FLUID DYNAMICS

UNIT -V

1. Stress Components in a Real Fluid

Let 8S be a small rigid plane area inserted at a point P in a viscous fluid.
Cartesian co-ordinates (X Y, z) are referred to a set of fixed axes OX, OY, OZ.
Suppose that 8F, is the force exerted by
the moving fluid on one side of &S, the A
unit vector Abeing taken to specify the

normal at P to &S on this side. We know p n
that in the case of an inviscit fluid, SI_:n is afzn

A

aligned with A. For a viscous fluid, 3S
however, frictional forces are called into o Y
play between the fluid and the surface so

that SF, will also have a component
tangential to &8S.  We suppose the ‘y
Cartesian components of o6F, to be
(8Fnx, OFny, 8Fn;) so that

4

SF,= OFnc | +8Fny |+ 8Fn K.

Then the components of stress parallel to the axes are defined to be ony, Gny,
Gnz, Where

_ 0F. _ dRy
Gnx — = )
8550 S ds
SFny any
Ony = — < =
3550 OS ds
- ¢ oF,, _ anZ

- 5550 8S  dS
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In the components Gnx, Gny, Onz, the first suffix n denotes the direction of the
normal to the elemental plane 6S whereas the second suffix x or y or z denotes
the direction in which the component is measured.

If we identify A in turn with the unit vectors i, j,k in (OX), (OY),(0Z) , which

is achieved by suitably re-orientating &S, we obtain the following three sets of
stress components

Oxxs  Oxys Oxz ;
Gyx; Oyy, Oyz ,
Ozxy Ozy, Ozz .

The diagonal elements oy, oyy, G5, Of this array are called normal or direct
stresses. The remaining six elements are called shearing stresses. For an
inviscid fluid, we have

Oxx = Oyy = Oz = —
Oxy = Oxz = Oyx = Oyz = Ozx — Ozy = 0

Here, we consider the normal stresses as positive when they are tensile and
negative when they are compressive, so that p is the hydrostatic pressure. The
matrix

O Oy Ox
Oyx Oyy Oyz 1)

zx Ozy Op

is called the stress matrix. If its components are known, we can calculate the
total forces on any area at any chosen point. The quantities oj(i, j = X, y, z) are
called the components of the stress tensor whose matrix is of the form (1).
Further we observe that j; is a tensor of order two.

2. Relation Between Rectangular (Cartesian) Components of Stress

Let us consider the motion of a small rectangular parallelopiped of
viscous fluid, its centre being P(X, y, z) and its edges of lengths 5x, 8y, 6z,
parallel to fixed Cartesian axes, as shown in the figure.

i 4 8z
Z : AR
i };P(x, ,2)
P, dx
Y%
Y
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X

Let p be the density of the fluid. The mass pdx 8y 6z of the fluid element
remains constant and the element is presumed to move alongwith the fluid. In
the figure, the points P; and P, have been taken on the centre of the faces so

that they have co-ordinates (X —%X,y, j and(x +—Y, j respectively.

At P(x, y, z), the force components parallel to OX,0Y,0Z on the
surface area dy. 6z through P and having i as unit normal, are

(oxx0Y 82, GOyxy OYdZ, Oy, 8YdZ)

OX . - :
At P2(x+ .Y, j since i is the unit normal measured outwards from the

fluid, the corresponding force components across the parallel plane of area
dyoz, are

o o 5 55 o]

For the parallel plane through Pl(x—%x,y,zj, since —i is the unit normal

drawn outwards from the fluid element, the corresponding components are
X (00, S [ OOy 5x (o,

- - dydz, - dydz, — - dydz

Hc’” Z(axj}y {Xy Zlax]}y {% 2(ax]}y}

The forces on the parallel planes through P, and P, are equivalent to a single
force at P with components

oo
s I
oX OX 0OX
together with couples whose moments (upto third order terms) are
— Oxz OX Oy 0z about Oy,

Oxy OXdydz about Oz.
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Similarly, the pair of faces perpendicular to the y axis give a force at P having
components

{&syx | 6(5yy | acsyz } 5 5y 52
o oy oy
together with couples of moments

— oyx OX 8y 8z about Oz,

Gy, 6XdYydz about OX.

The pair of faces perpendicular to the z-axis give a force at P having
components

aczx aGZy 6022
oz ' oz oz

} OX 8y 8z
together with couples of moments

— Gy OX 8y 6z about OX,

G2x OX0Ydz about Oy.

Combining the surface forces of all six faces of the parallelopiped, we observe
that they reduce to a single force at P having components

Cox | POyx , 00y , Oy , By | Oy N Oy B | |5, 8y &z,
x oy aflax oy allx oy @

together with a vector couple having Cartesian components

[(Gyz - Gzy)1 (GZX - ze), (ny - ny)] OX 8y dZ.

Now, suppose the external body forces acting at P are [X, Y, Z] per unit mass,
so that the total body force on the element has components [X, Y, Z] p dx dy

5z. Let us take moments about i —direction through P. Then, we have

Total moment of forces = Moment of inertia about axis x Angular
acceleration

i.e. (oy—0y) 8x 8y 8z + terms of 4™ order in 8x, 8y 8z = terms of 5™ order in
oX, dYy, oz.
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Thus, to the third order of smallness in 8x, dy, dz, we obtain

(0yz — Ozy) Ox 8y 62 =0

Hence, as the considered fluid element becomes vanishingly small, we obtain
Oyz = Ogy.

Similarly, we get
Gzx = Oyxz, Oxy = Oyx

Thus, the stress matrix is diagonally symmetric and contains only six
unknowns. In other words, we have proved that

oij = oji, (1, ] =X, Y, 2)
I.e. ojj Is symmetric.
In fact, oj; is a symmetric second order Cartesian tensor.

3. Transnational Motion of Fluid Element. Considering the surface forces
and body forces, we note (from the previous article) that the total force

component in the i —direction, acting on the fluid element at point P(x, y, z), is

19
00 L Oy o Sx 8y 8z + X pdx dy 8z (1)
x oy | oz

where (X, Y, Z) is the body force per unit mass and p being the density of the
viscous fluid. As the mass p 6x 8y dz is considered constant, if g = (u, v, w)
be the velocity of point P at time t, then the equation of motion in the
i —direction is

0o
(acxx L _,_aGZXJSX dy 0z + p X dX 8y 6z = (pdX dy 82)(3_[:

ox oy oz
0
or D, LOyx, 0oz +pX = p% (2)
ox oy oz dt

If u=u(x,y, z, t), then

du ou ou _du au d o _
—=—+4+U—+V—+W— where —=—+17-V
dt ot oXx oy 0z dt ot

Thus, (2) becomes
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ou,  ou ou  ou_ o 1fdoy +56yx+6cszx @)
ox oy | oz

Similarly the equations of motion in ]andR directions are

+

oV ov oV oV +1 06 8cyy+8cszy @
OX oy 0z

0
@+u%+v%+w@—2+l aGXZ + Oyz aGZZ (5)
ot OX oy 0z OX oy 0z

Equations (3), (4), (5) provide the equations of motion of the fluid element at
P(x, Y, 2).

In tensor form, if the co-ordinates are x;, the velocity components u;, the body
force components X;, where i = 1, 2, 3, the equations of motion can be
expressed as

ou; 1 L
—liu.u.=X,+= G--ﬁ-(l,J:l,2,3).
o M T AT O

4. Nature of Strains (Rates of Strain)

The change in the relative position of the parts of the body under some force, is
termed as deformation. By Hooke’s law, the stress is proportional to strain in
case of elastic bodies, while in case of non-elastic bodies the stress is
proportional to the rate of strain.

Strain is of two kinds, the normal and the shearing. The ratio of change in
length to the original length of a line element is called normal (or direct)
strain. The shearing strain measures the change in angle between two line
elements from the natural state to some standard state. We shall consider two
dimensional case and then extend it to three dimensions. Let us consider a
rectangular element ABCD of an elastic solid with co-ordinates of A as (X, y)
and length of sides as Ax and Ay in the natural state.

Let the point A. be defined to a point A’(x +&, y +n) then

B(x +AX, y) goes to B'(X +& +Ax + Zé

AX, y +n+ gn AX)

(x,y+Ay) (X+AX,y+Ay)
D C
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Ay

AX
A(X,y) B(x+Ax,y)

(Before deformation) (After deformation)

The point D(X, y +Ay) goes to the point

g on
D'(x+§+—=Ay, y+n+ Ay + —Ay).
oy 9%
Therefore, projected lengths of A’'B’ along x and y axes are AXx + %Ax and
M Ax
OX
Thus,
& ) ()
(A'B)’ = (Ax +—ij +(—ij (1)
OX OX
The normal strain along x-axis is defined by
e = A'B-AB
XX AB
= AB =(1+ex) AB=(1+ ex) AX |AB=Ax (2

From (1) & (2), we have

2 2
(1+ex)’ (A%)* = (AX)? K&gj +(5nj }

OX X
P 2 2
= (L)’ = [“&&j +%j
From here, to the first order terms only, we get
EXX = % .
OX

Similarly, the normal strain along the y-axis is
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The shearing strain yyy, at the point A is the change in the angle between the
sides AB and AD. The right angle | DAB between AB and AD is diminished

by Yxy = 0, + 0, = tanB, + tanO,, 61 & O, being small.

@AX %Ay
ie. Yxy = axag + ay
S el

-1 -1
= @[14_%) +%(1+@j
ax\ax) oyl ey

_1{on & :
( ) Z(ax ayj upto first order.

We observe that the strains have the nature of change in displacement in a
given unit length in a given direction. Hence strain is a tensor of order two.

In the case of fluids, there is no resistance to deformation but only to the time
rate of deformation. Hence in fluid dynamics the rate of change of strain with
time i.e. rate of strain is to be used in place of strain in elasticity. Thus, for
viscous fluids, replacing strains by rates of strain, the corresponding results are
obtained to be

Exx = g(%jzi(%jzi(u) =a_u
ot \ ox ox \ ot OX ox
ov

Sl T

= 3al 5 )
YT 2atlex Tay) 2lex oy

In case of three dimensions, these become
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ou ov ow

EXX aX1€yyZElEZZ:E

L1y o
=5 W) =5 oy

v (A)
et ):1[%@)
et o 2loy oz
o -1y )zz(ma_uj
2ol 2 lox oz

where u, v, w are the velocity components of the viscous fluid along X, y, z
axis respectively.

The six quantities exx, €yy, €22, Yxys Yyzr Yax IN (A) are called components of the
rates of strain or gradients of velocity

5. Transformation of Rates of Strain. v P(x.,y)
We shall obtain the rates of strain interm  Y'N  }----- e (X)

of the new co-ordinates x’, y’, changing
from x, y to X, y’. Let us obtain the new

-

axes by rotating the original axes through
angle®andlet |=cosb, m =sin6 o | X
Then X'=Ix+my,y =—-mx+ly
= X=IX—my,y=mx"+Ily
0 0
Further, —(X)=—(x+m
5 ) =5 ( y)
= u' =lu+mv
and vV '=—-mu+lv
Also, (0P =x? +y? = x'? +y? | - they are still perpendicular
Now, €'xx = a_u:(a_ujg+ oy
ox' \ox/Jox' \oy)ox
, _(,0u ov ou ov
or €w=|l—+m— |l +||—+m—|m
OX OX oy oy

_pou 2 OV ov au
= —=+m°—+Im —+—=
X oy oX oy



FLUID DYNAMICS 10

=12 gy + M? Eyy + IM.yxy

ou' oV
Yy = 54_& =2Im (eyy — exx) + (1>-m?) Yxy-

which are the rates of strain of the new system in terms of rates of strain in the
original system. If we put back | = cos, m = sin0, then

, S + e S — €
€p=——— X Y 0520+ 2 5in 20
2 2 2
. S + e S — €
e = TSy Sx TS 6609 - 1Y gin20 (B)
W 2 2 2

1 Sxx T Syy Txy
=— =——— 2735in20+—2c0s20
€y 2(vxy) 5 5

These equations give the transformation formulae for the rates of strain.

We observe that the rate of strain is also a tensor of order two, there must exist
at least two invariants of the rate of strain to the choice of co-ordinate systems.
These can be obtained as follows.

€'+ €'y = (P +m?) (exx + €yy)

cemteny= Y divg G- v) (1)

x oy

(V' )?
Y2 = (1P e +M? ey + IMyy) (M ey + 1P €y — IM 1)

E,XX E'yy_

- % [2Im (Eyy —€xx) (|2 - mz) yxy]Z

2
Y
= (1" + 2 P m? + m?) ex eyy—Txy (I* + 217 m? + m?)

Y
= Exx Eyy _y (2)
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Equation (1) shows that the divergence of the velocity vector at a given point is
independent of the orientation of the co-ordinate axes. Equation (2 is related to
the dissipation function. i.e. loss of energy due to viscosity.

Let us now consider the general case of the rates of strain in three dimensions.
The direction cosines between x, y, zand X', y', z" are related as follows.

X y Z
rd Iy mz Ny
y' I m- Ny
yal I3 ms N3

The relations between co-ordinates in the two systems are
X' =1 x + myy n;z
Yy =X + myy + nyz
Z' = Is3x + mgy + n3z
and
X=hx'+lLy +137
y =mix"+ myy + msz’
Z=nx"+nyy +nzz’
From here, we get
u = Ilu+ myv+mw
V' = lhu + myv + naw
W' = l3u + mav+ naw

We shall use these relations to find out the rates of strain w. r. t. the new co-
ordinates x', y', Z'.
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Let us work out
, _ou" ou'ox ou'oy ou oz
€= —=——F+——"—+——
ox' oOx ox' oy ox' 0z ox'

_(, au N ow
OX OX OX

au ov ow

+ Ia—u+m @+n@n
oz toz tez)t

=12 ejx + M1 €y + N1 €5 + IiM 8V+6U
1 XX 1 yy 1 7z iy — T
ox oy

o oW oW du
+ming | —+— [+nl)| —+—
oz oy oX oz

—1.2 2 2
=" exx+my EytN1" €+ Iy Miyxy + M1 N1 7yyz, + N1y Yzx

Similarly, we have

ov'
= yW=— = I2 Exx T m2 Eyy t r]2 €zt lhomy Yxy T M2N2 vy + naly Yzx

oy’

ow'
"2 = |3 Exx t m3 SRS I’]3 €z + lsms Yxy + M3z vy, + nsls Yzx

€=~

oz'
, ov' ou' oV ox oV 6'y ov' 82 ou'ox ou'oy ou' oz
Y=ot P w2 AT o A
ox' oy T ox ox' oy ox' 525X ox oy’ oyoy ozoy
=21l exx + 2m1 my Eyy T 2NNy €4,

+ (limz + myly) yxy + (M1n2 + N1My) vy, + (N1l2 + 11N2) 2«

ow' ov'
! —+—=2 |3 €y + 2Mmom;3 Eyy t 2NNz €4

Vyz = oy oz

+ (Iamz + mal3) yyy + (M2N3 + NaMg) vy, + (N2l + 12n3) y2x
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, _ou ow'_

+ (Iamy + msly) yxy + (Mang + N3mMy) yyz + (N3ly + 13n1) 72«
From here, we find
€'xx t E'yy te'y = (Il2 + I22 + ISZ) Exx t (m12 + m22 + m32) Cyy
+ (N + np® +n3%) €2+ (Iimy + lmy + 13m3) 7y
+ (Mgng + MaNz + M3ng) vyz + (N1ly + Nalz + N3l3) y2x
—Extewt ey
where we have used the orthogonality relations
|12 + |22 + |32 =1letc
and lim; + Iom; + I3mg = 0 etc.
Thus we conclude that
€'xx t E'yy te'z=ext Eyt €z
ou ov ow . _
= —+ + =
is invariant.

Similarly,

1
€'xx E'yy + E'yy €'zt €'y €' _Z I:('}”xy)2 + ('Y’yz)2 + ('Y'zx)z]

1
S Exx Eyy Tt €y €72 F €77 Exx _Z [('ny)2 + ('sz)2 + ('sz)z]

is also invariant.

NOTE. The stress tensor oj; and the rates of strain e;; follow the same rules
of transformation. Thus, the three equations in (B) can also be written for
stress components so that we get the relations between the original and the new
stress components as
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. c,, +0 O,, —O

O = XXZ W XXZ Y c0s20 + 6, Sin 20

, o,, +O O,, —O

Gy = ”‘2 v _ XXZ P cos20-c,,sin20¢ (C)
. O, —O

Gy :—¥sin 20 +0,, 0520

6. Relations Between the Stress and Gradients of Velocity

For viscous fluid, the following assumptions are to be made to find the
relations between the stress and the rate of strain.

Q) The stress components may be expressed as linear functions of rates of
strain components.

(i)  The relations between stress and rates of strain are invariant w.r.t
rotation and reflection of co-ordinate axes (Ssymmetry).

(iii)  The stress components reduce to the hydrostatic pressure when all the
gradients of velocity are zero.

. - _ou _
l.e. Oxx — _p - ny— Oyzz, Exx — &:0— Eyy— €z7.

First we consider two dimensional case and then we extend it to three
dimensions.

Under the assumption (i), we can write
Oxx = A1 €xx+B1 ey + Cryyy+ D1
Oy = As exx+ By eyy + Coyyy + D (1)
Oxy = Az €xx + B3 €yy + C3 75y + D3
where A’s, B's, C’s and D’s are constants to be determined.
From the assumption (ii), we have
6'xx =A1 €+ B ey +Cryyy+ D1

G’yy = A2 EIXX + BZ e,yy + C2 ’ery + D2 (2)
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G,xy =Az €'xxtBs e'yy +C3 Y’xy + D3

But the relations between the original and the new stress components are (from
equation (C))

. (0) +0 (e} —0

G = XXZ W XXZ Y c0s20 + 0, Sin 20

. (@) +0 (@) —0

Gy = XXZ w_ XXZ P cos20-c,,sin20¢  (3)
, (¢} —0

Gy =—%sin 20 +6,, C0S20

Using the equation (1) in 1% of (3), we get

. 1 1 1
O =5 (Ar+ Az) exx + > (B1+B2) €y + > (C1+C2) 1y
1 1
+ E (D1+D2) +§ (Al—Az) Eyx COS 20
1 1
+ 3 (B1—By) €yy C0Os 20 + > (C1—Cy) yxy COs 20

Also, the relations between the original and the new rates of strain are

. €y tE €y — € T .
e =X W, X yyc0526+7xysm29

X 2 2
, S + e S — €

e =X TSy S TS 6009 I sinog (5)
vy 2 2 2

(S — &
= —%sin 20+ c0s20

Yy
Using equation (5) in 1* of equations (2), we get

. A A A .
Oy — 71(Exx+ Eyy) +71 (exx— Eyy) cos 26 +71 Vxy SIN 20
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— Ci(€xx — €yy) SiN 20 + Cy 1y COS 20 + Dy (6)

Comparing co-efficients in (4) & (6), we get

% (1+cos 26) + % (1-cos 260) + Az sin 20

— Al Bl H

=5 (1 + cos 20) + > (1—cos 26) — C; sin 26 | €xx
B, B, :
> (1+cos 26) + > (1—cos 26) + B3 sin 20

— Al Bl :

Sy (1 — cos 20) + > (1+cos 20) + C1sin20 | ey

% (1+cos 20) + % (1—cos 260) + C3sin 20

7lsin 29—%sin 20 + C c0s 20 | Yy

% (1+co0s 20) + % (1—cos 26) + Ds sin 26 = D,

From these equations, we get
A, =B, = B(say), B,=A; = A(say)

C,=A3=-C;=-B3= —C(say)

A,-B, A-B

Ce=
T 2

,D1=D,=D (say), D3 =0

The stress components in terms of the rates of strain are now obtained to be

O =Ae€, +Bey, +Cvy,, +D
oyy =Bey +Aey, —Cy,, +D @)

A-B
_C(Exx - Eyy) + Tny

ny:

To find A, B, C and D, we make use of the assumption that there is symmetry
of the fluid about the co-ordinate axes.
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Let us take the symmetry w.r.t. the y-axis. If (X1, y1) are the new co-ordinates

of the point with co-ordinates (X, y), then
X1==X,Yy1=Y
le. Up=—-U,Vi=V

The rates of strain w.r.t. (X1, y1) co-ordinates are

oup _—0u_ Oudu aduoy

XX

X, OX,  OXOX, Oy OX,

2|2

Similarly,

Sy =Cyyr Ty, = Ty
and

lexl = Oxx 'GY1Y1 = ny’ leyl = _GXY

Using these in (7), we get

GX1X1 = Aexlxl +Bey1Y1 _CYX1Y1 +D

Gylyl = Bexlxl +AEY1V1 +CYX1V1 +D (8)
A-B

leyl = C(exlxl a eYlYl) + 2 yxlyl

The relations (7) are invariant where there is a symmetry w.r.t. any co-ordinate

transformation and so

c$X1X1 = Aexlxl +BEY1Y1 +C’Yxl)ﬁ +D

GYlyl = Bexlxl +AEY1Y1 _CYX1Y1 +D (9)
A-B

GX1y1 = _C(exlxl - E)/1)’1) + 2 yX1Y1

Comparing (8) & (9), we find C = 0. According to the assumption (iii), we

have
GXX:ny:_pa EXX:EWZO

Thus from (7), we find D = —p, since C =0.
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The last equation in (7) becomes

Oxy = A-B Yxy = M Yxy» Where p = A;B is called the co

efficient of viscosity. :
The relations in (7) are now,
Oxx=A €xtB ey —p=(A-B) exx+ B (exx+ €yy) — P
=2uex+BV-q-p
a=(u,v)

Oxy = K Yxy = 21 Exy

These are the required relations between the stress components and the rates of
strain in two dimensions.

For three dimensional case, we can write.

Oy = 2UE +BV-q—p=2u2X—u+kV-q—p

ny:2ueyy+BV-q—p:2u%+7Nﬂ—p (10)

_ ow _
G, = 2UE, +BV-q—p:2u§+7N~q—p
)

_ _ [(ov au
Oxy = U 7Yxy = 1 &"'5 )

~—

oW oV
Oyz = W Vyz = H(E +§j (11)

o~ Hiecm ox oz) |

where B = \.
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AlSO, Oy + Oyy + 0z = 2U(Exx + Eyy + €5) + 3L V-G-3p
=2uV-G+3% V-G-3p
=(2u+31) V-q-3p

For incompressible fluid V-q = 0.

= Oxx + Oyy + Gz = —=3p

io (o +cs:;,y+csZZ _

This shows that the mean normal stress is equal to the hydrostatic pressure (i.e.
constant)

NOTE : (i) For compressible fluids, B — = A= 2?”

(i) Equations (10) and (11) may be combined in tensor form. Thus, if Xx;
denote the Cartesian co-ordinates, u; the velocity components (i = 1, 2,
3), then (10) & (11) may be collectively written as

oij = (A0-p) Sij + p(uij + ui), (1, =1,2,3)
where 6 =div J = uj,;,
1

p= -3 i, 0 = 0 for incompressible flow,

A= —% u for compressible flow.

(iv)  For viscous fluids, stress is linearly proportional to rate of strain. This
law is known as Newton’s law of viscosity and such fluids are known
as Newtonian fluids.

7. The Co-efficient of Viscosity and Laminar Flow :

g et A Y |

/I‘IT'I'I'ITT"I' X
Z
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The figure shows two parallel planes y = 0, y = h, a small distance h apart, the
space between them being occupied by a thin film of viscous fluid. The plane
y = 0 is held fixed and the upper plane is given a constant velocity U i.Ifuis
not very large, the layers of liquid in contact with y = 0 are at rest and those in
contact with y = h are moving with velocity Ui i.e. there is no slip between
fluid and either surface. A velocity gradient is set up in the fluid between the
planes. At some point P(X, y, z) in between the planes, the fluid velocity will
be Ui, where 0 < u < U and u is independent of x and z. Thus, when vy is
fixed, u is fixed i.e. fluid moves in layers parallel to two planes. Such flow is
termed as Laminar flow. Due to viscosity of the fluid there is friction between
these layers. Experimental work shows that the shearing stress on the moving
plane is proportional to U/h when h is sufficiently small. Thus, we write this
stress in the form

_ .U du
Oyx = H!mm)ﬁ:“d_y

where p is the co-efficient of viscosity. In aerodynamics, a more important
quality is the Kinematic co-efficient of viscosity v defined by

v =ulp.

For most fluids p depends on the pressure and temperature. For gases,
according to the Kinetic theory, u is independent of the pressure but decreases
with the temperature.

8. Navier-Stoke’s Equations of Motion (Conservation of Linear
Momentum)

Let us consider a mass of volume t enclosed by the surface S in motion at time
t. Let dt be an element of volume, then the mass of this element is pdr, p
being the density of the viscous fluid.

Let the element moves with the velocity q. The inertial force on the element
IS

pdt (?}I—?j |F=ma

The resultant of inertial forces (or the rate of change of linear momentum) is
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[ =f”pi—?dt 1)

Let X be the body force per unit mass, then the resultant of body force is
Fs =[]]pXdr )
The surface force on an element dA of the surface is given by the vector
f =fxi, +fyi, +fzi,
= (P, dA)i, +(P,.dA)i, +(P,.dA), ?)

~

where ix,ly,izare unit vectors, dAis the vectorial area of the element and

Px, Py, Pz are components of stress vector, given by

= O by + 05y Iy + 0y, 1,
D _ o 2 o X .

Py =0yl +0y, 1y +0,,1, | Ti=1ij % (4)
P, =0, 1, +0, 1y +0,1,

The resultant of the surface forces is given by
R =i [[P . dA+i, [[P,.dA+i, [P, dA (5)
Using Gauss divergence theorem this can be written as
F =1 JIIV-Bdv+i, J[[V-Bde+i, [[[V-Pdr (6) |- dA=ndS

Let us use the law of conservation of momentum. By this law, the time rate of
change of linear momentum is equal to the total force on the fluid mass.
Equating the resultant of body and surface forces with that of inertial forces,
we obtain.

”fp%drzf”p)_(dtﬁxf”V~I3xdr+?y”fV-l3ydr+fZ [[[v-Pdt (7)

Since drt is an arbitrary volume element, so we have

W _ X +v.Pi +V-B,i +v-P

z

i, ®)
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This is the required equation of motion in vector form using the values of
P,.P,,P,, we get

I:>X
OX oy 0z

and let G= (u, v, w), X = (Xx, Xy, X,) then the equations of motion can be put
as

0
p% =pX, + QO | DOy, 00
dt OX oy 0z
0 0 0
pﬂ = pr + ny + ny + GyZ (9)
dt OX oy 0z
0
pd_W = sz + aGZX + Gzy + aGzz
dt OX oy 0z

These are the equations of motion in terms of the stress components. (We have
also drawn these equations previously)

Also, we know that

a
dt

0
—+
ot
and the relations between stress and rates of strain are
ou
o, =2U—+AV-q—
XX u x q-p

ov
Oy =2L—+AV-G—p
oy
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oW 0oV
Cyz = (E‘f‘a—}

ow du
G, =W &4‘5

Using these in (9), we get

du apa(auz_jaauav
i 1L I | R H T e
Pt~ ox x| \“ox 3 y| oy ox
of (v ow

where A = — 2?“compressible fluids.

i

J_ %{“ (az (Xﬂ
wfars)

ow auﬂ a“aw avﬂ
—+—||+=|y —+=
oXx oz oy| \oy oz

(10)

The equation in (10) are called Navier-Stoke’s equations for a viscous

compressible fluid.

NOTE (i) If p = co-efficient of viscosity = constant, then Navier-Stoke’s

equations (10) become

du op 1 0

Xy——+=-p—
Pt ~ P ok T3Max
du op 1 0
_:X__+__
Pt ~ P ok T3Mox
dw op

X -9
Pat ~ P T o B“az

which can be expression in vector form as

dg
dt

(i) Forincompressible fluid,

U v ow
ox oy @
U v ow
ox oy oz
u_ v ow
ox oy @

p = constant,

+uV2u

+uV2u

+HV2W

p——p[—+(q V)q} pY—Vp+uV2q+§V(V-q)

31
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ou ov ow
+—+—=

= constant, V- g=—+—+—=0.
H x Ty &

Thus the equations become

d0_%, (g vyg=X-Lvp+Lveyg
PP

dt ot
ie. d_qzi_ﬂwvzq
dt p

where v = u/p is called the Kinematic co-efficient of viscosity.

For steady motion with no body forces, we have
@ V)g=—L+ vz —=0,X=0
PP

(iii)  Ifthere is no shear atall i.e u =0, then

dd _ a9 |, ~ oyvq_w_ VP
a_=1 WVg=X--—L
ot at+(<:| )d 5

These are Euler’s equations for an incompressible non-viscous fluid.





