Total No. of Pages : $\boxed{2}$

Register Number: 5538

Name of the Candidate:

B.Sc. DEGREE EXAMINATION DECEMBER 2013.

(CONSTRUCTION MANAGEMENT)

(FIFTH SEMESTER)

520 — DESIGN CONCEPT OF STRUCTURES

Time: Three hours

Maximum: 75 marks

Answer ONE question from each Unit. $(5 \times 15 = 75)$

UNIT I

- 1. (a) Explain design criteria of plate girders.
 - (b) Write short notes on: (i) bunkers (ii) silos.

Or

2. (a) A plate girder used as a gantry consists of:

Design the Plate girder with the above given measurements.

Top Flange plate = $400 \times 25 \ mm$

Bottom Flange plate = $300 \times 25 \, mm$

Web plate = $1000 \times 12 \ mm$. The data regarding the building and crane is

Bay width = B = 16m

Column spacing = C = 10m

Crane capacity = $w_k = 100 \ KN$

Crane girder weight = w_c = 80 kN

Crab weight = $w_r = 16 KN$

Wheel spacing = a = 3.0m

Minimum edge distance = g = 1.0m

(b) Explain the design procedure of chimney.

UNIT II

- 3. (a) Explain the components of a bridge.
 - (b) Write the design procedure of T beam bridges.

Or

- 4. (a) Explain the R.C.C. slab bridges and sketch of neatly.
 - (b) Explain the types of bridges and explain them briefly.

UNIT III

- 5. (a) What are the steps undertaken by the multistoried building systems.
 - (b) Explain the design procedure of earthquake.

Or

- 6. (a) What are the steps involved in earthquake resistance building?
 - (b) Explain ductility.

UNIT IV

7. (a) Design a RC circular water tank

Capacity of circular tank = 5,00,000 liters

Depth of water = 4m

Free board = 200mm

Adopt M_2O grade of concrete and Fe 415 steel. Permissible stresses $m=13,\,\sigma_{ct}\,1.2\;N/mm^2\;\sigma_{cc}=5N/mm^2\;\sigma_{st}=115\;N/mm^2$.

(b) Write the general features of the design of water tanks.

Or

- 8. (a) What are the steps involved in design of steel water tanks?
 - (b) A reinforced concrete water tank resting on ground is $6m \times 2m$ with a maximum depth of 2.5m using M-20 concrete and Grade I steel. Design the tank walls.

UNIT V

9. (a) Design a cantilever retaining wall

Height of wall above ground level =4m

Density of earth = $18KN/m^3$

Angle of internal friction =30

SBC of soil = $200 \ KN/m^2$.

Adopt M_2O grade of concrete and Fe415 steel.

(b) Define of steel truss bridges.

Or

- 10. (a) Write the design steps of counter fort retaining walls.
 - (b) Briefly explain design of steel truss bridges for railway loading.

5538