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UNIT –V 

 

1. Stress Components in a Real Fluid

Let S be a small rigid plane area inserted at a point P in a viscous fluid.  

Cartesian co-ordinates (x, y, z) are referred to a set of fixed axes OX, OY, OZ.  

Suppose that  nF is the force exerted by 

the moving fluid on one side of S, the 

unit vector n̂ being taken to specify the 

normal at P to S on this side.  We know 

that in the case of an inviscit fluid,  nF  is 

aligned with n̂ .  For a viscous fluid, 

however, frictional forces are called into 

play between the fluid and the surface so 

that  nF  will also have a component 

tangential to S. We suppose the 

Cartesian components of  nF  to be         

(Fnx, Fny, Fnz) so that 

 nF = Fnx î  + Fny ĵ + Fnz k̂ .

Then the components of stress parallel to the axes are defined to be nx, ny, 

nz, where 

nx = ,
dS

dF
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Fδ
lt nxnx

0Sδ
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
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


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In the components nx, ny, nz, the first suffix n denotes the direction of the 

normal to the elemental plane S whereas the second suffix x or y or z denotes 

the direction in which the component is measured.  

If we identify n̂  in turn with the unit vectors )OZ(),OY(),OX(ink̂,ĵ,î , which 

is achieved by suitably re-orientating S, we obtain the following three sets of 

stress components  

xx,   xy,       xz ; 

yx,    yy,      yz ; 

zx,     zy,     zz  . 

The diagonal elements xx, yy, zz of this array are called normal or direct 

stresses.  The remaining six elements are called shearing stresses.  For an 

inviscid fluid, we have 

xx = yy = zz = p 

xy = xz = yx = yz = zx = zy = 0 

Here, we consider the normal stresses as positive when they are tensile and 

negative when they are compressive, so that p is the hydrostatic pressure.  The 

matrix  

















zzzyzx

yzyyyx

xzxyxx

σσσ

σσσ

σσσ

(1) 

is called the stress matrix.  If its components are known, we can calculate the 

total forces on any area at any chosen point.  The quantities ij(i, j = x, y, z) are 

called the components of the stress tensor whose matrix is of the form (1). 

Further we observe that ij is a tensor of order two. 

2. Relation Between Rectangular (Cartesian) Components of Stress

Let us consider the motion of a small rectangular parallelopiped of 

viscous fluid, its centre being P(x, y, z) and its edges of lengths x, y, z, 

parallel to fixed Cartesian axes, as shown  in the figure. 
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Let  be the density of the fluid.  The mass x y z of the fluid element 

remains constant and the element is presumed to move alongwith the fluid.  In 

the figure, the points P1 and P2 have been taken on the centre of the faces so 

that they have co-ordinates 






 








 
 z,y,

2

x
xandz,y,

2

x
x  respectively. 

At P(x, y, z), the force components parallel to OZ,OY,OX  on the 

surface area y. z through P and having î as unit normal, are 

(xxy z,   xy yz,    xz yz) 

At P2 






 
 z,y,

2

x
x , since î  is the unit normal measured outwards from the 

fluid, the corresponding force components across the parallel plane of area 

yz, are 




















































































 

 zy
x2

x
,zy

x2

x
,zy

x2

x xz
xz

xy

xy
xx

xx . 

For the parallel plane through P1 







 z,y,

2

xδ
x , since  î  is the unit normal 

drawn outwards from the fluid element, the corresponding components are 





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










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
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














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

















 zy

x2

x
,zy

x2

x
,zy

x2

x xz
xz

xy

xy
xx

xx

The forces on the parallel planes through P1 and P2 are equivalent to a single 

force at P with components  






















x

σ
,

x

σ
,

x

σ xzxyxx x y z 

together with couples whose moments (upto third order terms) are 

 xz x y z about Oy, 

 xy xyz about Oz. 
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Similarly, the pair of faces perpendicular to the y axis give a force at P having 

components  






















y

σ
,

y

σ
,

y

σ yzyyyx
x y z 

together with couples of moments 

 yx x y z about Oz, 

 yz xyz about Ox. 

The pair of faces perpendicular to the z-axis give a force at P having 

components  






















z

σ
,

z

σ
,

z

σ zzzyzx x y z 

together with couples of moments 

 zy x y z about Ox, 

 zx xyz about Oy. 

Combining the surface forces of all six faces of the parallelopiped, we observe 

that they reduce to a single force at P having components  























































































z

σ

y

σ

x

σ
,

z

σ

y

σ

x

σ
,

z

σ

y

σ

x

σ zzyzxzzyyyxyzxyxxx x y z, 

together with a vector couple having Cartesian components 

[(yz  zy), (zx  xz), (xy  yx)] x y z. 

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass, 

so that the total body force on the element has components [X, Y, Z]  x y 

z.  Let us take moments about î direction through P.  Then, we have  

Total moment of forces = Moment of inertia about axis  Angular 

acceleration  

i.e.  (yzzy) x y z + terms of 4
th

 order in x, y z = terms of 5
th

 order in

x, y, z. 
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Thus, to the third order of smallness in x, y, z, we obtain 

(yz  zy) x y z = 0 

Hence, as the considered fluid element becomes vanishingly small, we obtain 

yz = zy. 

Similarly, we get 

zx = xz,      xy = yx 

Thus, the stress matrix is diagonally symmetric and contains only six 

unknowns.  In other words, we have proved that  

ij = ji, (i, j = x, y, z) 

i.e. ij is symmetric. 

In fact, ij is a symmetric second order Cartesian tensor. 

3. Transnational Motion of Fluid Element.  Considering the surface forces 

and body forces, we note (from the previous article) that the total force 

component in the iˆ

 

direction, acting on the fluid element at point P(x, y, z), is  


























z

σ

y

σ

x

σ zxyxxx x y z + X x y z (1) 

where (X, Y, Z) is the body force per unit mass and  being the density of the 

viscous fluid.  As the mass  x y z is considered constant, if q  = (u, v, w) 

be the velocity of point P at time t, then the equation of motion in the 

î direction is 


























z

σ

y

σ

x

σ zxyxxx x y z +  X x y z = (x y z)
dt

du

or 
dt

du
ρXρ

z

σ

y

σ

x

σ zxyxxx 













(2) 

If u = u(x, y, z, t), then 

z

u
w

y

u
v

x

u
u

t

u

dt

du



















  where 






tdt

d
q  

Thus, (2) becomes 
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y
y

ξ






D 
(x,y+y) 

C 

(x+x,y+y) 

C 

D 

y
y


























 1
X

z

u
w

y

u
v

x

u
u

t

u

























z

σ

y

σ

x

σ zxyxxx (3) 

Similarly the equations of motion in k̂andĵ directions are





















 1
Y

z

v
w

y

v
v

x

v
u

t

v

























z

σ

y

σ

x

σ zyyyxy
(4) 





















 1
Z

z

w
w

y

w
v

x

w
u

t

w

























z

σ

y

σ

x

σ zzyzxz  (5) 

Equations (3), (4), (5) provide the equations of motion of the fluid element at 

P(x, y, z). 

In tensor form, if the co-ordinates are xi, the velocity components ui, the body 

force components Xi, where i = 1, 2, 3, the equations of motion can be 

expressed as  






 1
Xuu

t

u
ij,ij

i  ji,j (i, j = 1, 2, 3). 

4. Nature of Strains (Rates of Strain)

The change in the relative position of the parts of the body under some force, is 

termed as deformation.  By Hooke‟s law, the stress is proportional to strain in 

case of elastic bodies, while in case of non-elastic bodies the stress is 

proportional to the rate of strain. 

Strain is of two kinds, the normal and the shearing.  The ratio of change in 

length to the original length of a line element is called normal (or direct) 

strain.   The shearing strain measures the change in angle between two line 

elements from the natural state to some standard state.  We shall consider two 

dimensional case and then extend it to three dimensions.  Let us consider a 

rectangular element ABCD of an elastic solid with co-ordinates of A as (x, y) 

and length of sides as x and y in the natural state.  

Let the point A. be defined to a point A(x +, y +) then 

B(x +x, y) goes to B(x + +x +
x

ξ




x, y ++

x

η




x) 
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A(x,y)  B(x+x,y) 

(Before deformation) 

A 

1

B 

x
x






x
x






(After deformation) 

     y 
2

1 

2

 

The point D(x, y +y) goes to the point  

D(x + +
y


y,  y +  + y + )y

y





.  

Therefore, projected lengths of AB along x and y axes are   x + x
x





and 

x

η




x 

Thus, 

(A B)
2
 =

22

x
x

x
x

x 


























 (1) 

The normal strain along x-axis is defined by 

xx = 
AB

AB'B'A 

 AB = (1+xx) AB = (1 + xx) x   | AB = x (2) 

From (1) & (2), we have 

(1+xx)
2
 (x)

2
 = (x)

2
 







































22

x

η

x

ξ
1

 (1+xx)
2
 =

22

x

η

x

ξ
1 



























From here, to the first order terms only, we get 

xx = 
x

ξ




. 

Similarly, the normal strain along the y-axis is 

x 
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yy = 
y

η





The shearing strain xy at the point A is the change in the angle between the 

sides AB and AD.  The right angle DAB|  between AB and AD is diminished 

by xy = 1 + 2 = tan1 + tan2, 1 & 2 being small.  

i.e.  xy = 

y
y

1

y
y

x
x

1

x
x









































       = 

11

y

η
1

y

ξ

x

ξ
1

x

η






































xy = 


















y

ξ

x

η

2

1
)γ(

2

1
xy ,       upto first order. 

We observe that the strains have the nature of change in displacement in a 

given unit length in a given direction.  Hence strain is a tensor of order two. 

In the case of fluids, there is no resistance to deformation but only to the time 

rate of deformation.  Hence in fluid dynamics the rate of change of strain with 

time i.e. rate of strain is to be used in place of strain in elasticity.  Thus, for 

viscous fluids, replacing strains by rates of strain, the corresponding results are 

obtained to be  

xx = 
x

u
)u(

xt

ξ

xx

ξ

t 










































yy = 
t

η
v,

y

v










xy = 







































y

u

x

v

2

1

y

ξ

x

η

t2

1

In case of three dimensions, these become 
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

























































































z

u

x

w

2

1
)(

2

1

z

v

y

w

2

1
)(

2

1

y

u

x

v

2

1
)(

2

1

z

w
,

y

v
,

x

u

zxzx

yzyz

xyxy

zzyyxx

 (A) 

where u, v, w are the velocity components of the viscous fluid along x, y, z 

axis respectively. 

The six quantities xx, yy, zz, xy, yz, zx in (A) are called components of the 

rates of strain or gradients of velocity 

5. Transformation of Rates of Strain.  

We shall obtain the rates of strain in term 

of the new co-ordinates x, y, changing 

from x, y to x, y.  Let us obtain the new 

axes by rotating the original axes through 

angle  and let     l = cos,   m = sin   

Then x = lx + my, y = mx + ly 

  x = lx  my, y = mx + ly 

Further, 
t

)'x(
t 







(lx + my) 

 u = lu + mv 

and v = mu + lv 

Also,         (OP)
2
 = x

2
 + y

2
 = x

2
 + y

2
|  they are still perpendicular 

Now,         xx = 
'x

y

y

'u

'x

x

x

'u

'x

'u







































or        xx = m
y

v
m

y

u

x

v
m

x

u



































lll  

= l
2





























y

u

x

v
m

y

v
m

x

u 2 l

Y 
Y 

 
X 

X 

P(x,y) 

  (x,y) 
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= l
2
 xx + m

2
 yy + lm.xy

Similarly yy = 2m
'y

'v





xx + l

2
 yy  lm xy

xy = 
'x

'v

'y

'u









= 2lm (yy  xx) + (l

2
m

2
) xy.

which are the rates of strain of the new system in terms of rates of strain in the 

original system.  If we put back l = cos, m = sin, then  













































2cos
2

2sin
2

)(
2

1

2sin
2

2cos
22

2sin
2

2cos
22

xyyyxx'
xy

'
xy

xyyyxxyyxx'
yy

xyyyxxyyxx'
xx

 (B) 

These equations give the transformation formulae for the rates of strain. 

We observe that the rate of  strain is also a tensor of order two, there must exist 

at least two invariants of the rate of strain to the choice of co-ordinate systems.  

These can be obtained as follows. 

xx + yy = (l
2
 + m

2
) (xx + yy)

= xx + yy = 








q,qdiv

y

v

x

u
(u, v) (1) 

           xx yy 
4

)'( 2
xy

= (l
2
 xx +m

2
 yy + lmxy) (m

2
 xx + l

2
 yy  lm xy)

        
4

1
[2lm (yy  xx) + (l

2
  m

2
) xy]

2

= (l
4
 + 2 l

2
 m

2
 + m

4
) xx yy 

4

2
xy

(l
4
 + 2l

2
 m

2
 + m

4
)

       = xx yy 
4

2
xy

(2) 
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Equation (1) shows that the divergence of the velocity vector at a given point is 

independent of the orientation of the co-ordinate axes.  Equation (2 is related to 

the dissipation function.  i.e. loss of energy due to viscosity. 

Let us now consider the general case of the rates of strain in three dimensions.  

The direction cosines between x, y, z and x, y, z are related as follows. 

x y Z 

x l1 m1 n1 

y l2 m2 n2 

z l3 m3 n3 

The relations between co-ordinates in the two systems are 

x = l1x + m1y  n1z 

y = l2x + m2y + n2z 

z = l3x + m3y + n3z 

and 

x = l1x + l2 y + l3 z 

y = m1x + m2y + m3z 

z = n1x + n2y + n3z 

From here, we get 

u = l1u + m1v + n1w 

v = l2u + m2v + n2w 

w = l3u + m3v+ n3w 

We shall use these relations to find out the rates of strain w. r. t. the new co-

ordinates x, y, z. 
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Let us work out 

xx = 
'x

z

z

'u

'x

y

y

'u

'x

x

x

'u

'x

'u
































= 1111
x

w
n

x

v
m

x

u
ll 






















+ 1111 m
y

w
n

y

v
m

y

u






















l

       + 1111 n
z

w
n

z

v
m

z

u






















l

= l1
2
 xx + m1

2
 yy + n1

2
 zz + l1m1 


















y

u

x

v

       + m1n1 


































z

u

x

w
n

y

w

z

v
11l  

= l1
2
 xx + m1

2
 yy + n1

2
 zz + l1 m1xy  + m1 n1 yz + n1l1 zx

Similarly, we have 

yy = 
'y

'v




= l2

2
 xx + m2

2
 yy + n2

2
 zz + l2 m2 xy + m2n2 yz + n2l2 zx

zz = 
'z

'w




= l3

2
 xx + m3

2
 yy + n3

2
 zz + l3m3 xy + m3n3 yz + n3l3 zx

xy =
'x

z

z

'v

'x

y

y

'v

'x

x

x

'v

'y

'u

'x

'v




































+ 

'y

z

z

'u

'y

y

y

'u

'y

x

x

'u



























      = 2l1l2 xx + 2m1 m2 yy + 2n1n2 zz 

      + (l1m2 + m1l2) xy + (m1n2 + n1m2) yz + (n1l2 + l1n2) zx 

yz = 
'z

'v

'y

'w









= 2l2 l3 xx + 2m2m3 yy + 2n2n3 zz 

      + (l2m3 + m2l3) xy + (m2n3 + n2m3) yz + (n2l3 + l2n3) zx 
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zx = 
'x

'w

'z

'u









= 2l3l1 xx + 2m3 m1 yy + 2n3n1 zz 

      + (l3m1 + m3l1) xy + (m3n1 + n3m1) yz + (n3l1 + l3n1) zx 

From here, we find 

xx + yy + zz = (l1
2
 + l2

2
 + l3

2
) xx + (m1

2
 + m2

2
 + m3

2
) yy

+ (n1
2
 + n2

2
 + n3

2
) zz + (l1m1 + l2m2 + l3m3) xy

+ (m1n1 + m2n2 + m3n3) yz + (n1l1 + n2l2 + n3l3) zx 

= xx + yy + zz 

where we have used the orthogonality relations 

l1
2
 + l2

2
 + l3

2
 = 1 etc

and  l1m1 + l2m2 + l3m3 = 0 etc. 

Thus we conclude that  

xx + yy  + zz = xx + yy + zz 

      = qdiv
z

w

y

v

x

u
















is invariant. 

Similarly,  

xx yy + yy zz + zz xx 
4

1
[(xy)

2
 + (yz)

2
 + (zx)

2
]

      = xx yy + yy zz + zz xx 
4

1
[(xy)

2
 + (yz)

2
 + (zx)

2
]

is also invariant. 

 NOTE.  The stress tensor ij and the rates of strain ij follow the same rules 

of transformation.  Thus, the three equations in (B) can also be written for 

stress components so that we get the relations between the original and the new 

stress components as   
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


































θ2cosσθ2sin
2

σσ
σ

θ2sinσθ2cos
2

σσ

2

σσ
σ

θ2sinσθ2cos
2

σσ

2

σσ
σ

xy

yyxx'
xy

xy

yyxxyyxx'
yy

xy

yyxxyyxx'
xx

 (C) 

6. Relations Between the Stress and Gradients of Velocity

For viscous fluid, the following assumptions are to be made to find the 

relations between the stress and the rate of strain. 

(i) The stress components may be expressed as linear functions of rates of 

strain components. 

(ii) The relations between stress and rates of strain are invariant w.r.t 

rotation and reflection of co-ordinate axes (symmetry). 

(iii) The stress components reduce to the hydrostatic pressure when all the 

gradients of velocity are zero. 

i.e. xx = p = yy = zz, xx = 0
x

u





= yy = zz. 

First we consider two dimensional case and then we extend it to three 

dimensions. 

Under the assumption (i), we can write 

xx = A1 xx + B1 yy + C1 xy + D1 

yy = A2 xx + B2 yy + C2 xy + D2 (1) 

xy = A3 xx + B3 yy + C3 xy + D3 

where As, Bs, Cs and Ds are constants to be determined. 

From the assumption (ii), we have 

xx = A1 xx + B1 yy + C1 xy + D1 

yy = A2 xx + B2 yy + C2 xy + D2 (2) 
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xy = A3 xx + B3 yy + C3 xy + D3 

But the relations between the original and the new stress components are (from 

equation (C))  




































θ2cosσθ2sin
2

σσ
σ

θ2sinσθ2cos
2

σσ

2

σσ
σ

θ2sinσθ2cos
2

σσ

2

σσ
σ

xy

yyxx'
xy

xy

yyxxyyxx'
yy

xy

yyxxyyxx'
xx

 (3) 

Using the equation (1) in 1
st
 of (3), we get

2

1
σ '

xx  (A1 + A2) xx +
2

1
(B1+B2) yy + 

2

1
 (C1+C2) xy 

       + 
2

1
(D1+D2) +

2

1
 (A1A2) xx cos 2 

       + 
2

1
(B1B2) yy cos 2 + 

2

1
(C1C2) xy cos 2 

       + 
2

1
 (D1D2) cos 2 + (A3xx + B3 yy + C3xy + D3) sin 2 (4) 

Also, the relations between the original and the new rates of strain are 













































2cos
2

2sin
2

2sin
2

2cos
22

2sin
2

2cos
22

xyyyxx'
xy

xyyyxxyyxx'
yy

xyyyxxyyxx'
xx

 (5) 

Using equation (5) in 1
st
 of equations (2), we get

'
xxσ  = 

2

A1 (xx + yy) +
2

A1  (xx  yy) cos 2 +
2

A1  xy sin 2 

        + 
2

B1 (xx + yy) 
2

B1  (xx  yy) cos 2 
2

B1  xy sin 2 
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         C1(xx  yy) sin 2 + C1 xy cos 2 + D1 (6) 

Comparing co-efficients in (4) & (6), we get 

2

A1 (1+cos 2) + 
2

A2 (1cos 2) + A3 sin 2 

  = 
2

A1 (1 + cos 2) + 
2

B1 (1cos 2)  C1 sin 2       | xx

2

B1 (1+cos 2) +
2

B2  (1cos 2) + B3 sin 2 

  = 
2

A1 (1  cos 2) + 
2

B1 (1+cos 2) + C1 sin 2      | yy 

2

C1 (1+cos 2) + 
2

C2  (1cos 2) + C3 sin 2 

  = 
2

A1 sin 2 
2

B1 sin 2 + C1 cos 2         | xy 

2

D1 (1+cos 2) + 
2

D2 (1cos 2) + D3 sin 2 = D1 

From these equations, we get 

A2 = B1 = B(say), B2 = A1 = A(say) 

C2 = A3 =  C1 = B3 = C(say) 

C3 =
2

BA

2

BA 11 



, D1 = D2 = D (say), D3 = 0 

The stress components in terms of the rates of strain are now obtained to be 



















xyyyxxxy

xyyyxxyy

xyyyxxxx

γ
2

BA
)(Cσ

DγCABσ

DγCBAσ

(7) 

To find A, B, C and D, we make use of the assumption that there is symmetry 

of the fluid about the co-ordinate axes.  
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Let us take the symmetry w.r.t. the y-axis.  If (x1, y1) are the new co-ordinates 

of the point with co-ordinates (x, y), then  

x1 = x, y1 = y 

i.e. u1 = u, v1 = v  

The rates of strain w.r.t. (x1, y1) co-ordinates are 

1111

1
xx

x

y

y

u

x

u

x

u

x

u

x

u
11 



























          = 0
x

y
,1

x

x

x

u

11
xx 
















Similarly, 

  xyyxyyyy 1111
, 

and

xyyxyyyyxxxx 111111
,, 

Using these in (7), we get 

 





















11111111

11111111

11111111

yxyyxxyx

yxyyxxyy

yxyyxxxx

2

BA
)(C

DCAB

DCBA

(8) 

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate 

transformation and so  























11111111

11111111

11111111

yxyyxxyx

yxyyxxyy

yxyyxxxx

2

BA
)(C

DCAB

DCBA

(9) 

Comparing (8) & (9), we find C = 0.   According to the assumption (iii), we 

have 

xx = yy = p, xx = yy = 0 

Thus from (7), we find D = p, since C = 0.  
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The last equation in (7) becomes 

xy = 
2

BA 
xy =  xy, where  = 

2

BA 
is called the co 

efficient of viscosity. 

The relations in (7) are now, 

xx = A xx + B yy  p = (AB) xx + B (xx + yy)  p 

      = 2 xx + B  q p 

q
y

v

x

u

)v,u(q

yyxx 












yy = 2 yy + B q p. 

xy =  xy = 2 xy 

These are the required relations between the stress components and the rates of 

strain in two dimensions. 

For three dimensional case, we can write. 

































pqλ
z

w
μ2pqBμ2σ

pqλ
y

v
μ2pqBμ2σ

pqλ
x

u
μ2pqBμ2σ

zzzz

yyyy

xxxx

 (10) 

xy =  xy =  

















y

u

x

v
, 

 yz =  yz =  

















z

v

y

w
(11) 

zx =  zx =  

















z

u

x

w

where B  . 
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U î

Y 

O 
X 

h 

Also,  xx + yy + zz  = 2(xx + yy + zz) + 3  q 3p 

= 2  q +3  q 3p 

= (2 +3)  q 3p 

For incompressible fluid  q  = 0. 

 xx + yy + zz = 3p 

i.e. p
3

σσσ zzyyxx




This shows that the mean normal stress is equal to the hydrostatic pressure (i.e. 

constant) 

NOTE : (i) For compressible fluids, B  = 
3

μ2

(ii) Equations (10) and (11) may be combined in tensor form.  Thus, if xi 

denote the Cartesian co-ordinates, ui the velocity components (i = 1, 2, 

3), then (10) & (11) may be collectively written as  

ij = (p) Sij + (ui,j + uj,i), (i, j = 1, 2, 3) 

where   = div q  = uj,i, 

p = 
3

1
i,i,  = 0 for incompressible flow, 

 = 
3

2
 for compressible flow. 

(iv) For viscous fluids, stress is linearly proportional to rate of strain.  This 

law is known as Newton‟s law of viscosity and such fluids are known 

as Newtonian fluids.   

7. The Co-efficient of Viscosity and Laminar Flow :

      Pu î

Z
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The figure shows two parallel planes y = 0, y = h, a small distance h apart, the 

space between them being occupied by a thin film of viscous fluid.  The plane 

y = 0 is held fixed and the upper plane is given a constant velocity U î .  If U is 

not very large, the layers of liquid in contact with y = 0 are at rest and those in 

contact with y = h are moving with velocity U î  i.e. there is no slip between 

fluid and either surface.  A velocity gradient is set up in the fluid between the 

planes.  At some point P(x, y, z) in between the planes, the fluid velocity will 

be U î , where 0 < u < U and u is independent of x and z.  Thus, when y is 

fixed, u is fixed i.e. fluid moves in layers parallel to two planes.  Such flow is 

termed as Laminar flow.  Due to viscosity of the fluid there is friction between 

these layers.  Experimental work shows that the shearing stress on the moving 

plane is proportional to U/h when h is sufficiently small.  Thus, we write this 

stress in the form  

yx = 
dy

du
μ

h

U
lim

0h




where  is the co-efficient of viscosity.  In aerodynamics, a more important 

quality is the Kinematic co-efficient of viscosity v defined by  

v = /. 

For most fluids  depends on the pressure and temperature.  For gases, 

according to the Kinetic theory,  is independent of the pressure but decreases 

with the temperature. 

8. Navier-Stoke’s Equations of Motion (Conservation of Linear

Momentum) 

Let us consider a mass of volume  enclosed by the surface S in motion at time 

t. Let d be an element of volume, then the mass of this element is d, 

being the density of the viscous fluid. 

Let the element moves with the velocity q .  The inertial force on the element 

is  

d amF|
dt

qd










The resultant of inertial forces (or the rate of change of linear momentum) is 
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 d
dt

qd
FI    (1) 

Let X  be the body force per unit mass, then the resultant of body force is 

 dXFB  (2) 

The surface force on an element Ad  of the surface is given by the vector 

zyx îfzîfyîfxf 

   = zzyyxx î)Ad.P(î)Ad.P(î)Ad.P(  (3) 

where zyx î,î,î are unit vectors, Ad is the vectorial area of the element and 

zP,yP,xP are components of stress vector, given by 
















zzzyzyxzxz

zyzyyyxyxy

zxzyxyxxxx

îσîσîσP

îσîσîσP

îσîσîσP

 | Ti
x
= ij xj (4) 

The resultant of the surface forces is given by 

Ad.PîAd.PîAd.PîF zzyyxxS  (5) 

Using Gauss divergence theorem this can be written as 

τdPîτdPîτdPîF zzyyxxS  (6)  dSn̂Ad   

Let us use the law of conservation of momentum.  By this law, the time rate of 

change of linear momentum is equal to the total force on the fluid mass. 

Equating the resultant of body and surface forces with that of inertial forces, 

we obtain.  

 dPîdPîdPîdXd
dt

qd
zzyyxx (7) 

Since d is an arbitrary volume element, so we have 

 zzyyxx îPîPîPX
dt

qd
 (8) 
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This is the required equation of motion in vector form using the values of 

,P,P,P zyx  we get 

z

σ

y

σ

x

σ
P

z

σ

y

σ

x

σ
P

z

σ

y

σ

x

σ
P

zzzyzx
x

yzyyyx

y

xzxyxx
x














































and let q = (u, v, w), X  = (Xx, Xy, Xz) then the equations of motion can be put 

as 





























































zyx
X

dt

dw

zyx
X

dt

dv

zyx
X

dt

du

zzzyzx
z

yzyyyx

y

xzxyxx
x

(9) 

These are the equations of motion in terms of the stress components.  (We have 

also drawn these equations previously) 

Also, we know that   

z
w

y
v

x
u

t
q

tdt

d


























and the relations between stress and rates of strain are 

pqλ
z

w
μ2σ

pqλ
y

v
μ2σ

pqλ
x

u
μ2σ

zz

yy

xx






































x

v

y

u
μγμσ xyxy
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,
z

v

y

w
yz 

















  




















z

u

x

w
zx

Using these in (9), we get 





















































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




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


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
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
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
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
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







































































































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


























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
















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








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





































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









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3

2
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2
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p
X

dt

dw

y

u
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v
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v

z
q
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v
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p
X

dt

dv

x
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u

zx

v

y

u

y
q

3

2

x

u
2

xx

p
X

dt

du

z

y

x

(10) 

where  = 
3

μ2
 compressible fluids. 

The equation in (10) are called Navier-Stoke‟s equations for a viscous 

compressible fluid. 

NOTE (i) If  = co-efficient of viscosity = constant, then Navier-Stoke‟s

equations (10) become  

u
z

w

y

v

x

u

x3

1

x

p
X

dt

du 2
x 




















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







  

u
z

w

y

v

x

u

x3

1

x

p
X

dt

du 2
x 































  

w
z

w

y

v

x

u

z3

1

z

p
X

dt

dw 2
z 

































which can be expression in vector form as 

)q(
3

qpXq)q(
t

q

dt

qd 2 















  

(ii) For incompressible fluid,        = constant, 
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 = constant,          .0
z

w

y

v

x

u
q 














  

Thus the equations become 

qp
1

Xq)q(
t

q

dt

qd 2













i.e. 





p
X

dt

qd
+ v

2
q

where v = / is called the Kinematic co-efficient of viscosity. 

For steady motion with no body forces, we have 

0X,0
t

q
q

p
q)q( 2 














  

(iii) If there is no shear at all i.e  = 0,  then 











p
Xq)q(

t

q

dt

qd

These are Euler‟s equations for an incompressible non-viscous fluid.  




