction.

• Lock requests are made to concurrency-control manager. Transaction can
proceed only after request is granted.

44

Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested lock
is compatible with locks already held on the item by other
transactions

• Any number of transactions can hold shared locks on an item.

• But if any transaction holds an exclusive lock on the item no other
transaction may hold any lock on the item. 45

• To access a data item, transaction must first lock that item.

• If the data item is already locked by another transaction in an
incompatible mode, the concurrency control manager will not grant
the lock.

• The requesting transaction must wait till all incompatible locks held
by other transactions have been released.

• The lock is then granted.

46

Example

• Let A and B be two accounts that are accessed by transactions T1and T2.

• Transaction T1 transfers 50 from account B to account A.

• Transaction T2 displays the total amount of money in accounts A and B—that is,

the sum A + B

47

T1
read B
B-50
Update B

Read A
A+50
Update A

48

T2

Read A

Read B

Display A+B

• Suppose that the values of accounts A and B are 100 and 200, respectively.

• If these two transactions are executed serially, in the order T1, T2 then
transaction T2 will display the value 300.

• If, the transactions are executed concurrently

• T2 displays 250, which is incorrect.

• The reason for this mistake is that

T1 unlocked data item B too early,

as a result of which T2

saw an inconsistent state.

49

• But it is not possible with T3 and T4.

50

• Locking can lead to an undesirable situation - deadlock

• Consider the schedule

• Since T3 is holding an exclusive mode lock on B and T4 is requesting a shared-

mode lock on B, T4 is waiting for T3 to unlock B.

• Similarly, since T4 is holding a shared-mode lock on A and T3 is requesting an

exclusive-mode lock on A, T3 is waiting for T4 to unlock A.

• Thus, we have arrived at a state where neither of these transactions can ever

proceed with its normal execution.

• This situation is called deadlock. When deadlock occurs, the system must roll
back one of the two transactions. 51

Two-Phase Locking Protocol (2PL)

• This protocol ensures serializability. There are 2 phases

➢ 1. Growing phase. A transaction acquire locks, but not release lock.

➢ 2. Shrinking phase. A transaction release locks, but not acquire any new

locks.

• Initially, a transaction is in the growing phase. The transaction

acquires locks as needed.

• Once the transaction releases a lock, it enters the shrinking phase,

and it can issue no more lock requests.

• The point at which the growing phase ends is called as locking point.

52

Consider the schedule

Transaction T1:
• Growing Phase is from steps 1-3.

• Shrinking Phase is from steps 5-7.

• Lock Point at 3

Transaction T2:
• Growing Phase is from steps 2-6.

• Shrinking Phase is from steps 8-9.

• Lock Point at 6

53

• Transactions can be ordered according to their lock points.

• This ordering is a serializability ordering for the transactions.

• By this, the two-phase locking protocol ensures conflict serializability but
limit the amount of concurrency.

• But two-phase locking does not ensure

freedom from deadlock, and

cascading rollback.

54

Types of 2PL

1. Strict 2PL
➢This requires that all Exclusive(X) Locks held by the transaction be released after the

transaction Commits.

➢This ensures recoverable and Cascadeless Rollbacks .

➢ But deadlocks are possible.

2. Rigorous 2PL

➢All Exclusive(X) and Shared(S) Locks held by the transaction be released
until after the Transaction Commits.

➢Rigorous is more restrictive.

3. Conservative 2PL
➢ Lock all the data items to access before the transaction begins execution.

➢ If any of the predeclared items needed cannot be locked, the transaction should not
lock any of the items, instead it waits until all the items are available for locking.

➢Conservative 2-PL is Deadlock free. 55

ii) Time stamp based protocol

• Timestamp is a

✓unique identifier

✓ created by the DBMS

✓to identify a transaction.

• They are usually assigned in the order in which they are submitted to the system.

• If a transaction Ti has been assigned timestamp TS(Ti), and a new transaction Tj
enters the system, then TS(Ti) < TS(Tj).

• There are two simple methods for implementing this scheme:

1. System clock

2. logical counter

56

• Based on the timestamp, system will produce a schedule to ensure serializability

• To implement this scheme, two timestamp values will be assigned for each data
item Q :

➢W-timestamp(Q)

denotes the largest timestamp of any transaction that executed write(Q)
successfully.

➢ R-timestamp(Q)

denotes the largest timestamp of any transaction that executed read(Q)
successfully.

57

Suppose that transaction Ti issues read(Q)

(Consider Conflict operations of read)

• If (TS(Ti) < W-timestamp(Q))

abort Ti and roll back.

else

{

read(Q)

R-timestamp(Q) = TS(Ti)

}

58

• Suppose that transaction Ti issues wriite(Q)

If (TS(Ti) < W-timestamp(Q) or R-timestamp(Q))

abort Ti and roll back.

else

{

write(Q)

W-timestamp(Q) = TS(Ti)

}

59

• If a transaction is rolled back, the system assigns it a new timestamp
and restarts it.

• The timestamp-ordering protocol ensures conflict serializability. This
is because conflicting operations are processed in timestamp order.

• The protocol ensures freedom from deadlock, since no transaction
ever waits.

• However, there is a possibility of starvation of long transactions if a
sequence of conflicting short transactions causes repeated restarting
of the long transaction.

60

Thomas’ Write Rule

• This is a modified version of the timestamp-ordering protocol in which
obsolete write operations can be ignored.

• The protocol rules for read operations remain unchanged.

• The protocol rules for write operations, however, are slightly different
from the timestamp-ordering protocol.

• Suppose that transaction Ti issues write(Q).
1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was

previously needed, and it had been assumed that the value would never be
produced. Hence, the system rejects the write operation and rolls Ti back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.
Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q)
to TS(Ti).

61

Suppose that transaction Ti issues write(Q)

If (TS(Ti) < R-timestamp(Q))

abort Ti and roll back.

If (TS(Ti) < W-timestamp(Q))

ignore write(Q)

else

{

write(Q)

W-timestamp(Q) = TS(Ti)

}

62

• By deleting obsolete write operations from the transactions , Thomas’
write rule ensures view serializability.

• This modification of transactions makes it possible to generate
serializable schedules that would not be possible under the other
protocols .

__

63

UNIT V

TOPICS

• Distributed Databases

• Homogeneous and Heterogeneous Databases

• Distributed Data Storage

• Distributed Transactions

• Commit Protocols

• Concurrency Control in Distributed Databases

• Availability

• Distributed Query Processing

• Heterogeneous Distributed Databases

• Cloud-Based Databases

• Directory Systems

1. Distributed Database System
• A Distributed database is defined as a

logically related collection of data

that is physically distributed

over a computer network

on different sites.

• A distributed database system consists of loosely coupled sites that share no
physical component

• Database systems that run on each site are independent of each other

• Transactions may access data at one or more sites

• This distribution of data is the cause of many difficulties in transaction processing
and query processing.

2. Homogeneous & Heterogeneous Distributed Databases

Homogeneous distributed database
• All sites have identical software
• Sites are aware of each other and agree to cooperate in processing user

requests.
• Each site surrenders part of its autonomy in terms of right to change schemas

or software
• Appears to user as a single system

Heterogeneous distributed database
• Different sites may use different schemas and software

➢Difference in schema is a major problem for query processing
➢Difference in software is a major problem for transaction processing

• Sites may not be aware of each other and may provide only
limited facilities for cooperation in transaction processing

3. Distributed Data Storage
• There are 3 approaches for storing a relation r in the distributed database:

1. Replication.

➢The system maintains several identical replicas (copies) of the relation, and

stores each replica at a different site.

➢The alternative to replication is to store only one copy of relation r.

2. Fragmentation.

The system partitions the relation into several fragments, and stores each

fragment at a different site.

3. Hybrid approach : Fragmentation and replication can be combined

➢A relation can be partitioned into several fragments and there may be

several replicas of each fragment.

Advantages of replication

• Availability.

➢ If one of the sites containing relation r fails, then the relation r can be found in

another site.

➢Thus, the system can continue to process queries involving r, despite the failure of

one site.

• Increased parallelism.

➢In the case where the majority of accesses to the relation r result in only the reading

of the relation, then several sites can process queries involving r in parallel.

➢The more replicas of r , the greater the chance that the needed data will be found in

the site where the transaction is executing.

➢ Hence, data replication minimizes movement of data between sites.

Disadvantages

• Increased overhead on update.
➢ The system must ensure that all replicas of a relation r are consistent;

otherwise, erroneous computations may result.

➢Thus, whenever r is updated, the update must be propagated to all sites
containing replicas.

➢The result is increased overhead.

➢ In general, replication
✓ enhances the performance of read operations and increases the

availability of data .
✓ However, update operations incur greater overhead.

➢Controlling concurrent updates by several transactions to replicated data is
more complex than in centralized systems

Fragmentation

• In this approach, the relations are divided into smaller parts and each of the
fragments is stored in different sites where they’re required.

• It must be made sure that the fragments are such that they can be used to
reconstruct the original relation (i.e, there isn’t any loss of data).

• Fragmentation is advantageous as it doesn’t create copies of data, consistency is
not a problem.

• Fragmentation of relations can be done in two ways:

➢ Horizontal fragmentation – Splitting by rows

➢ The relation is fragmented into groups of tuples so that each tuple is assigned
to at least one fragment.

➢ Vertical fragmentation – Splitting by columns

➢ The schema of the relation is divided into smaller schemas. Each fragment
must contain a common candidate key so as to ensure lossless join.

4. Distributed Transactions
• Transaction may access data at several sites.

• Each site has

➢ transaction manager

➢transaction coordinator

• Transaction manager is responsible for

Managing the execution of transactions that access data in that site

• Transaction coordinator is responsible for

Coordinating the execution of transactions that originates at the site

Failures unique to distributed systems:
• Failure of a site

• Loss of massages

• Handled by network transmission control protocols such as TCP-IP

• Failure of a communication link

• Handled by network protocols, by routing messages via alternative links

• Network partition

• A network is said to be partitioned when it has been split into two or
more subsystems that lack any connection between them

5. Commit Protocols
• Commit protocols are used to ensure atomicity across sites

• a transaction which executes at multiple sites must either be committed at all
the sites, or aborted at all the sites.

• It is not acceptable to have a transaction committed at one site and
aborted at another

• The two-phase commit (2 PC) protocol is widely used

• The three-phase commit (3 PC) protocol is
➢more complicated and more expensive,

➢but avoids some drawbacks of two-phase commit protocol.

2PC

Phase 1 – Voting Phase

• Coordinator asks all participants to prepare to commit transaction T
• C adds the records <prepare T> to the log
• sends prepare T messages to all sites at which T executed

• Upon receiving message, transaction manager at site determines if it
can commit the transaction
• if not,

• add a record <not ready T> to the log
• and send abort T message to Ci

• if the transaction can be committed, then:
• add the record <ready T> to the log
• send ready T message to Ci

Phase II – Decision Phase

• T can be committed if C received a ready T message from all the
participating sites: otherwise T must be aborted.

• Coordinator adds a decision record, <commit T> or <abort T>, to the
log .

• Coordinator sends a message to each participant informing it of the
decision commit or abort

• Participants take appropriate action locally.

Handling of Failures - Site Failure
When site Si recovers, it examines its log to determine the fate of transactions

active at the time of the failure.

Handling of Failures- Coordinator Failure

• If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:
1. If an active site contains a <commit T> record in its log, then T must be

committed.
2. If an active site contains an <abort T> record in its log, then T must be

aborted.
3. If some active participating site does not contain a <ready T> record in its

log, then the failed coordinator Ci cannot have decided to commit T. Can
therefore abort T.

4. If none of the above cases holds, then all active sites must have a <ready T>
record in their logs, but no additional control records (such as <abort T> of
<commit T>). In this case active sites must wait for Ci to recover, to find
decision.

• Blocking problem : active sites may have to wait for failed
coordinator to recover.

3 Phase Commit Protocol
• Phase 1: Identical to 2PC Phase 1.

• Every site is ready to commit if instructed to do so

• Phase 2 of 2PC is split into 2 phases, Phase 2 and Phase 3 of 3PC

• In phase 2

➢coordinator makes a decision as in 2PC (called the pre-commit decision)

➢ and records it in multiple (at least K) sites

• In phase 3,

➢coordinator sends commit/abort message to all participating sites

• Under 3PC, knowledge of pre-commit decision can be used to commit despite
coordinator failure

➢Avoids blocking problem as long as < K sites fail

• Drawbacks:

➢higher overheads

6. Concurrency Control

• Updates to be done on all replicas of a data item.

• If any site containing a replica of a data item has failed, updates to the

data item cannot be processed.

Two approaches

• Lock based Approach

➢Single lock Manager Approach

➢Distributed lock Manager Approach

• Timestamped Approach

Single lock manager Approach

• System maintains a single lock manager that resides in a single chosen site,
say Si

• When a transaction needs to lock a data item, it sends a lock request to Si
and lock manager determines whether the lock can be granted
immediately
• If yes, lock manager sends a message to the site which initiated the request
• If no, request is delayed until it can be granted
• Sends the message at the time it can grant the request.

• The transaction can read the data item from any one of the sites at which a
replica of the data item resides.

• Writes must be performed on all replicas of a data item

Advantages :
• Simple implementation

➢ This requires two messages for handling lock requests and one message
for handling unlock requests.

• Simple deadlock handling

➢Since all lock and unlock requests are made at one site, the deadlock-
handling algorithms can be applied directly.

Disadvantages:
• Bottleneck:

➢lock manager site becomes a bottleneck since all requests must be
processed there

• Vulnerability:

➢ If the site Si fails, the concurrency controller is lost.

➢Either processing must stop, or a recovery scheme must be used so that a
backup site can take over lock management from Si

Distributed Lock Manager Approach

• lock-manager function is distributed over several sites.

• Each site maintains a local lock manager whose function is to handle
the lock and unlock requests for those data items that are stored in
that site.

Data not replicated

• When a transaction wishes to lock a data item Q that is not replicated
and resides at site Si, a message is sent to the lock manager at site Si
requesting a lock.

• If data item Q is locked in an incompatible mode, then the request is
delayed until it can be granted.

• Once it has determined that the lock request can be granted, the lock
manager sends a message back to the initiator indicating that it has
granted the lock request.

• Advantage:

work is distributed and can be made robust to failures

• Disadvantage:

deadlock detection is more complicated

• Several variants of this approach – To replicate data

• Primary copy

• Majority protocol

• Biased protocol

• Quorum consensus

Primary Copy

• Choose one replica of data item to be the primary copy.
• Site containing the replica is called the primary site for that data item

• Different data items can have different primary sites

• When a transaction needs to lock a data item Q, it requests a lock at
the primary site of Q.
• Implicitly gets lock on all replicas of the data item

Benefit
• Concurrency control for replicated data handled similarly to unreplicated data

- simple implementation.

Drawback
• If the primary site of Q fails, Q is inaccessible even though other sites

containing a replica may be accessible

Majority Protocol
• If Q is replicated at n sites, then a lock request message must be sent to more

than half of the n sites in which Q is stored.

• The transaction does not operate on Q until it has obtained a lock on a
majority of the replicas of Q.

• When writing the data item, transaction performs writes on all replicas.

Benefit
• Can be used even when some sites are unavailable

Drawback
• more complicated to implement

• Requires 2(n/2 + 1) messages for handling lock requests, and (n/2 + 1)
messages for handling unlock requests

• Complex deadlock handling

Biased protocol

• Requests for shared locks are handled differently than requests for
exclusive locks.

• Shared locks. When a transaction needs to lock data item Q, it simply
requests a lock on Q from the lock manager at one site containing a
replica of Q.

• Exclusive locks. When transaction needs to lock data item Q, it
requests a lock on Q from the lock manager at all sites containing a
replica of Q.

• Advantage - imposes less overhead on read operations.

• Disadvantage - additional overhead on writes. Similar to biased
protocol

Quorum Consensus Protocol

• A generalization of both majority and biased protocols

• Each site is assigned a weight.
• Let S be the total of all site weights

• Choose two values read quorum Qr and write quorum Qw

• Such that Qr + Qw > S and 2 * Qw > S

• Quorums can be chosen separately for each item

• Each read must lock enough replicas that the sum of the site weights
is >= Qr

• Each write must lock enough replicas that the sum of the site weights
is >= Qw

• Ex :

• Sites

• Weight 3 1 2 4

• Total weight S = 10

• Let Qr = 5 Qw = 6 [Qr + Qw > S and 2 * Qw > S]

• Transaction can read dataitems if sites s1 and s3 is locked because
the sum of weights of s1 and s3 is 5 which is >= Qr

• But transaction can’t write dataitems if sites s1 and s3 is locked

S1 S2 S4S3

Benefits

• It can permit the cost of either read or write locking to be selectively
reduced by appropriately defining the read and write quorums.

• small read quorum - reads need to obtain fewer locks

• high write quorum - obtain more locks.

• If higher weights are defined to sites those are less likely to fail,
fewer sites need to be accessed for acquiring locks.

Timestamping

• Each transaction must be given a unique timestamp

• Main problem: how to generate a timestamp in a distributed fashion
• Each site generates a unique local timestamp using either a logical counter or

the local clock.

• Global unique timestamp is obtained by concatenating the unique local
timestamp with the unique identifier.

7. Distributed Query Processing
• There are many methods/strategies for processing a query.

• Choose a good strategy for processing the query

➢The primary criteria is minimum time to compute the answer.

• For centralized systems the main factor to consider

➢ is the number of disk accesses.

• In a distributed system, we must take into account several other
factors

➢ The cost of data transmission over the network.

➢The potential gain in performance

 several sites process parts of the query in parallel.

i) Query Transformation

• Consider a simple query
➢ Find all the tuples in the account relation.

• Although the query is simple, processing it in distributed database is
not easy, since the account relation may be
➢ replicated
➢ fragmented
➢ or both

• If the account relation is replicated, choose the replica for which the
transmission cost is lowest.

• If a replica is fragmented, the choice is not so easy to make,
➢since we need to compute several joins or unions to reconstruct the account

relation.

• In this case, the number of strategies for the simple example may be
large.

Query Transformation - Horizontal fragmentation
• Assume account relation is horizontally fragmented into account1

and account2
account1 =  branch-name = “chennai” (account)
account2 =  branch-name = “madurai” (account)

• User may write a query such as
  branch-name = “chennai” (account)

• Since account is defined as: account1 ∪ account2
  branch-name = “chennai” (account1  account2)

 which is optimized into
 branch-name = “chennai” (account1)

 
 branch-name = “chennai”(account2)

• This contains two sub expressions

• First expression is transformed into

 branch-name = “chennai” ( branch-name = “chennai” (account))

• Second expression is transformed into

  branch-name = “chennai” ( branch-name = “madurai” (account))

ii)Simple Join Processing
• Must consider following factors:

• amount of data being shipped/transferred
• cost of transmitting a data block between sites
• relative processing speed at each site

• Consider the following relational algebra expression in which the
three relations are neither replicated nor fragmented

r1 is stored at site S1

r2 at S2

r3 at S3

 (eg. account, depositor, branch)

• For a query issued at site SI, the system needs to produce the result at
site SI

Different strategies

1. Ship copies of a relations r2 and r3 to site S1

 compute at site S1

2. Ship a copy of the r1 relation to site S2 and

 compute temp1 = at S2

 Ship temp1 from S2 to S3

 and compute temp2 = at S3

 Ship the result temp2 to S1.

• Devise similar strategies, by exchanging the roles of S1, S2, S3

• Example : Choose a strategy with less amount of data to be shipped
and low Communication cost

iii) Semijoin Strategy

• Semijoin is denoted by

• Semijoin takes the natural join of 2 relations and projects the
attributes of first relation only.

• Eg

• Result of faculty course

• Reduce communication cost by reducing the size of relation that
needs to be transmitted

Step

Step

iv) Join Strategies that Exploit Parallelism

• Consider where relation ri is stored at site Si.

• The result must be at site S1.

• r1 is shipped to S2, and r1 r2 computed at S2.

• At the same time, r3 is shipped to S4, and r3 r4 computed at S4.

• Site S2 can ship tuples of to S1

• Similarly, S4 can ship tuples of to S1.

• Once tuples of (r1 r2) and (r3 r4) arrive at S1, the computation
of can begin.

• Thus, computation of the final join result at S1 can be done in parallel
with the computation of at S2, and with the computation of

 at S4.

• result must be at site S1

8. Cloud-Based Databases

• Web applications that need to store and retrieve data for very large
numbers of users (ranging from millions to hundreds of millions)

• It is the major driver of cloud-based databases.

• The needs of these applications differ from those of traditional
database applications, since they value availability and scalability over
consistency.

• Several cloud-based data-storage systems have been developed in
recent years to serve the needs of such applications
➢Bigtable from Google,

➢Simple Storage Service (S3) from Amazon

➢Cassandra from FaceBook,

➢wSherpa/PNUTS from Yahoo,

➢ Azure from Microsoft

Data Storage Systems on the Cloud

• Applications on the Web have extremely high scalability requirements.

• Popular applications have hundreds of millions of users, and many
applications have seen their load increase manyfold within a single year, or
even within a few months.

• To handle the data management needs of such applications, data must be
partitioned across thousands of processors.

• A number of systems for data storage on the cloud have been developed
and deployed over the past few years to address data management
requirements of such applications

• These include Bigtable from Google, Simple Storage Service (S3) from
Amazon, which provides a Web interface to Dynamo, which is a keyvalue
storage system, Cassandra, from FaceBook, wSherpa/PNUTS from Yahoo,
the data storage component of the Azure environment from Microsoft, and
several other systems.

i) Data Representation

• As an example of data management needs of Web applications, consider the
profile of a user, which needs to be accessible to a number of different
applications that are run by an organization.

• The profile contains a variety of attributes, and there are frequent additions to
the attributes stored in the profile. Some attributes may contain complex data.

• A simple relational representation is often not sufficient for such complex data.

• Some cloud-based data-storage systems support XML for representing such
complex data.

• Others support the JavaScript Object Notation (JSON) representation, which has
found increasing acceptance for representing complex data.

• The XML and JSON representations provide flexibility in the set of attributes that
a record contains, as well as the types of these attributes.

• Yet others, such as Bigtable, define their own data model for complex data
including support for records with a very large number of optional columns.

• Further, many such Web applications either do not need extensive query
language support, or at least, can manage without such support.

• The primary mode of data access is to store data with an associated key,
and to retrieve data with that key.

• In the above user profile example, the key for user-profile data would be
the user’s identifier.

• There are applications that conceptually require joins, but implement the
joins by a form of view materialization.

• For example, in a social-networking application, each user should be
shown new posts from all her friends.

• Unfortunately, finding the set of friends and then querying each one to
find their posts may lead to a significant amount of delay when the data
are distributed across a large number of machines.

• An alternative is as follows: whenever a user makes a post, a message is
sent to all friends of that user, and the data associated with each of the
friends is updated with a summary of the new post.

• When that user checks for updates, all required data are available in one
place and can be retrieved quickly

• Thus, cloud data-storage systems are, at their core, based on two primitive
functions, put(key, value), used to store values with an associated key, and
get(key), which retrieves the stored value associated with the specified key.

• Some systems such as Bigtable additionally provide range queries on key
values.

• In Bigtable, a record is not stored as a single value, but is instead split into
component attributes that are stored separately.

• Thus, the key for an attribute value conceptually consists of (record-
identifier, attribute-name). Each attribute value is just a string as far as
Bigtable is concerned.

• To fetch all attributes of a record, a range query, or more precisely a prefix-
match query consisting of just the record identifier, is used.

• The get() function returns the attribute names along with the values.

• For efficient retrieval of all attributes of a record, the storage system stores
entries sorted by the key, so all attribute values of a particular record are
clustered together.

ii)Partitioning and Retrieving Data

• Partitioning of data is, of course, the key to handling extremely large scale in
data-storage systems.

• data-storage systems typically partition data into relatively small units (small on
such systems may mean of the order of hundreds of megabytes). These partitions
are often called tablets,

• The partitioning of data should be done on the search key, so that a request for a
specific key value is directed to a single tablet; otherwise each request would
require processing at multiple sites, increasing the load on the system greatly.
Two approaches are used: either range partitioning is used directly on the key, or
a hash function is applied on the key, and range partitioning is applied on the
result of the hash function.

• The site to which a tablet is assigned acts as the master site for that tablet. All
updates are routed through this site, and updates are then propagated to replicas
of the tablet. Lookups are also sent to the same site, so that reads are consistent
with writes.

• The partitioning of data into tablets is not fixed up front, but happens
dynamically. As data are inserted, if a tablet grows too big, it is broken into
smaller parts.

• It is important to know which site in the overall system is responsible
for a particular tablet.

• This can be done by having a tablet controller site which tracks the
partitioning function, to map a get() request to one or more tablets,
and a mapping function from tablets to sites, to find which site were
responsible for which tablet.

• Each request coming into the system must be routed to the correct
site; if a single tablet controller site is responsible for this task, it
would soon get overloaded.

• Instead, the mapping information can be replicated on a set of router
sites, which route requests to the site with the appropriate tablet.

Transactions and Replication

• Data-storage systems on the cloud typically do not fully support ACID
transactions.

• The cost of two-phase commit is too high, and two-phase commit can lead to
blocking in the event of failures, which is not acceptable to typical Web
applications.

• Sherpa/PNUTS also provides a test and-set function, which allows an update to a
data item to be conditional on the current version of the data item being the
same as a specified version number.

• If the current version number of the data item is more recent than the specified
version number, the update is not performed.

• The test-and-set function can be used by applications to implement a limited
form of validation-based concurrency control, with validation restricted to data
items in a single tablet.

• A data-storage system on the cloud must be able to continue normal processing
even with many sites down. Such systems replicate data (such as tablets) to
multiple machines in a cluster, so that a copy of the data is likely to be available
even if some machines of a cluster are down.

