/
“,U"II Trece 3 / |
1t tl Dot neyg r—,.,,;"_"”“’
it 1l The et s et adOrk - Sa -—'-'-ln;,...?
J e AerbtB - rler

he Mot h.-’.._y_‘ ;
“ e . LK
e vptetdlpn — - Ned N i capucdeite o p it "

Y . g eda o u;,;.,...m.,
/ Vo it :I_C.{'r.--&hri?__ (:#'“rnn /

e
,4:412-41:!? vermslon -

ool
f- de st mA
o ut..fr L p= Arek

¢s & na ~lgporces . = Sg.gtr‘n?

ﬂbéft-
LTI
#_‘,M'f' -/
o - o ? P Lo ls
' Net & a {}u& -
b:..é‘.forﬂi-
Aevete P e’ '

Scanned by CamScanner

CRnsS . <
Ctnehd Platgor*
e fode "J""t

e tam
S Lo Pasitible O PEsEt™] r* Cos)

Praere 2AA fve o 4 —

The *MNee [FPhmmesdork
~ Fir basted Apri

o Applticace

c_#_,f’.ﬂ'ﬂ. .r‘" t-}ln,‘h

¢ Ned base

r Les Letrvilees

e Basic _.f‘_mc. e,; os 7

< | tomtete -
TDH Vension-

] i

‘ Scanned by CamScanner

D)

Bastic ,-_-ru..nr_.,e-r'n-q ef S
* El‘-!r.!tr'-"-?

o+ Hﬂﬁwﬂ: T a,a-c.n.?,l-r*“"-t

* ﬁ—ﬂn_.uh'ﬂua P Execation

£ Date Secuxitey

+* Preocess Hﬂ"ﬁ"t""’w

£ PDevite Lﬂ""fﬂﬂu;ﬂ?

T Palating contnol

F Cpndole Apat hove uWEeSc Consin M

R

* mmbfﬂsﬂnn .F:E rrzenitor an~l

H_p,‘ghpﬂ.lh_d- _ .
x Mo~itor providaes O(F £ Kigbe

L]

used .'f” t0p.

'2?'. wntx, Dpg.

Scanned by CamScanner

.ff
P | Java reasion History:

w TDK Atprem And Beda (19%5)

Finse twleaxs bt {vm? heve

ki tgusy g ol
& JIPKk 10 (Jan 23, (19¢)
Maat] 2 Daides \
Pisst Ceable vession 93 IDk as
SPE 102 & caed Javur.
upto Ipr 1-0°R, Privel, Thotice,

.H&?w#rﬂ cegecl {”?"’M 0 lacar anotie,

A S e

Zn T2k 103, ft 4 Removed,

Tt~ i cusdted

Scanned by CamScanner

T TR TS wy AT AR
It teplacest TDr to .naca?ﬂ;m
the bage patforrm Jreor TRce (Java 2
platform, Ertenprise eaition) £ TaAME

(Java 2 plathorm, rlesen exlitton)

1580 stngsen 7 €9 Fﬂ'—th“?&!.
ﬂdﬁﬂﬁiﬂﬁ LOCARL e tatsledd it mqu:
I+ Java Ft.u-?. I
2. Java IDL
8. C.or.{,g_g:-t_l'hﬁ-'lﬂ Wﬂﬂt
4 Su-":‘n_? ?ﬁ.ﬂ-f‘k-t.c..n..l. AP
5' Qunay ITIvpH with JIT comprien
»* TasSeE - 2 { 'Hﬂ—? £, 2000)
Lpdenarmt ° Heptreat:

‘H'!?f;f?ﬂt JvH
Rt Swpport

j'”‘:p, C Tava n..q-_.r-t-l:d.ﬂ]
Lo oot Lgory J‘ﬁ-t-&"-f-n-ﬂt-)

Scanned by CamScanner

Jrra.

23...4-!-441‘: freeny clags .

* Jase -4 (res b, Reon)

oo a s Afasetin .

Tr-freved (eppardes

“77‘""'3 Ar!
LML p}vustfi.

i Stcum‘fci 4 Uﬁ-ﬁazﬂ.a.f-m}
Extengionas. |

* Jase so (Sep 30, c;:’.DlM*)

Y

s Java So& b C_;pg,c, ll.; 2006)

.......

Scanned by CamScanner

JPBe A-0 Lupport 7

Lemiptlng lang: Cowp port

ﬂ‘if-l‘.\. J aam &, Lua g Paa d o rnd e of el |
u-.f'd_'n fed {t-e :ﬁht l.u?; .
n Jova ox 3 L(Tuy 28 2ott)

Cppdo o e 1 TPe L—P“”'

3 Java ,ﬂ.[;‘ g { M asech 12, 2ot4)

ﬁp#ﬂq_..rﬂ-ﬁ- . .';‘F"m .
Lﬂxl.a- leret Swepport %ﬂfwﬂﬁ“— Qxp ..

Crabed Ja.rv‘at-ulﬂ-h-ﬁf'f'_ Codde woitHEN PP

¥ Java Se 1 (Lep 21, aﬁ.ﬂf‘.}.f)

Swppord ?’Ea'“'bﬁ’b‘ heaps

Qaﬂba?v- Lotlector

Sorg funicg Jvr

Scanned by CamScanner

[heviden Java foakdd . 2 ‘

Aitor g die .Ctu-h}"‘j £ f{:l-l"‘-?

€ Jaa S o (pan 20, Rott)

ARemove Pm.\,n.i-ér‘ ve Hata ‘?r!

Reot centificate

Time bated $eloast W"""""a

Longetidats JTpk (forest 1nto

.9;\"‘3»& fepositery

Heap awocation.

¥ Jua Se 0 - "'_F“""“:"'ﬁ'

ﬂ‘ﬂﬂr rie

oAy, N&é F!‘LM”‘

Net &0
(3an 22, 2b0¢)

S
Scanned by CamScanner

1 |

‘AEE Revpratior L'l\

 Nee Froamesdsrre Timeline

« Net 10D Aed -1 Net -0 - Net 3:-D
(.FJI- 18,3032 (AP 3300 Tar 23, 2083 Mov 21 ,900K)
& N'—-t a'r
*Net Ak, Netd - Mat-4-o
Tik 20,2015 pugts, 2ot g 200 (0¥ 17, 3007)
: ﬁu *-"r
Mov-

¥ MioeRepe Enitiabd "Aet

g o 1919
e ve Le-prrent ‘p;f..nu.-l'-l- L

WD v
b’ L]

the fisst Beta f vengion Sulemses -

"#. LA Y : 4 f o) « 0
late R000- on. Feb [3: 2002 ek o
wias Grele aSedd :6-01’ Winalowt ?ﬂ, i “os

WenAoros 2000 2 2 “

Hfmﬂlﬂj }l}?,
t g ad2
g ' Net 11 Swppovad HE

C*‘-f?}r_q.d-“-"f l-e)d .

Scanned by CamScanner

.
. veb A0 Neteasend op J'a-#-?#.azg,,
£

Y
-

',l - K WAL (aanched St L Dpo b .)

x o A0VRI, ReOF, cppe 2.0 Was Caaqq\

;‘U‘J 3 & alto Cased .

¥ On Aev 14, 200_7’ version 2.x W0as

o vemsion £ nEes CLE 3
Lasenchest - 77 "
vessrion aj Net 7o

trne Samt

phict L3

A b/f‘.g fﬂ_’
& Swppopited s

‘N“. 3 "
w“;mvea %L‘
L/
it ed O ”ﬂ-r!l'..-?ﬂ!o
S tA p..-lo&"'-"""' C-L'ﬁ‘?' o
ﬂu—}f.i} Ao,

Scanned by CamScanner

£
* Ned-y-0 - €= t-0.

M€ wf pLL Liask Ll Pran'ies

Lfwfrrone ofnr Djv'zr.t OV e-tid

iipy, olevebe e { oo a3 D)

s Ne& -} _ S 1
Vietems £tetstic -MNet Roo { ==
AP - Net ADbile COntrmoli .

ADo Met o~ o PBRC

:::A.ﬁ; 2 -0
Vi& et Ctruatio Looy Releosed.

-Hﬁt -I‘E'p -

Scanned by CamScanner

- | - s pasntly gaersrilfaby,

ot farn

sre by OAE o P ot be ton Mg .

sy Ahe “

a pewistent etorsye Gesbio I

8080 [pep Faoumewpyk 30,
~CER Venslon 5.,.

— IDE Released . \jpuac Studio. met g,

/
s \ Rich 7 bt #
g,,,urn.ttal f!bwlorﬁ“*‘f Grol @'P .

riwu}ﬁzﬂﬂ”‘"wl '

Dt ceoM —> Medical Imu?u-

TIe

pebSeaver s £> Web St

patabase SexWed -

-7;;;; x;-#,u, Core mpprt.l.nﬁ y

Fﬂm um_f:mdg @J ﬂxﬁ vedtien

- 'n
\Ul‘\i. = iy '

? o

-) ndowst Fiegest ation:
.

" Foundat }on { wp g

y s ed

L A
gyt

“Shis By posmnt araind
en oliows appus & web PP

%far'ﬁ""'

Scanned by CamScanner

T
UL 4 i e ,-fl‘;}q ey x r"‘"l"’ ﬁr.,-fh Ja ,

- p
{ }' aAld - F ?, t
[an?j Ao putd mieh euid 12y S
¢(Errrﬂ
' abe
Qe Ly maring f:lnyn.l / gt
r..;,..f‘ /Fffl"" ’ﬂl/ﬂ!f '

Ie ;nu‘n "l':'l" y

L nieatinn Fffeet { vicg)
£, pindews foem?

' ;,..MJ nf'f'h""
¢ 1Y
T Aeve lef Ces vt £
n ,P(Mu-l fhnt Nhus | W

,’A' A;{fv;"-ttJ

Qv ea s £ atlenl Gl A Iadige.

i L),
3 pindews Ney bflee feundation ff
‘. Ner

. ! PJ;'I""-
— 'lrp rmrumjmt ’-&'DI"K—{‘ OLo

applut:
P APT -2 Appin: Pﬁvghtm 7 ntuy fate

A- wIladows (and gpa ce

et
— 76 Cortrel £ rrare—ge pess

Mrﬂtﬁ-‘#‘ﬂ "

Scanned_by CamScanner

MM Vs < fiud rA 1 1e)
CeasVE

[

i _'?ﬂlnr"r'n?

‘ale WE [2]
caeerfy pInyld .

':f! fpr'lrﬂl:'l'"
Patn _;ghfb'-

Dat a Srs vieR L&

*?‘F&’f va‘ w:iﬁft'abu .

L LR vesgion 2P
Vhgad G epectl

o vet 2oP8 (7>¢e)

Scanned by CamScanner

123

Fem fovres ! I

AT J?j.-u Poradile = o boile
Jocome

ot
.L "M“[‘ ;"" "J . ?}‘I‘-ff?ﬂ,pfat’ GJU' j

creseeci ot o Ao Aed -

hen
f fff[‘f
ey Frl e ﬂ_)"l'}‘jﬂ
,L;Hc'lm-r? e

Eflt E[l fbil_ﬂ. ;(Jh‘d' F/h) *’frtr}

Jeh cusevite frtesa b1 g

cnet AP
C-}-f‘? Wf‘ﬂﬂ 4.-0

Ve Aet 21l lZBe)

QM.‘
_'_Dlanﬂ v “z_,,_? Gierzt e
o cAeA~L
Ex f‘a_,‘_,dﬁd bake o
4 CLerp&X Jpace

Ve -Net KR0(% wrere
Qup port bﬁpr Wit adotds "R
Aevelop
Ln .
B Eﬁuﬂ“ e Q-u.f?PDrt— -Fav Mﬁ?nf &

Scanned by CamScanner

. Neb

uNp

Pl g-b.2
})'l?' A aelt

Jori pratliees
A e emtont

L ele Poasreonst it

r‘urw.fn?uﬂrl.v
-:i":"*'ﬂfﬂrf Y WY
¢ Fiw A
crr W b
hs vV E At

Eﬂ*rpmn,.r

-E F f ? IF_
g pOYE
- L £ [qrees r

: De i 'IU)‘
;r_{?..'ubﬂ eo.d E-ﬂw'{f‘ fﬂ? —(
'-HFJ;-., pf":{ _C}u_.r-r:ﬂfl rt

F (W a7/

Scanned by CamScanner

= DL!"‘] I:
didy)y
EﬁLrF'l v «d P#-‘%ar'mﬂﬂu IJ?TC_;.L‘ 1«#:’
Suprpore %fly nJiHrﬂﬁ"”‘ g ff
Rt‘ - _f.n'.n-_ . !‘f'}t J
r)nipff ‘:ipar- . d:p""ﬁﬂf r's ?
”;]-"H J’?clr!ﬂ-
‘Net Eyarmework 454
_ -
Hmd r R ;;,f B
r of ? 1
Fr-has Lr,.ml"'ﬂf’” ?u,g ?.F’—f"g
Frteridts” gep
spadots P
- AR 19 iR
A , oL Lo P!
rﬂ.fﬂlﬂA“JE
TR EAL
paued ryvI ‘ o renzeasit
Fver prractt™]
'3
C hmple ST
-Net F¥ 4- ¢ /
ANpy 2, &PLF .:,
e . .
et Lma.?xz gu,neﬂ-n-t
[N &)
' ,‘,U
@ Smatt prett Vg "&‘ﬁ”& e Oy

Scanned by CamScanner

y) _,.t.l" T
-f?f'{'r_{.l'r}-rl"f‘F;f gy fan it LE sowid

~ ¥

“NMet A vehrhelnsa

| | - (w
) o] ool freend R
spientfon |udB
Zom a‘:ﬂ"?'f--‘{'}‘ _-:;r‘ﬂ”_ I et
. = i Aot
PSP - not b fey ™Y r:[,:.irwﬂ /
[Neb Sew e " __—

pMuhtle Z(H Toulbsd
et - -
i _-.pf-fl.l

g}lj}p. el n'ﬂ'(l —
Ty T T |

/ o Time _g?,{;tﬂ_rﬂ?'

LTS LA . codt
Oz X fneomAd™Y

I’B glﬂﬂ Ep - Hﬂf

Scanned by CamScanner

o= { crr)

L)
Eq,.nl"""
Carm et 0t fanat g

3 TE a4
gt : g . D, Mp\'ﬂ
MM
giermpt
@ ~IC
car Fentre .
EBH.,!-FEJ? ’_pr?
MMFH -
Q"-""b‘f ”;l‘,l—h-- Vaﬁ"—"'ﬁ‘b& P ﬁ
T ,_,,;-Jﬁ“* an applCSTER
Carv "
—_—s— Nek WM‘BMW‘?‘”““&
N\ y Pf; or
i Vasaetl Lo VBN
Thr M
Lo~y wﬁ_w,mﬂ
M‘NM g,pn-_fim ‘gz_,.,.i. +

Scanned by CamScanner

y water f T Tar
f l 1 - ! f rﬂ‘# j
vy W #,l' _.-ﬂw'?;;'fpr j J:.
r’ / [Eﬂrnn"‘,:r
|
QO rmop -
If K '
rN— j ﬂ"ﬂuuf‘fn .
Commo,,
[e s
| ci oy ‘o
q’?m_?a Ce ”_3 | |
{ T e) | |
T/
&m_m _-_--_‘_h__—_h !
pt.l.q”m |
-‘-_h-"'-—-.._______] |
l Rt o Y S |
Quon, mgﬁﬂhf ; ’ i
|
|
i I
o ‘
Machpno R AL ;
e e & ©
__ ' - - — — il _ |
- ned petior

Ora ol ey Ymg . Lo pd8 o aveitu

“‘Plﬂ'f-fﬂ}-m, (alie d 'R ,h_,g;rf"“i !au-J

&
.+ - A

244 it coachins | eadebl cods Har
!__I'-. "

—— Jad 4 P) - ‘_ H{G'__,E_Futm
. - TN ted Ya CetlSoel) ~
& nab &4 2Lk

= : '1!"'
i
| o ‘
- I

Scanned by CamScanner

Scanneaby CamScanner

-—

VES Iheviclea Swppore For o Set o, ‘
Prreast Ve

et At _‘.E'. e 1 PPy W
LOrnStTECE S a,, 4 cxceppion Mh‘.—.’

Corrmom 'TE-PII' -flat-!:'m.d ¢ € C‘T"')
P P x (r,‘,_{lm {-r'-'_} .

re s omtasd 4O
4 J:Fac.i‘ﬁza. e
a2 -fﬂﬂ-ﬂlu .
y & T

Scanned by CamScanner

Serup et that

m{*\flr‘h"l f'h]'pff f)-,'“?nbc‘

f ety

l.drr 'r-f::n.: i f)ﬂn'

o il p o ttmePlele
'I?i' anrs" t’ﬂ-l) ,}ﬂ !L:? 'lu-i?'a
[} (W4 S
| et
D'fl'q,d'.l Dreakft g ’1’}\&' l‘a"”ﬂ"‘*?r |
| L i

) ett
() hith enfida Anat o b}

| With each Dthe

:Fl'"l* W

H_L;_g .,-“-fl.!,v.r.ndl d‘”"ﬂ"“‘?‘

afl "" » t ’
ovidu o lpmen] T
R | T Qited al)o0leap,
e P N s A L) X
e ey wed
R 'Intgfo Ul"l
:LJnt ehan .)
' R ({nyg,l,ﬂf‘m.e.ui '
LFTII‘L“"!'O"
“eTs
lang us~ ™
por gy & T slase. TS
Cmooth &7
| v _vBNex
e ad z?mg-
: Sgéumznt.a.a

Scanned by CamScanner

L (commor Au-j .Sreu‘?ﬂ-‘:,ur-n) _1

X
||

'—IJU“

- W‘nh
M{ ﬂ‘ﬁ-"f‘p"“ ¢t b w il oL fr
'U F=]
Zs eanopaset VY 5
“
Mﬁ,;g-yt-%

pa-troees “‘""“"ﬂ
| g K a set 7

a-rr.r..-vl' CA - o &‘q
CEasic WRY i = . | |
e HTE®
ws < co~f"!
Ceaves =t Lbra™ oo cTe
CubSets e
Weitess: CAS 2 et
2 mtﬁcﬁwﬂ ’
S a Qe &
CisS K Py TR
I axtesrnat caits o =

Scanned by CamScanner

.

Jewert okj] [Senrmf Remoting
s L=
[proxy |
Eﬂwﬂh‘ﬂ. < | fysiem
‘g?”fm__/- .

Net Fromed0rE Ctafsg lebrary

/ .
Poroviols ALLetS to -g?‘"h‘" EFREES
n B Ce % eive L abd,ur ovie~ded
pf..-l'-c..-i- fptdeverep U7 O NE—*' "—f’rﬁcﬂ—ﬁ‘w.
. olp , Soepet Fﬁﬂ-}ﬂ.nmm‘ ;
o *Fjlu_ ﬂf F ""
Aptabate alLess, ¢Gremobing DRe gesd

_ﬂvvm 9} FC!- :

l** S

Scanned by CamScanner

-y

Hees £ - :
Phn;,q_“_,,,_ _z“-._t.r_nﬁ-_-_._ ,
5 Tt lFrcicmics sOinatows Yoo

i

Erae Fhovrote Pn..._;._pﬁ_“_,__ Legan 1 TEEL R

*w Belb.

p2]1120% ﬁ_ﬁ'.‘iu—-—-&h}:
| /\
LA exe > execatable File
e ..:b‘#unmf. I ' 2y i
S VIg w Complle @n appin.

e Qu'com,riu cdnﬂtbf&u

. .)
== !.r“'-.-;_,._:

-rﬁf"‘/“—rﬁ i3 .5

s _',{_-_
.

for, an bt

b (E A Cetf SeriptiOn |
- F-u-g'.g'_gm ':? ""ﬁ Fﬁ £

T faadamenta) it of depteyment

Irtplerent => &'ﬂPi*“*W

_?uf'ﬁ”"' mdtd-'{‘-"f-"'" .D «%Pmywl

Scanned by CamScanner

|- VeAs Fpn "-'-‘""‘""‘T""'

T Vesur o

Scanned by CamScanner

Ff mw&u"’ ,'Ct;ﬁmib;ﬂ?'
w;::mbua are 54
plepandentf” L

it

AecOYde o
Vession

titde ALS a.rebly

Scanned by CamScanner

e

|

flste m .h!'“ tle v dals

1 H'C"P‘."."" IIJ 71 & b

- oy e *iﬂﬂ
paaior 27
0. Ve |

Scanned by CamScanner

code ! it

)|
-|rf" H;"J‘f‘_r.'-“' - nflpvafy}q&
L2 o Ffeecde ?f.ﬂr'u aliA bH , i
! _) iy
p} ik fg,nﬁ-..ﬁ;f, ﬁﬂfﬂf’m /)
9 it‘l.-—bm
N ML L:;;,.a'rf'fﬂ' pr FOT
. SV o
/ F_-‘rt‘ai-ft'!}-tl (-Pf) et ’:bd 3 e
l ygr ot
A Latet
|
AL be
; = , L cede co” -
« Ful " uting
;ﬂt}m
Loempiled TO
ArGEN - €xe
‘ i
|t prat
wpﬁﬂ't-ﬂ-! - " a
K AP W
. 13 d-rﬁﬂﬂ ! . Er't a
rast 4 apPi " vides?®

eortnonmunt (LDE) o

. 'n.-tc.jﬁ,_g.h,d Qe verop {
I b . i HI'-;'rJll_F_. .rl ?“ .1 s
7 "r-*'-fl ! ; Y
VE- oLl _ L7 4 Y o

(ve)
ﬁa V‘w'."-""’t _Q-tu;i.l..ﬂ =20 /ﬁ

i . press(VBE)
*VE&M’L Bagic r.;?faw E-xF

£ wgu.a-—h we.b ﬁgwawfﬁr-

[

mimss;r

Scanned by CamScanner

P_::_—h : -.:'“7 S

o i

j‘-lJf‘“‘"n‘} Vi - ot Pj,-?p.gj el O A,',-f-u_-# £
, Al e
2 |Macos v B ek o
i L YL
= . % i p e Y
= . - Aot
A on
Heno & tne DBET"“M“ VERR 4
Flea o oea
it O Sevenol DE.
» "™
-Ip","I fnj‘ ‘ulb'-..lr "-; _.,-;.rr-} —
A vE Ret2 [V ppeiet TR
[juFr

e
A LM OSSE plasfor== i

bt Loo-ls
-» RT"‘"}; Joa tteN Lo velep e
5 pomo e -
; - Qolasl
nﬁﬂ-{:-ﬂ‘ , iP$ Lérnuxn g0 1 e cto
H ' .
wl:x' / W Q tprasa bt
| | ¢ ks [P
EM‘.L‘} bu..-:-f-d‘t"’"? bw
o
et e ©f
P ef vE N g;pns .. |
K vp-Nee PPl " o
p 10 etinn
‘ y womet P M -
L aL.l.g,,-L-n"
(TF R L R L A e O |
S N ,
| me L
P B v e F .- 3
g Ot oY ; | i LM
d ;,-I {
L # Vsj,ﬂl?ﬁ'h g ! ,r—-ﬂ"':‘ (;‘_h“-r-ln-l'f . Sub
3T -.-L-._ ' |
= 2 Grua,ﬁbr
T= | g;,,;ﬂ,,_u-b' A pxpyushiors
: F 4- G,e/f
¢ Set
; éb | L R oA
5 S’ valteet
- : | . Re i Ve
F'H'- d ‘4 ?1,1‘.{“.‘—. " va el 9 . "
e
-
i ya N Le mL vate
L> A1) R

Scanned by CamScanner

.cl ‘f-‘m ri-- Lo T i

"'?-'rr‘ “ [4 i

L0 dnla) ; Y
prodrtt o e

] |] P' - . i o
o Nlenereoved P.ﬂo?.k‘*"“ ot et ase 0V
oA
"rf;uh oA 1.-)
(" yeweroortd
levicotl a.[uuﬂ-i ol

RIETI=, el A
i ['_ IT’ i .|'H

jo » ol
-“‘ l-"' rllf;‘."v

)

) .
fﬂ'rl_{ﬂlft Rtﬂ-dktf !

End Sih v Hewrworld.
o lF
Fid MO A sdl
‘ et

N Stase visd ol Cinalt®©

o P meat =D chosk b _ﬁiu - Newd —

Pﬁ#Je et

P # Then [Press
.jl 2 N Pudm Appean e Sotution &f"“"u
I-; » {
R)opilE | Cood 1 oot Ceiter Press
¥ i 2 . i
:“f FZ’-;— $l.b{'f0ﬂc S‘q'u"
SRATE _i*'k',/
1 L5 rﬂ/ \
N » LL;‘J Lh
| it R 0 *
I ."\nv.1l J
_ '1'1 t'l:
1.5‘:‘1 I_J,, v X
Y

Scanned by CamScanner

I?bd#fg_{-ﬂ .
33 FL‘JELI“ have Clen Bea ._g_ L‘_Hvlﬂm
Ex' peg s gltamr - Ceolovh, rrar—it_;

]

e o et e --

Bedsariost = pAnLad rtg eot?—y

ok e -

f ..--.-J i [

| .p';’]tf.-—l 7

LM;I‘I.‘F' t”"Lﬂ-"-"
I

1H I.ﬂg.‘ : . "ﬂ_ﬂiFM '
|

La?«‘c-; i
Oule
Ant aceiort & ohj st e QIR T
vaniabl gaLr ' e
7 ag b o asian
Gy EPEEE w
pot gt L ny e alered
. &_;. _giate’ Y3 b“*“"‘# 1 e
o 4roSe fnglanea VEAF
ag&f?mﬂ_d -
i \;-11' { i
Mﬂ'ﬂ .
"] i

Scanned by CamScanner

rF -bt----wu--- ey et L &%u

Dt q apb New Reetangte O

SLs qreeptoletads () |

g7+ JEJPLQ,;!)

C- Reaotline 9/{’:_#—-?!-#*4“5
L"k“f{ 'Su a - bveadths 25

L4 % ! " ‘ : rr |
wdl 2 v fPrea = [T 15

1) ‘ '
J (_/TJ (ar :L(f--u'¢'t
bt
E,-*._v"'"l'\' o

g
Scanned by CamScanner

2 Reat Aiome entities taat have

W)
v

\qﬂag

718 -

ot /

ﬂb‘ffh :
;c{ﬂut“ Lf}

Qtats £ pehaviow

A i (astants e C Al

clats
""f Y r IIJ
crark U

hy [
a ’i{,gcpf{:’ flon ok e e J“"a

a Pwﬂ"'z o

.ﬁﬁ’ﬁr’*;uﬂ' _#aﬂ":'?" f {ove -

Net ar v pjet- oepPs P b iple
Tarthitan
pryw*t-r’pk;;”‘

:df.fiﬂﬂ '

‘ . bt

Nﬂ-mf E.Patet_ ,_ . - GLMJ&J .
Pw’iwpt‘-;f"" &)
4

: 3 qela L L
- Tapidan |
: cLA -
¢ Tﬂ'»-{c*mmﬁ"” Serv
Tpttret =

Scanned by CamScanner

Scanned by CamScanner

B "

Y. 37
A Aestolption ef a Lot of bei.u-f

PPt Qleit®@% mptsdibills , Bposotiont,
ertodinods, owlationshipl a ., _q?.
Cormramticy .
,Jﬂ,muprzu !

Naregpace & l-ﬂ?;:_n.l‘ Aivision of
etass, CQtruceitsre ard Lntofate

: ¢ Q nanu

Narmetpares ane wsif of A ARy (s

pouision s the bt
Nﬂ'””f’w Wit

g S}

gk e POYES g ?sf.a

m patd |

Scanned by CamScanner

[258 \,
| gy s .

'
St gapamet

s Eeyjrar? o
a

T

pleasl TRStEanmplt

Q
T

()
Fu }*HC Velal m;;ﬂ.—}'

Scanned by CamScanner

VR Ner. 3‘1

Vg. Net

La " : TN T vag
i) 1Tiheat L!.LLPPM,E . -
L] . *l!t lﬂ
crass khTML‘J ' Calle A VR - Mot .

vB 1 reo ¢t _Eu_r-pnwt bl..’ bt

VEres g"‘—r’f‘b'r{ - et :ﬁ-““l.r-tﬁl-é_u:ﬂ*rl

Resaleasesd 0032

‘F-‘Ef“"w o1 VBNt
Tr =n ‘bbjir..-t priented 'P;mrr-amn

D a
Read thms ?ﬁo?ﬁ-nm =) DOP%
Mu_gc.:klnn
ack Ppointh

Scanned by CamScanner

EEEE—— 4_.0

Faﬂ,pum-l |

% Nol caxe Gorns1tTVE

" OLJ ect prienzd

¢ CD‘J"' :{\P.r
yoved ”"’P""t broy,

wﬂ.'m?
Muetoma i

fft.ﬁ‘(] ns, 1T &

3 L B
% Phtpmatid GO
T L)

2 A Uandard lib 282G g poimd oot

forw

¥ Simpue generdh o st U0 (o

collection -

quppoTt

y C . |
\n—;ﬁ.oviﬂfﬂ’;nlﬁ 4 Vehsieni™y
E

V1@ wald

Ao Ctiattiv

Pﬁl;'d .m__ﬂ-{"PLLi tm,

Scanned by CamScanner

VB-Net (foatescn - Ney ;f;,::,:._mduwt
Which enecans it has Lot astess to

i
s Net (;Emrtf,g_s. Tt Mrg g Jrapl
ard

Offe e
esecontion ef (Wb whrdows, P4

A . 2h .
.-;.F.rﬁ,,a.ﬂnu-ﬁ. 11 1t APl

p e et l.r:l_.n-—?,}

v o, VI

~o bilte
yof b
pritd Paderept =d

vigswal E'drEs

Jl ket ‘
vB-Net % grtiitt parest g
; iah vesgion B YR - Net T0
Yoase Nart Vesmsl on .

. Nel Vestion 1-0
. T 0 N
Q0 A VB- Net

. Net Vvesuion I'p.
-
yB-Net T

2002

ve-Net £:°
X1

updatt: Pastiat chnst
p ves ook " ett:

?a.n_uﬁu, ¢ peSainy

. .
5. D Net 2
2
RP0 =, J.L i O¥P, bﬂ'f’e
k"‘-"‘rrll ' .
aquanee #65T =
10 VR . N ot ¢
VR Net V¢

I ?1_#.“_{-\; g g s)

Scanned by CamScanner

Scanned by CamScanner

Fdentifiess +

473

M . .
Arnse uged to t-kuﬂ'-f‘—cl a ctass,

Veash ienbsly | e
c b
i 1 Ot by are LEL BBy

dﬂf—irud dtem .
.'nr!_n_;—um} b—an.: oig, &

‘u:,ttu.. Ao cef ;gammu.-l' l-Li dJ'-}.H lo- q)

1 y] -..m wr QWM .-‘ fa MoW

| iﬁ-"*“;-(f e tanrol be ‘n.l .ﬁUTI‘['

- -

| No erbeste d wau Lk 2 - 4 1

v ﬂ-l‘MJ s
--Hé!-#"/. A A -.'-t')fjiﬁ o ‘f

- eoel K "

v/

Wﬂf‘ﬂl J -

1 rp. wet Reduords:
Jdharnaller etton

|- Aaddrx PTG ppainunesf

s

B RY

LY

A DbJ ect

et

74 Ohowtd not be A gepavedt

Scanned by CamScanner

T f?ru

Pa "““Jf‘r
l"'Jtt
Chal

el

Doeima

“jv_ot

Lo VE- anl

44 ‘

g(ﬂl n ?r /] Hotad 00 Viadeee ﬂl“?l

X.bl} ti

.-f’ ‘-(fj‘ t!

ki hbm

/b b:f-ﬁ

fsl?ti

" A byl

8 byt

4-bljl.? 0n

st

-0 L (ﬂv"‘:(?ﬂr,i}

p-bN SRS /uq;?h

v 0o, unfmd,‘;u
uﬁﬂ lobooy %

©
L] q]
M,
“F-?‘??#?ZJ?JQ‘QJ

£
Bnqy ",

..;‘, obs o 1,5:4“‘
—-E s
‘ 2 Fadlutd p

A 1aoks 64580 #hic,,

[-T7b22 34 %2 Ea,

ﬂeoY-H"{ Vel

1/~ T9E 4
B thisrf | !
XE ;3 e mal 'P[‘{Iq

4o 5!-17&.! of Ths
Aetimay]

~ KT S HHE |~
nThe 3487 (S

—999B203% &5 47788
— ‘?agszma'mmm
[Signesy
proy tihre con ba
Qoyed 10 A yasiobl

of Mpe Thjot

Scanned by bamScanner

HHT'EL

oy 1

FS

*Sh‘ﬂ‘fl" = Il3q v 187
-El,a,h_
el
ﬁ -'lﬂ.'[!,, in 3::;:’ fﬂ:jﬂ.li')
SI ’11 k"r'qi.l" Or
Plotd orw. O ‘tv & hillan wiid tosa
ol - L T ‘
DIntegr g bytu O - H2949¢71 g4¢
. f Hdﬂ.{l"n._
=)
pilendafine= Stnyetune
-hlpu'.f .
e oo r ol .
=) Ple I':-IE! al- “d.n,_iz:_ =Y W} n?.\..rﬂ.-l e,

te . to. e Lo
=) Hon't Wamt Stose d}

oa S© e ke Jﬁé‘-‘-‘-ﬂd"" “-"df’_u'

=) - :“J W“‘”ﬂ

e, W

olate

Scanned by CamScanner

— - —

AT L = ol s e pand S
; 1# J ﬂ“—‘ﬂ.f}f&-“

/ ' 1
| hpar e te 'f\-*‘-'rm l..L
/ ,_Ql.lt - P ']
f .":-"‘,'ﬁ-. J' ~al ﬁ? r' "
i
I e

i S Ag

Qingte
Dien A 4 alowbs e
P ln ps dabr
e S M clon
(Sh?-- = -k s:{w‘*n.ﬂ
B Wi a3 Reolean.
b -

N -|l=22L586 7.

S - prlayceTLTIOIRNTEL.
A = D lazyseTEY O12iTde

,:;Ll:"*w?qﬂdﬂ‘-j
A """ €

Scanned by CamScanner

| e N
T

' {‘\-.‘l'l

c- W (b 2" q.a, *'PS.E

c-n f -y
A, leg.l.-..Ai'na = il day of 3 ° “ da)
C-wW(" ot I'_l"-t?h : ‘;‘n%' Tha J"““'“%r}'

SV,)
ot M

c Feadbey ()

Tod Sub
g A Waoduls
ﬂ .
) and Feee
S Deetsring 07

The 5'.3.—3,&

il WAy
gt Aoy OF 64- 2 Aodo

- p- 1224563

aht AOubU = g.ipzuc b T8IDIRINE.

p’ i s Vaniablt Pectatotion:

- Bi-

R ?,wen fo o Gioyege 4 '

B .. PATES Wiy A
I Vdﬁ!‘tﬂbh <ﬂfﬂ;ﬂ-r_
M_.,_gg 01'— Va lucs

Scanned by CamScanner

DEC:Ca_q_M_;Dn :

\
Drm =) g‘ft{,'hﬁmg_u — vash by la
. < Stoy \ &um"’
e | ¥ Alocat; 8.1 Sfor O Jome
Vasclabies . : TR

9’"“‘. =) rmolicte, clags, Clvue fune B,
. ',. ” Ot
Os' blocy levey . .

:.. | ?’?Mam :

:D‘Fﬂ'-"‘ lﬁkfmbm - MName 4s J)Muwp _

Yasdablh - eamet B the Vs ablt nanw %nd

Datatype, 2 the hame H4p whith Yariall

Vasiab i rot

Ls Vasiaste Aot

Scanned by CamScanner

p—

u".u.ﬁ; ‘4{1‘: :2'4}-_1' ten gl':.-—l r’_n.-: 4 r_-!
| i 2 O :r,.ecjﬂ
e =12
T e pe Seving
st F ';fn.l-.ﬂ"
] Ll 28 yaludd | ‘
Prﬂpfrﬂq u‘c‘kﬂﬂw -
_'},'Ju".-: . |
LS . :pmph- Rrasilt
| ‘é' d__p,;_ﬂ.ﬂu .
12 ped -E'U:'M
; ‘ad:?u"i
Ao Po cashiod 0T of v
MMMJLU'U-'."
g,w;—-—h
as Yn
:!-'-’Fﬂ""" Hﬁﬂ.ﬂ.}*—-‘”"‘"‘ .:j A (ww o
ol (2 !ﬁJ"'"h
ng
W Pl =)
UL oA~ = &R
-~)
c-w
L. R.L,v-—fhi wt L)
fnd cub

Scanned by CamScanner

Peckaration o vanlab

Pnﬂ &A,,H
- P
. gt
/‘mﬁfmﬂf Fived yatitd tha -
§ t‘,_“.(f
./ s 0F
¥4y not 4[—1 ie ('lt.l“'"‘j ¥ |
' -k 9""7 '
oy ~ 2
Lanst dvﬂ‘ia-?a As f{ ' [/ﬂu,;p 3%
== .' U{ > 1t ml’ﬂn'&
fon8t f’ﬁ-i va A in ?”L
a st “
Frum M. ! ’ (7”;/) &7
M‘ (mltf’"“ = s
r"Z-Ot"b .’ ’ Eé’_ _£5 Hﬂ.“ - M wm‘{%
en,u'fﬂ M / M
jable’ | Wittt) el a
supe o eI (T
r i wnts T eelalt ol eat?On
b{pﬂ'r{' ﬂf;’P
of

Scanned by CamScanner

cevpe - Thady

ﬂ-f"P“ cxdrCry .

Lt

u.i:,_l‘._;bl-l

Scanned by CamScanner

: ew Psroj
M8 Vieuat Qtudio —2 e = N Portjec

—> 0K
pindedt sfoym af,F”cg,yon.s >

Form Propestiss!

The Fﬁprvﬁﬂ' can be £/

.cﬂgﬂn_wﬁﬂn.
gead st EHE app!

b 1 cally ocHy
| peogipution > OK button = futo mat) o

Whib tassind ol EY.

I el At 2 ese by

mﬂﬁcdlf Qealed {0 &

Scanned by CamScanner

ﬂlttdsmﬂlfmqﬁﬂ fenize

o Sthetd Pesition

Ee releh sty b Melplatt on

fei gl 53

fontwpt oo

e f,,,,J:-ud rvtnien me Lo
gacr oY _Fonk raximias o
At
"'}'Uf’m"r rToxt i Gitien.
el ' pe
/wr Top U4]
i Hﬂfm"u .. ek jyes W
: t pettvatt ¢ it g
ﬂg{ﬂi’fl -
cpild of «
‘f"tm . nett vatu HP!
petivalt pliehitd =
.Efovm‘ bide
pAdooned £ h
sl.ﬂ-ﬂ F)
Bring 70 7 geals ! o
&
[antanTe Pt Qeatt (orE
= ‘ qng‘.w&*‘l ch.u.caﬁ—t
(AR M
Ve _ge,LEC./E
clote _ ck
awd sens 'T:f:;.ﬂmﬁ
Cont
Fose |
; toeadion
Wﬂﬁ”““w Spk A poc
Shot?
ghﬂujd{a‘wﬂ) .
Des x-A0p PPT R
[J728 X:

Scanned by CamScanner

i 5, X
Bropuiin whith duevive g oRCt T
dp A0 .‘-’umru.'u.f

N Pl vt
7 ﬂ/;/frl "‘"’f)f.;

Hﬂht-ﬂu i@

3l ,q.lh.dr\' A
f. Vit [ke At (s
i
S‘?ﬂ“fhll'l A in"—‘
J at Y .-Jar)t?n tim,
Ao ¥

P30 peaty on
r U’ '.ﬁfll’f-dﬂn? '

tes
g o rm" . lp o
}?f neingy ;..e'»!-"‘ﬁ gt ale i,
(A 4 graet .‘f;rﬂ.ﬂ }'E'/' J |
T L
wjp” Wil enfyf (_y pewd by,
Lott? i
" J:M e toAUE! "
c

Na s ﬂ'f :

L] ﬁ“
e ﬂf'[eet ou C‘i'"[“‘ ?:Mﬂo »

i)

gox con ol r

HW@?&

—
Scanned by CamScanner

& :J'u'!‘”f#""'"‘
L | Jlr.u'!“ ‘r'thr _’f HFHIFI‘F’ '

F f el wal

h}_njnrt (4

[oymt € veas 4
He] pertitrelickes Vi visel gaye

Yletivaled P kG PAEVE
' ey dein Mot e
= oy | ress Pt whsed
ctrsel Hn-d o v e
c‘n‘ﬂb‘,.l'rug Load TS
Pouble ctick J.oal Foered Qeneit
Ppoaq e Mewse PO Chewn
Meree enlen vigt Hnr_h.an?r.d
gg;bf:ﬂ - Mo LoV 2h

ol eub Foom ! -

o ;]\{E > 8\ L)

Scanned by CamScanner

1 Sk '
~ \
~ "

Me - Text - Y yoe Ctudent
« T1Xed

Mo FD?T"NTJ{’*QEV& = FGTP’BD"E"—U'.C'E:}!.Q F': Pdmﬂb

Me - HQ}HM - 306

Me - width 5¢0

ﬂ(“"‘ (&:Hr"?)

X s tstels
He- ton s) B Hon R)

Me - lan f-ﬁnfu
%}Ld_f[,l*J
grd At
. b
_E;rmf.f]eﬂ Htln_dlm‘] y ﬂufﬂ'”e {0 an
. a
(‘Aﬂ 6:‘.&.”&9" d,u.,lt.ﬂ e
[
e €
o al Cipecpm st e uch
”C«G‘Pfr g—ubﬂ*‘ﬂ""n?‘} vg ad
: P?rﬂ'f»“"“
While A&
zeto:
at i |
AL - f_fﬂ'n-
vy o pantie T
Fow ket Wl A,
il M’wﬁ =
Py
ptock oF ﬁepf -
‘o ns mﬁmj’“d E i
-\ ;UJM a”n
)) T2
brexﬁ"f - Al mﬂjﬂ_ﬂ"‘
L .
@m pro DO
'?” 30 ha"uiu

Scanned by CamScanner

|

-f F"ﬂﬂjuf-’ =9 ExEeenlg [H_l‘.r.;;l Cat "ﬂ-". 5_'?

3{.{1:.‘1-'%#“ tWhesnes. an exceptitn om -lhnown
o f;.tjﬂﬂﬂ'

e ﬂyeﬂ_PH e

% “Thaew =) mi'?ﬁ_ﬂm PR TR

pohen @ Phobiesm C hhowe u(».!)'

Gyrrtar
T ey Statmne?t)
preit 7y
featen [Exotion
[Catch S tatments]

fpx"t' T'r:fj}
anrf{_‘.h -)

%8 {-la.rl?:! fwhen

fxwf’” o), AIEE”

M EIL“-F*‘D
DHEXC'C"F'“DH
. Jiied i

Scanned by CamScanner

1_5“»-‘"" ema e [)

59
pivision (25, 0)
congole . Roaotksy ()
f;rf’ Qeb
f l,.{';LLl'.. .
D
£
) C_;;ll-u(fl"
' e
E_LE-’. gxtep?! J piien

Err_f—
_;}lu;f}m- :?Fv;ﬂu hr‘f.u:);u

- py 24%0 .
At enpte d to A Y

F:f,};pH 0.

!
A excef
&xa"'”——fu %ﬁ;{p’h.— Fi'..r-n_ﬂ'*“"j - S’{ T.Lt&t
TPH’
e
botept 1t il |
y ¢ APEEE T
Egsor G670 TF =
¥ Zid o gimﬁ 3
tne poPf
pr! ’
je e j | s B8 Sftevn
wa JCJ’-'(B‘ yal Ger
! ﬂﬂ'l“ et) ﬂf Eygmfm{?sj
dub BV L S |
prjetts Byves © . elihe
s pultt’”
Hﬂ'ﬂ-ﬂ’

Scanned by CamScanner

eeplon clatd Tegenptlon \k

i‘z(swm- ?G-J’vhur#nn HanAdlet Tlo

Sll,ﬂ o InkapA 2 |
HH‘"‘*J MAex cet e4

.?LF'-’L?.-, ‘

Aivieli~g By 2050 ey,

fxeepiion

CU_CH - "hivide Ju'! e D

Exte Fﬂ'ﬂr)

fyc?h"“ -oules HE.J"‘!(“! Iﬂ'&tefﬁ_ﬁ{ Lt et 2 .ﬁ&rﬂ-

{TLE‘-P? o a0 LY IJ .

1 Foogam or Exedprional Heed

Modute pxception 7]

By vat
Sub dlvigion (5 val pomy s TGP, P

Ny I-T: Irz.ﬂf?ﬂ\)

Pl setutt At I’la?&?

14

ﬁﬂé;uv -

Scanned by CamScanner

Lo
(rtaner (070 1 et Stey?
:h)n" 'r'lf.fﬂfl' A .., o 'l'L"'?"i
'P;"“ frdiem A :_,.r.r.l.’.fffl’
Aurt oo
Yttt = aunmlO
20v'f ! l'f") l}ﬂ’ll
i .'11"'
il 1Y pondrl He8e') 4
Yrnd Sk
¢nAd ctass: | Nepnﬁﬂ“\'l”&“-ﬂ
o pre
= _ yy g
Contmot St i {; pro bl
1f- Pl
Lo Pl = i
| = 2l
P over? LY fosom by
eV 2 phar i
Jo* . £, s -
s P .
wH
T4 €else Loetoh]

’_ry.ﬂf —7 eﬁ! ’ mm{g ey
q’-ﬂ? ,:Ju‘tk
’ W W/J!]f‘i*

- ppd "

. 'plbl Et‘nﬂ(‘ é-;:f‘ﬂ' 3 }g
MT‘

.9. . 37{ b - J"..‘?

J v

t;,’?xl[‘ - _?_.‘._.-

J =

I.ﬁ}-'m '

9. EPB.MEP .

Scanned by CamScanner

] cirt
¥ Ev [
}R/ ' L& ¥y Ak oo o Y " ‘e“"b “ ".‘7 i .6,

Wt
A7 evene 2

an '
Fetlom tras oy

a .f“-”c-f”’” o may
Caus o “""-'ﬂthu € it . ‘

et Hanelh ' Evpot n e dln 1
q-&"'"f“—'lééfﬂud

gt dmat tu»f-'"h’m"-’ 8 mpon.c o
T Qg b

.
_‘t

%,: wc)’-*"‘?‘_ ay bueton M-.’ ‘Qame

pprt & f;e)w.‘t box , ca'*c_m‘n? a“

VB-Net B an evert.olown lﬂ—"?-““-if
‘I""T..l". X |
—_ ' v
nfeesane . 100 Y Py
oo O, et

"' @bou A ENVent

P o=

MMe,efW ’

. m QMM’M lA

A l

‘Mumw&? ! Dpje

hat pROpSHE

el BASEON 2 posggod | ned:
{23 rt"\\j 2~ &MU‘ "D ‘JD 'Df‘ C'Jd.w
REN N 3 A /
the
_ ‘p,ﬂ ther X
Seb | o2 ,’P'M., thmew

A
Scanned by CamScanner

Publt ctass _a!o rml

o byt torecoldY. =

'@ﬂ-"‘(‘l Qub-

Frivak
e g eventA"P? por s b,
HE--:E” - h \ 3 t
: N
2 ek (Sender A Dby,
b
pat1?P - M
Ppivelt gub T prartfrgs? Py,
‘ Movse
Lun
Ko . packspte’ = 20T 7
Colov - WM

- As obilct
-’th-a’i- (SMJ[” 't 2

ﬁ‘-.,\/a,h Sub bﬂ-l"lP o o) andW b4
Mﬁﬂ”? B
e p e LLDws @ Boet A2
AlE wrl- whilk =
L. 'ér'f.'.DJ Batk tolo! :CD "5 e -
_ e
-Ext"'rm FovéeotoY = cOLOTY i ‘
l
Lot S5 x
A Rl = Y ,.Lomec,bm(‘_gmi& al
Pt ‘gw*’ -txb\/w-:u ol e T
A p,bJ,Qt.«b) e— Mgug,:.unﬁk.
I N ,- :
R Backcolor = potov. BUA
i D % . L
b'*mw-'- . < Forecolor = Lolov: s
A Y .
g, A pwb- o !
.ld with CamScanner

Scanned by CamScanner

Sub gy

L ™)

: rﬁl'\fd-tl .S'ub f'x'f“ﬂde‘.l.‘,l‘_

Pbd.gce.g i

EXt pdosess .pocpeoton

Axt Ad St . Fovecotay

Yool Sub .
f;u‘“mtk

. - Hp
O ki, o leare (Somny

/7 e m p
w_n-!ﬂJLy) Hem tlies {4 nao,

—,

63

Mous
¢ Lutn (Qendpr p,

= A8 C""“’“’*”"’ﬂ’) Homd g
'f.—X'f‘nc{ "LMB

Houwlse Leon/a

wld y. oWk

colbYy bl -

Cub xtAddhus - MOl Loowa (Sendu A3
bhiect, 2 M event Yy)- Handls

txetpddies . Moite leanve

,f,(.}g.ddﬂ.m- Rackiotory - (loloy whil

Uit - 2

L —

! S LAY

LR

’.anw- 0 VB'N@Z{ .

"Net Bhamacok 4 CLE .

Blbaﬁa"\-‘l YR -NEt a_Fme-
VB tor

Forny

';, Popoties

ol with CamScannerM -enbe

Evels
Dai«lype -

DL clast g vatadle

S(ope of vasreb e

Scanned by CamScanner

AOO,q
= Ner ;.
. D o]
f’# t }l | VS. Not 200
2-° Ner %o V3 1 goex
3-° o Zofz.y
W Rpp 8.
(s ,
h ~Net peo Y oasire .
|)
w 5P RS ¢ Ro| 2ela
i.'
E C Acd ARl a0
-'.':- -0 :
F ~Net Cove 0 ti KRolT.
B g P * Net core 30 “Cho2olg

- Net cove L‘E' eesl f‘”’

L pributid Opurating Sjstem . L poc, b

~ -

\

.C-# - .a._ veﬂ.? gt'__f,u_ Ln.u-au.o.?c

- gt;,um £o _Taag\Q-

wg,ﬁ,.,_} _gj/gf-.w (Pa.ak’—ﬂ-?t K Ued ,

Nm—j‘f?q_u d Mg ol @LJ.e.ca""’”\e“‘t

”3 CamScanner

Scanned by CamScanner

Scanned by CamScanner

bk

ge
e
[a‘? + 2 } S
SMM %F’I—-D.CA

7 LD Sl

2¢ kL
ALeof H[mn e 40,800 oy

A U u "&"-JJ P:we;.z{uu.

D
Scanned by CamScanner

Static Vo d maie (St7iRg LT @)
x SR

N ﬁuﬂnk,wﬁfﬂﬂtﬂf [" ;}—; ..CM“)’:

.
-

Scanned by CamScanner

' -’pin' D1 4
}‘P- 'f’hO?h.a_ru. '-'Ehv

e -‘ﬁ"’ﬂn.uac_; Com i '
[} h—---_-

‘ﬁj‘s :{t.bﬂﬂnr_u' d
4 '

f' Si?’*'-"_""
1

Veld ;rad. (S‘-!Hma [] an4s)

int ni-e, 272=¢,n3 1}, no

9?5-&.-1_- tongol - Writtilna ([Y Enlea 7
Vare = "D

£20 = (pnpgol: Reoddline LYy
:go-r' (_T = Q !‘L«"LD} ! ++)

z

ng =nit+ nN2_

Scanned by CamScanner

E h
o= 5 B—-‘E:i‘ / S r\\,
Y
_ ﬂ noe = ' ! K .QWM Ha-ﬂﬁp !
ﬂ"" ¢ e F 2,
,--1. 2. .-L ; # gu" Mph
Ler b CLag !
, o
-0+ P ¢~y
n 3 fe,,
_ I W et C(_c‘_‘_ﬂ 6'!1
- Cueppory; L,
PPt~y
nt= 1
ne = |
n3 = 9°
3[&9” - C
Basfe Opyueteuse Bt (_#.- |
[Romapae) |
J
Y I alt
Fm“’ e
. ot
Blotics /’*%Mw"“
\b Wm“‘"
Yatiments --/-//,7 %/JLY oAt
Y
L—_ v s : ! : i-%,rlf{'“

Scanned by CamScanner

iy St

Fo
uﬁ"ﬁ? P cotentions, pbaelre ReLL
i3 Sysier . Ling, Im_;ﬁ
] SYEF - Teut; e “wuzmh

(VM’fat-u- EhetPrgna __\} Northp o s -
4 |
| e Pregan
t Statie

1

W i (3451 £)
toncots Writeine (Tl Sputents ")

.3“ .

N imespos s ?fvu' ro avetd

W’L MMS-"\M T —

Se c.aH'n;- ;-
——
T4 g-er/‘&r‘:S*n_ ._ eo~—t ol 4
e M}—? jf—mm 'éﬂ N on;: baste

b rasdf . I .. reoyudsad Pamitp e

Scanned by CamScanner

-‘E‘.‘J_...: f‘-;f‘ﬂ-}' ."7/5"‘!"*’“ . _gd_th. ?}
LeSing .CJ/,:.‘—PM‘ Zo.

At a0 g ' _L_l ___.—fr.‘c ln Capfa.

M“-ﬁ___
/Je,q_c a_,l t‘cf-‘.’-'» cldﬂ__f;c‘
et Pate ig 70 be\ oAloctas oy,
Aol Ltotsex beol Ao = Pass,

I
[}

$hae ol be oleclass 7/ \au_ | B e,

badls

f? . éafﬂ&m{t? WM e R
'g e as PQ-G"OE et nanrc .
Loty Dootoarapian
IR VPP [op b o
| Ggaspup Lemes . To everq wet GPPEw
ﬂm C,D " ‘:‘f M ' 1727
be s
Aheke T : ‘
g’ﬁ“z“‘ N 'g.f-g,ﬂ;.vl—“—f pLoEE

D pgcam (P

,'L:u_rl Q‘“{’ S /\Q ' QW
?x_j.‘u 5 W
; s A TR N L
Ew ‘ II
i N vy |
: | b

[—” ‘é‘ééhi}eﬂ. thh CHT}‘SGﬁ””er &

g N S R TR -

Scanned by CamSc_:ah'ner

ot

. X+ Lot
pf’ Pﬁw.ﬁ.fw Ctatrog < Llich. L2003 gigy. |

-

Nﬂ-—f*t-e..gfcz,:.a . LOntacn Arreotlhes,

\ [Dﬂ'j’bb-bﬂ-ﬂ_j £ thoy |
r?:L:m.ﬂhng(, pelat %#rpu - ; ’ .

Pethprat PD!‘H.E - Dectmadt .

 Boolean types ~True [Fake

.-_Wo..bu %yfa_,g - Mutoabte lota &yfe;_

Scanned by CamScanner

\.\
Scanned by CamScanner

Unit - II - Developing VB.NET Applications - Introduction to VB.Net, The .Net Frame work
and Common language runtime, Building VB. Net Application, VB IDE, forms, properties,
events, VB language-console application and windows application, data type, declaring
variable, scope of variable, operators and statements - Windows Applications-forms, adding
controls to forms, handling events, MsgBox, Input Box, multiple forms, handling mouse and
Keyboard events, object oriented programming creating and using classes and objects,
Handling Exceptions- on Error Goto.

Operators and Statements
ARITHMETIC OPERATORS

Operator Mathematical Function Example

+ Addition 1+2=3

- Subtraction 10-4=6
A Exponential 3"2=9

* Multiplication 5*6=30
/ Division 21/7=3

Mod Modulus(returns the remainder of an integer division) 15 Mod 4=3

\ Integer Division(discards the decimal places) 19/4=4

Private Sub BtnCal_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnCal.Click

Dim num1, num2, difference, product, quotient As Single
Dim num1 As Single, num2 As Single

Dim sum As Single, diff As Single, pdct As Double, quo As Double
num1l =TxtNum1.Text

num2 = TxtNum2.Text

sum=numl+num?2

difference=num1-num?2

product = num1 * num2

quotient=num1/num2

LblSum.Text=sum

LbIDiff.Text=difference

LbIPdct.Text = product

LblQuo.Text = quotient

End Sub

Upon running the program, the user may enter two numbers and click on the calculate
button to perform the four basic arithmetic operations. The results will be displayed the on
the four labels, as shown in Figure

Aritmetic Operations — © | x|

Number 1 436

Number2 24

Sum 460

Difference |412

Product 10464

Quotient 18.1666666666

Calculate |
Conditional Operators
Operator Description
= Equal to
> Greater than
< Less than
>= Equal to or Greater than
<= Less than or Equal to
<> Not equal to

Logical Operators

we might need to make more than one comparisons to arrive at a decision.In this case, using
numerical comparison operators alone might not be sufficient and we need to use the logical

operators.

Operator
And
Or
Xor

Not

Description
Both sides must be true

One side or other must be true

One side or other must be true but not both

Negates true

Using the If control structure with the Comparison Operators
IF....THEN STATEMENT

This is the simplest control structure which instructs the computer to perform a certain action
specified by the Visual Basic 2015 expression if the condition is true. However, when the
condition is false, no action will be performed.

If condition Then

Visual Basic expressions

End If

Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click
Dim myNumber As Integer
myNumber = TxtNum.Text

If myNumber> 100

Then

MsgBox(” You win a lucky prize”)
End If

End Sub

0 it Then. - O BEM

Enter a Number [103]

Click OK to find out your luck Decision Making

OK You win a lucky prize

IF....THEN...ELSE STATEMENT

In order to provide an alternative output, we need to use the If....Then...Else Statement.
Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click

Dim myNumber As Integer

myNumber = TxtNum.Text

If myNumber> 100 Then

MsgBox(” Congratulation! You win a lucky prize”) Else MsgBox(” Sorry, You did not win any prize”)
End If

End Sub

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.1.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.2.jpg

Sorry, You did not win any prize

IF....THEN...ELSEIF STATEMENT

In circumstances where there are more than two alternative conditions, using just
If....Then....Else statement will not be enough.

Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click
Dim Mark As Integer

Dim Grade As String

Mark = TxtMark.Text

If Mark >= 80 And Mark <= 100 Then

Grade ="A"

Elself Mark >= 60 And Mark < 80 Then
Grade = "B"

Elself Mark >= 40 And Mark < 60
Grade ="C"

Elself Mark >= 0 And Mark < 40
Grade ="D"

Else Grade = "Out of Range"

End If

MsgBox("You Grade is " & Grade)
End Sub

Enter Your Mark

Click OK to find out your grade

OK You Grade is A

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.3.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.5.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.6.jpg

Select case

The Select Case control structure also involves decisions making but it slightly different from the
If....Elself control structure .The If ... Then...Elself statement control structure evaluates only one
expjression but each Elself statement computes different values for the expression. On the other hand,
the Select Case control structure evaluates one expression for multiple values. Select Case is preferred
when there exist multiple conditions as using If... Then..Elself statements will become too messy.

Syntax

Select Case expression
Case valuel

Block VB statements
Case value2

Block VB Statements
Case value3

Case Else

Block VB Statements

End Select

Private Sub BtnShow_Click(sender As Object, e As EventArgs) Handles BtnShow.Click
Dim grade As String

grade = TxtGrade.Text
Select Case grade

Case “A”

MsgBox(”High Distinction”)
Case “A-”
MsgBox(”Distinction”)
Case “B”

MsgBox(”Credit”)

Case “C”

MsgBox(”Pass”)

Case Else

MsgBox("Fail”)

End Select

End Sub

o Select Case = el

Select Case I

Enter Grade | | ngh Distinction

Show Comment

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig14.1.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig14.2.jpg

Looping

Forms

Visual Basic Form is the container for all the controls that make up the user interface.
Scope of variable

https:/ /www.vbtutor.net/index.php/ visual-basic-2017-lesson-9-working-variables-
constants/

In Visual Basic.NET, the Dim keyword is used to declare the data.
However, you can also use other keywords to declare the data. Three other keywords
are private, static and public.
The forms are as shown below:
» Private VariableName as Datatype
» Static VariableName as Datatype
» Public VariableName as Datatype
The above keywords indicate the scope of the declaration.

Private declares a local variable or a variable that is local to a procedure or module.
However, Private is rarely used, we normally use Dim to declare a local variable.

Static keyword declares a variable that is being used multiple times, even after a procedure
has been terminated. Most variables created inside a procedure are discarded by Visual Basic
when the procedure is terminated. Static keyword preserves the value of a variable even after
the procedure is terminated.

Public is the keyword that declares a global variable, which means it can be used by all the
procedures and modules of the whole Visual Basic program.

Object oriented programming creating and using classes and objects

In order for a programming language to qualify as an object oriented programming
language, it must have three core technologies namely encapsulation, inheritance and
polymorphism. These three terms are explained below:

Encapsulation

¢ Encapsulation is a mechanism to wrap the data (variables) and code acting on the
data (methods) together as a single unit.
¢ The data components of a class are called instance variables and one instance of a
class is an object. For example, in a library system, a class could be a member, and
John and Sharon could be two instances (two objects) of the library class.
Inheritance

e Inheritanceis a mechanism in which one object acquires all the properties and
behaviors of a parent object.
e The idea behind inheritance is that you can create new classes that are built upon
existing classes.
e Advantage: Less programming is required when adding functions to complex systems
(reusability).
Polymorphism
e Polymorphism is the ability of an object to take on many forms.
e Object-oriented programming allows procedures about objects to be created whose
exact type is not known until runtime.
e For example, a screen cursor may change its shape from an arrow to a line depending
on the program mode.
Class: A class consists of data members as well as methods.
VB.Net window program using class and objects

The following Program shows you how to create a class that can calculate
your BMI (Body Mass Index).

To create a class, start Visual Basic 2017 as usual and choose Windows Applications.
In the Visual Basic 2015 IDE, click on Project on the menu bar and select Add Class,
as shown in Figure.

DQ MyFirstClass - Microsoft Visual Studio
File Edit View | Project | Build Debug Team Format Tools Test Analyze Window Help

. | 3 »| ¥ Add Windows Form... P Start - | 57 _ ‘
= 11 Add User Control...
Form1.vb [Desigl -
*1 Add Component...
& Add Module...

JEVLIT Ve BEVNED

=
Ly
" Add Class...
- *@ Add New Data Source...
9
- 0 Add New Item... Ctrl+Shift+A
=]
5 a0 Add Existing ltem... Shift+Alt+A
m

Exclude From Project
B Show All Files
Add Reference...
Add Analyzer...
Add Service Reference...
Add Connected Service...

Set as StartUp Project

Manage NuGet Packages...

Refresh Project Toolbox ltems

O B 8o

MyFirstClass Properties...

After clicking the Add Class item, the Add New Item dialog appears, as shown in
Figure.

4 Installed Sort by: Default #2 Search Installed Templates (Ctri+E) P~

-
4 Common ltems @ Class Cominbo i Type: Common ltems

Code An empty class definition
Data

General
Web
Windows Forms

[1}
== Module Common Items

0 Interface Common ltems

Reporting
SQL Server

Workflow
WPE ."j User Control Common Items

Windows Form Common ltems

Graphics
PowerShell &l I Component Class Common ltems

b Online -.’ User Control (WPF) Common ltems
<)
About Box Common Items
@ ADO.NET Entity Data Model Common Items

vg Application Manifest File Common Items

‘Q Class Diagram Common ltems
—E

Click here to go online and find templates.

Classl.vb

Click on the Class item and the default class Class1.vb will appear as a new tab in a
code window. Rename the class as MyClass.vb. Rename the form as MyFirstClass.vb.

Now, in the MyClass.vb window, create a new class MyClass1 and enter the following
code
Public Class MyClassl
Public Function BMI (ByVal height As Single, ByVal weight As Single)
BMI = Format ((weight) / (height ~ 2), "0.00")
End Function
End Class

Now you have created a class (an object) called MyClass1 with a method known as
BMI.

In order to use the BMI class, insert a button into the form and click on the button to
enter the following code:

Private Sub BtnBMI Click(sender As Object, e As EventArgs) Handles
BtnBMI.Click

Dim MyObjectAs Object
Dim h, w As Single
MyObject = New MyClassl ()
h = InputBox (“What is your height in meter”)
w = InputBox (“What is your weight in kg”)
MessageBox.Show (MyObject.BMI (h, w), "Your BMI")
End Sub
When you run this program and click the button, the user will be presented with two

input boxes to enter his or her height and weight subsequently and the value of BMI
will be shown in a pop-up message box, as shown in the figures below:

What is your height in meter

What is your weight in kg

10

Exception Handling

An exception is a response to an exceptional circumstance that arises while a program is
running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net
exception handling is built upon four keywords - Try, Catch, Finally and Throw.

Syntax

Try — A Try block identifies a block of code for which particular exceptions will be
activated. It's followed by one or more Catch blocks.

Catch — A program catches an exception with an exception handler at the place in a
program where you want to handle the problem. The Catch keyword indicates the
catching of an exception.

Finally — The Finally block is used to execute a given set of statements, whether an
exception is thrown or not thrown. For example, if you open a file, it must be closed
whether an exception is raised or not.

Throw — A program throws an exception when a problem shows up. This is done
using a Throw keyword.

Try

[tryStatements]

[Exit Try]

[Catch [exception [As type]] [When expression]
[catchStatements |

[ExitTry]]

[Catch ...]

[Finally

[finallyStatements]]

End Try

Exception Classes in .Net Framework

» The exception classes in .Net Framework are mainly directly or indirectly derived

from the System.Exception class.

» System.ApplicationException and System.SystemException classes are derived

System.Exception class.

Exception Class Description

System.lO.IOException Handles 1/O errors.

System.IndexOutOfRangeException Handles errors generated when a method refers to

an array index out of range.

System.ArrayTypeMismatchException Handles errors generated when type is mismatched

with the array type.

11

System.NullReferenceException Handles errors generated from deferencing a null
object.

System.DivideByZeroException Handles errors generated from dividing a dividend
with zero.

System.InvalidCastException Handles errors generated during typecasting.

System.OutOfMemoryException Handles errors generated from insufficient free
memory.

System.StackOverflowException Handles errors generated from stack overflow.

Following is an example of throwing an exception when dividing by zero condition occurs

ModuleexceptionProg

Subdivision(ByVal num1 Asinteger,ByVal num2 Asinteger)
Dim result Asinteger

Try

result= num1 \ num2

Catch e AsDivideByZeroException
Console.WriteLine("Exception caught: {0}", e)
Finally

Console.WriteLine("Result: {0}", result)
EndTry

EndSub

SubMain()

division(25,0)

Console.ReadKey()

EndSub

EndModule

Output

Exception caught: System.DivideByZeroException: Attempted to divide by zero.
at ...
Result: 0

12

Event Handling
Event: An event is an action that calls a function or may cause another event.
Event Handler: Event handlers are functions that tell how to respond to an event.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are
examples of events.

VB.Net is an event-driven language. There are mainly two types of events —
« Mouse events
o Keyboard events

Handling Mouse Events
Mouse events occur with mouse movements in forms and controls.

Following are the various mouse events related with a Control class —
e MouseDown — it occurs when a mouse button is pressed
e MouseEnter — it occurs when the mouse pointer enters the control
e MouseHover — it occurs when the mouse pointer hovers over the control
e Mousel eave — it occurs when the mouse pointer leaves the control
o MouseMove — it occurs when the mouse pointer moves over the control

e MouseUp — it occurs when the mouse pointer is over the control and the mouse
button is released

e MouseWheel — it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The
MouseEventArgs object is used for handling mouse events. It has the following properties —

o Buttons — indicates the mouse button pressed

e Clicks — indicates the number of clicks

o Delta — indicates the number of detents the mouse wheel rotated
e X —indicates the x-coordinate of mouse click

e Y —indicates the y-coordinate of mouse click

Example
Following is an example, which shows how to handle mouse events. Take the following
steps —
o Add three labels, three text boxes and a button control in the form.
e Change the text properties of the labels to - Customer ID, Name and Address,
respectively.
e Change the name properties of the text boxes to txtID, txtName and txtAddress,
respectively.
o Change the text property of the button to 'Submit'.

e Add the following code in the code editor window

13

PublicClassForm1
PrivateSubForm1_Load(sender AsObject, e AsEventArgs)HandlesMyBase.Load
' Set the caption bar text of the form.
Me.Text = "tutorialspont.com"
End Sub

Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_
Handles txtID.MouseEnter
‘codefor handling mouse enter on ID textbox
txtID.BackColor=Color.CornflowerBlue
txtID.ForeColor=Color.White
EndSub

PrivateSubtxtID_Mouseleave(sender AsObject, e AsEventArgs) _
HandlestxtID.MouselLeave
‘code for handling mouse leave on ID textbox
txtID.BackColor = Color.White
txtID.ForeColor = Color.Blue
End Sub

Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _
Handles txtName.MouseEnter
‘codefor handling mouse enter on Name textbox
txtName.BackColor=Color.CornflowerBlue
txtName.ForeColor=Color.White
EndSub

PrivateSubtxtName_MouselLeave(sender AsObject, e AsEventArgs) _
HandlestxtName.MouselLeave
'code for handling mouse leave on Name textbox
txtName.BackColor = Color.White
txtName.ForeColor = Color.Blue

End Sub

Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _
Handles txtAddress.MouseEnter
‘codefor handling mouse enter on Address textbox
txtAddress.BackColor=Color.CornflowerBlue
txtAddress.ForeColor=Color.White
EndSub

PrivateSubtxtAddress_MouselLeave(sender AsObject, e AsEventArgs) _

HandlestxtAddress.MouseLeave
‘code for handling mouse leave on Address textbox
txtAddress.BackColor = Color.White
txtAddress.ForeColor = Color.Blue

End Sub

Private Sub Buttonl_Click(sender As Object, e As EventArgs) _
Handles Button1.Click
MsgBox("Thank you " &txtName.Text& ", for your kind cooperation")
End Sub

End Class
. - R —— . @ ——
u5! tutorialspont.com El__lg
Customer ID:
Name
| |
Address:
| |
| |
|
' |
somt |
|
|
|

While entering the text in the text boxes and check the mouse events.

ol tutorialspontcom @Iﬂlﬂ

Customer ID: 12

Name

Address:

14

15

Handling Keyboard Events

Following are the various keyboard events related with a Control class —
o KeyDown — occurs when a key is pressed down and the control has focus
o KeyPress — occurs when a key is pressed and the control has focus
o KeyUp — occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type
KeyEventArgs. This object has the following properties —

e Alt — it indicates whether the ALT key is pressed

o Control — it indicates whether the CTRL key is pressed

« Handled — it indicates whether the event is handled

o KeyCode — stores the keyboard code for the event

o KeyData — stores the keyboard data for the event

o KeyValue — stores the keyboard value for the event

« Modifiers — it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed
o Shift — it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type
KeyEventArgs. This object has the following properties —

e Handled — indicates if the KeyPress event is handled
o KeyChar — stores the character corresponding to the key pressed
Example
e Add a label with text Property as 'Age' and add a corresponding text box named
txtAge.
o Add the following codes for handling the KeyUP events of the text box txtID.
PrivateSubtxtID_KeyUP(sender AsObject, e AsKeyEventArgs) _

HandlestxtID.KeyUp
If(NotChar.IsNumber(ChrW(e.KeyCode)))Then
MessageBox.Show("Enter numbers for your Customer ID")
txtID.Text=""

EndlIf

EndSub

o Add the following codes for handling the KeyUP events of the text box txtID.

PrivateSubtxtAge KeyUP(sender AsObject, e AsKeyEventArgs) _
HandlestxtAge.KeyUp
If(NotChar.IsNumber(ChrW(e.keyCode)))Then
MessageBox.Show("Enter numbers for age")

txtAge.Text=""

EndIf

EndSub

o tutorialspontcom o = EL
— s A

Customer ID:

Name

Address:
N
L Age

i

|
I
' Submit
|
\

If you leave the text for age or ID as blank or enter some non-numeric data, it gives a warning
message box and clears the respective text —

r

5
ot tutorialspont.com ‘EE_SZ|
Customer ID: 12
Name James Bond
Address: Califomia, US

Age n g S

Enter numbers for age

oK

1
.

16

GoTo Statement
The GoTo statement transfers control unconditionally to a specified line in a procedure.

Syntax
GoTo label
label 1 statement 1
- go to

label 2 statement 2 tabel 3
ELLIKE statement 3

Program

Module loops

SubMain()

"local variable definition
Dim a As Integer = 10
Linel:
Do
If (a =15) Then
' skip the iteration '
a=a+1
GoTo Linel
End If
Console.WriteLine("value of a: {0}", a)
a=a+l
Loop While (a < 20)
Console.ReadLine()
End Sub
End Module
Output

value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:
value of a:

While a value is 15 the printing of a is skipped by a GoTo statement.

10
11
12
13
14
16
17
18
19

18

19

on Error Goto.

On Error Statement
Syntax

On Error GoToline

On Error Resume Next
On Error GoTo 0

On Error GoTo statements is an example of Vb.Net's Unstructured Exception Handling .
VB.NET has two types of Exception handling .

» Structured Error Handling and

» Unstructured Error handling .

VB.NET using Try..Catch statement for Structured Error handling and On Error GoTo
statement is using for Unstructured Error handling.

Error GoTo redirect the flow of the program in a given location.

On Error Resume Next - whenever an error occurred in runtime, skip the statement and
continue execution on following statements.

Take a look at the following program

VB.NET Source Code

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _System.EventArgs) Handles
Button1.Click

Dim result As Integer
Dim num As Integer
num = 100
result=num/0
MsgBox("here")
End Sub
End Class
when u execute this program you will get error message like Arithmetic operation resulted in
an overflow .
See the program we put an On Error GoTo statement.
Public Class Form1
Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e AsSystem.EventArgs) Handles Button1.Click
On Error GoTonextstep
Dim result As Integer
Dim num As Integer
num = 100

20

result =num /0
nextstep:
MsgBox("Control Here")
End Sub
End Class
When you execute the program you will get the message box "Control Here™ . Because the

On Error statement redirect the exception to the Label statement.

Sources:

1. https://www.tutorialspoint.com/vb.net/vb.net_exception_handling.htm
2. https:/ /dotnettutorials.net/course/asp-net-core-tutorials/ #

https://www.tutorialspoint.com/vb.net/vb.net_exception_handling.htm

Unit — 111 - Developing - ASP.NET Applications - ASP.NET Applications — Understanding
ASP.NET Controls - Overview of ASP.NET framework, Web Form fundamentals - Web
control classes — Using Visual Stdio.NET - Validation and Rich Controls - State
management — Tracing, Logging, and Error Handling.

Developing ASP.NET Applications
What is ASP.NET?

» ASP.NET is a web development platform.

> It is a complete software infrastructure and various services required to build up web
applications for PC, as well as mobile devices.

» ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and
policies to set a browser-to-server bilateral communication and cooperation.

Development

» ASP.NET is a part of Microsoft .Net platform.

» ASP.NET applications are compiled codes. It is written using the extensible and
reusable components or objects present in .Net framework.

» ASP.NET is used to produce interactive, data-driven web applications over the
internet. It consists of a large number of controls such as text boxes, buttons, and
labels for assembling, configuring, and manipulating code to create HTML pages.

An ASP.NET application consists of two major parts:

» The .aspx file: this is essentially the GUI that you see on the web page.
» The .cs file (code behind): this is essentially the code that executes the logic
(calculations) associated with the GUI of the web page.

The ASP.NET application codes can be written in any of the following languages:

> Ct

» Visual Basic.Net
» Jscript

>

Understanding ASP.NET Controls

What are controls?

» Controls are small building blocks of the graphical user interface, which include text
boxes, buttons, check boxes, list boxes, labels, and numerous other tools.

» Using these tools, the users can enter data, make selections and indicate their
preferences, etc.

» Controls are also used for structural jobs, like validation, data access, security,
creating master pages, and data manipulation.

» An ASP.NET control is a .NET class that executes on the server and renders certain
content to the browser.

For example, a Label control was used to display the current date and time. The ASP.NET
framework includes more than 90 controls, which enable you to do everything from
displaying a list of database records to displaying a randomly rotating banner advertisement.

Overview of ASP.NET Controls

The ASP.NET Framework contains more than 90 controls. These controls can be divided into
seven groups:

» Standard Controls—Enable you to render standard form elements such as buttons,
input fields, and labels.

> Validation Controls—Enable you to validate form data before you submit the data to
the server. For example, you can use a ‘RequiredFieldValidator’ control to check
whether a user entered a value for a required input field.

» Rich Controls—Enable you to render things such as calendars, file upload buttons,
rotating banner advertisements, and multistep wizards.

» Data Controls—Enable you to work with data such as database data. For example,
you can use these controls to submit new records to a database table or display a list
of database records.

» Navigation Controls—Enable you to display standard navigation elements such as
menus, tree views, and bread crumb trails.

» Login Controls—Enables you to display login, change password, and registration
forms.

» HTML Controls—Enable you to convert any HTML tag into a server-side control.

With the exception of the HTML controls, you declare and use all ASP.NET controls in a
page in exactly the same way. For example, if you want to display a text input field in a page,
you can declare a TextBox control like this:

<asp:TextBox id="TextBox1" runat="Server" />

» This control declaration looks like the declaration for an HTML tag. Remember,
however, unlike an HTML tag, a control is a .NET class that executes on the server
and not in the web browser.

When the TextBox control is rendered to the browser, it renders the following content:
<input name="TextBox1" type="text" id=""TextBox1" />

» The first part of the control declaration, the asp: prefix, indicates the namespace for
the control. All the standard ASP.NET controls are contained in
the System.Web.Ul.WebControls namespace. =~ The prefix asp: represents this
namespace.

> Next, the declaration contains the name of the control being declared. In this case,
a TextBox control is declared.

» This declaration also includes an ID attribute. You use the ID to refer to the control in
the page within your code.

» Every control must have a unique ID.

The declaration also includes a runat=""Server' attribute. This attribute marks the tag as
representing a server-side control. If you neglect to include this attribute, the TextBox tag
would be passed to the browser.

Understanding HTML Controls

HTML controls in a different way than you declare standard ASP.NET controls. The
ASP.NET Framework enables you to take any HTML tag (real or imaginary) and add a
runat="server" attribute to the tag. The runat="server" attribute converts the HTML tag into a
server-side ASP.NET control.

Understanding and Handling Control Events

The majority of ASP.NET controls support one or more events. For example, the
ASP.NET Button control supports the Click event. The Click event is raised on the server
after you click the button rendered by the Button control in the browser.

The following code illustrates how you can write code that executes when a user
clicks the button rendered by the Button control (in other words, it illustrates how you can
create a Click event handler):

Code. ShowButtonClick.aspx

<%@ Page Language="C#" %>
<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<script runat="server">

protected void btnSubmit_Click(object sender, EventArgs e)

{

Labell.Text = "Thanks!";
}
</script>
<html xmlIns="http://www.w3.0rg/1999/xhtml" >
<head id="Head1" runat="server">
<title>Show Button Click</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button
id="btnSubmit"
Text="Click Here"
OnClick="btnSubmit_Click"
Runat="server" />

<asp:Label
id="Label1"
Runat="server" />
</div>
</form>
</body>
</html>

r | - N
£8 Show Button Click - Windows Internet Explorer Sl @_&

& () » |&] ntpuriocainost10604/Fin | 53|49 | X || Google P v

¢ Favorites | 3x @8 Suggested Sites v 8| Web Slice Gallery v

@ Show Button Click M v B v @ v Pagev Sefetyv Toolsv @~

Ciick Here

Thanks!

€ Local intranet | Protected Mode: Off ‘a v R10% ~

You can add an event handler automatically to a control in multiple ways when using
Visual Web Developer.

In Design view, you can double-click a control to add a handler for the control's
default event.

Double-clicking a control switches you to Source view and adds the event handler.

> Finally, from Design view, after selecting a control on the designer surface, you can
add an event handler from the Properties window by clicking the Events button (the
lightning bolt) and double-clicking next to the name of any of the events

- Manre A P et b 8 W » [-] 10—
i I Rl N e N o e B U S)
I DU LS 3 5 IR SN S ~ el b ey N 20 . TYarEsor B

Adding an event handler from the Properties window.

ASP.NET validation controls

ASP.NET validation controls validate the user input data to ensure that useless,
unauthenticated, or contradictory data don't get stored.

ASP.NET provides the following validation controls:

RequiredFieldValidator
RangeValidator
CompareValidator
RegularExpressionValidator
CustomValidator

» ValidationSummary

VV V VYV

BaseValidator Class

> The validation control classes are inherited from the BaseValidator class.
» Therefore, it would help to take a look at the properties and the methods of this base
class, which are common for all the validation controls.

Members Description

ControlToValidate | Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript | Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.
SetFocusOnError It indicates whether in case of an invalid control, the focus

should switch to the related input control.

ValidationGroup The logical group of multiple validators, where this control
belongs.

Validate() This method revalidates the control and updates the IsValid
property.

RequiredFieldValidator Cobntrol

The RequiredFieldValidator control ensures that the required field is not empty. It is
generally tied to a text box to force input into the text box.

Syntax

<asp:RequiredFieldValidator ID="rfvcandidate"
runat="server" ControlToValidate ="ddlIcandidate"
ErrorMessage="Please choose a candidate"
InitialValue="Please choose a candidate">
</asp:RequiredFieldValidator>

CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or a
value in another control.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available values are:
Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan,
LessThanEqual, and DataTypeCheck.

Syntax

<asp:CompareValidator ID="CompareValidatorl" runat="server"
ErrorMessage="CompareValidator">
</asp:CompareValidator>

RegularExpressionValidator
The RegularExpressionValidator allows validating the input text by matching against a
pattern of a regular expression. The regular expression is set in the ValidationExpression
property.

The following table summarizes the commonly used syntax constructs for regular
expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

\f Matches a form feed.
\n Matches a new line.
\ Escape character.

Apart from single character match, a class of characters could be specified that can be
matched, called the metacharacters.

Meta characters Description

Matches any character except \n.

[abcd] Matches any character in the set.

[fabcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line etc.
\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.
Syntax

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMessage="string"
ValidationExpression="string" ValidationGroup="string">
</asp:RegularExpressionValidator>

CustomValidator

» The CustomValidator control allows writing application specific custom validation
routines for both the client side and the server side validation.

» The client side validation is accomplished through the ClientValidationFunction
property. The client side validation routine should be written in a scripting language,
such as JavaScript or VBScript, which the browser can understand.

» The server side validation routine must be called from the control's ServerValidate
event handler. The server side validation routine should be written in any .Net
language, like C# or VB.Net.

Syntax

<asp:CustomValidator ID="CustomValidatorl" runat="server"
ClientValidationFunction=.cvf_func. ErrorMessage="CustomValidator">

</asp:CustomValidator>

ValidationSummary

The ValidationSummary control does not perform any validation but shows a summary of
all errors in the page. The summary displays the values of the ErrorMessage property of
all validation controls that failed validation.

The following two mutually inclusive properties list out the error message:

» ShowSummary : shows the error messages in specified format.
» ShowMessageBox : shows the error messages in a separate window.

Syntax

<asp:ValidationSummary ID="ValidationSummary1" runat="server"
DisplayMode = "BulletList" ShowSummary = "true" HeaderText="Errors:" />

Validation Groups

» Complex pages have different groups of information provided in different panels. In
such situation, a need might arise for performing validation separately for separate
group. This kind of situation is handled using validation groups.

> To create a validation group, you should put the input controls and the validation
controls into the same logical group by setting their ValidationGroup property.

10

Example Program for Validation Control

The following example describes a form to be filled up by all the students of a school,
divided into four houses, for electing the school president. Here, we use the validation
controls to validate the user input.
This is the form in design view:

StatPage | Defastaspres Defauitaspx

President Election 2010

President Election Forms : Choose your president

Candedate | Flaass Choose a Candidate v| Please choose a candidute
¢ Red
House :?t:o\ Esger voun howse nomse
¢ Green
Class f— Erter vouw class (6
Emal [i Ester vour emad
Subm \

Error message |

* Erroe message 2

The content file code is as given:

<form id="form1" runat="server">
<table style="width: 66%;">
<tr>
<td class="stylel" colspan="3" align="center">
<asp:Label ID="Iblmsg"
Text="President Election Form : Choose your president"
runat="server" />
</td>
</tr>
<tr>
<td class="style3">
Candidate:
</td>
<td class="style2">
<asp:DropDownlList ID="ddlcandidate" runat="server" style="width:239px">
<asp:Listitem>Please Choose a Candidate</asp:Listltem>
<asp:Listitem>M H Kabir</asp:Listitem>
<asp:Listltem>Steve Taylor</asp:Listltem>
<asp:Listltem>John Abraham</asp:Listitem>
<asp:Listitem>Venus Williams</asp:Listltem>
</asp:DropDownlList>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvcandidate"

11

runat="server" ControlToValidate ="ddlcandidate"
ErrorMessage="Please choose a candidate"
InitialValue="Please choose a candidate">
</asp:RequiredFieldValidator>
</td>
</tr>
<tr>
<td class="style3">
House:
</td>
<td class="style2">
<asp:RadioButtonList ID="rblhouse" runat="server" RepeatLayout="Flow">
<asp:Listltem>Red</asp:Listltem>
<asp:Listltem>Blue</asp:Listltem>
<asp:Listltem>Yellow</asp:Listitem>
<asp:Listltem>Green</asp:Listitem>
</asp:RadioButtonList>
</td>
<td>
<asp:RequiredFieldValidator ID="rfvhouse" runat="server"
ControlToValidate="rblhouse" ErrorMessage="Enter your house name" >
</asp:RequiredFieldValidator>

</td>
</tr>
<tr>
<td class="style3">
Class:
</td>
<td class="style2">
<asp:TextBox ID="txtclass" runat="server"></asp:TextBox>
</td>
<td>
<asp:RangeValidator ID="rvclass"
runat="server" ControlToValidate="txtclass"
ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"
MinimumValue="6" Type="Integer">
</asp:RangeValidator>
</td>
</tr>
<tr>
<td class="style3">
Email:

</td>

<td class="style2">
<asp:TextBox ID="txtemail" runat="server" style="width:250px">
</asp:TextBox>

</td>

<td>
<asp:RegularExpressionValidator ID="remail" runat="server"

ControlToValidate="txtemail" ErrorMessage="Enter your email"

ValidationExpression="\w+([-+."T\w+)* @\w-+([-.]\w+)*\.\w+([-.]\w+) *">

</asp:RegularExpressionValidator>
</td>
</tr>
<tr>
<td class="style3" align="center" colspan="3">
<asp:Button ID="btnsubmit" runat="server" onclick="btnsubmit_Click"
style="text-align: center" Text="Submit" style="width:140px" />
</td>
</tr>
</table>
<asp:ValidationSummary ID="ValidationSummary1" runat="server"
DisplayMode ="BulletList" ShowSummary ="true" HeaderText="Errors:" />
</form>

The code behind the submit button

protected void btnsubmit_Click(object sender, EventArgs e)
{
if (Page.lsValid)
{
Iblmsg.Text = "Thank You";
}
else
{
Iblmsg.Text = "Fill up all the fields";
}
}

12

13

ASP.NET Architecture and its Components

ASP.Net is a framework which is used to develop a Web-based application.

« VBNef

Language B

- FH

Librar [- Framework Class Library

CAR * Common Language Runtime

ASP.NET Architecture Diagram

The architecture of the.Net framework is based on the following key components

» Language — A variety of languages exists for .net framework. They are VB.net and
C#. These can be used to develop web applications.

» Library - The .NET Framework includes a set of standard class libraries. The most
common library used for web applications in .net is the Web library. The web library
has all the necessary components used to develop.Net web-based applications.

» Common Language Runtime - The Common Language Infrastructure or CLI is a
platform. .Net programs are executed on this platform. The CLR is used for
performing key activities. Activities include Exception handling and Garbage
collection.

Below are some of the key characteristics of the ASP.Net framework

» Code Behind Mode — This is the concept of separation of design and code. By
making this separation, it becomes easier to maintain the ASP.Net application. The
general file type of an ASP.Net file is aspx. Assume we have a web page called
MyPage.aspx. There will be another file called MyPage.aspx.cs which would denote
the code part of the page. So Visual Studio creates separate files for each web page,
one for the design part and the other for the code.

» State Management — ASP.Net has the facility to control state management. HTTP is
known as a stateless protocol. Let's take an example of a shopping cart application.
Now, when a user decides what he wants to buy from the site, he will press the submit
button.

» The application needs to remember the items the user choose for the purchase. This
is known as remembering the state of an application at a current point in time. HTTP

14

IS a stateless protocol. When the user goes to the purchase page, HTTP will not store
the information on the cart items. Additional coding needs to be done to ensure that
the cart items can be carried forward to the purchase page. Such an implementation
can become complex at times. But ASP.Net can do state management on your
behalf. So ASP.Net can remember the cart items and pass it over to the purchase page.

» Caching — ASP.Net can implement the concept of Caching. This improve's the
performance of the application. By caching those pages which are often requested
by the user can be stored in a temporary location. These pages can be retrieved
faster and better responses can be sent to the user. So caching can significantly
improve the performance of an application.

ASP.Net is a development language used for constructing web-based applications. ASP.Net
is designed to work with the standard HTTP protocol.

What is ASP.Net Lifecycle?

» When an ASP.Net application is launched, there are series of steps which are carried
out. These series of steps make up the lifecycle of the application.

> Let's look at the various stages of a typical page lifecycle of an ASP.Net Web
Application.

Appication . | HrTpAppicaion
Sorr W) Oojectoreaton mp UYL

4

AP eu,ncﬁmn a oispw

» Application Start - The life cycle of an ASP.NET application starts when a request is
made by a user. This request is to the Web server for the ASP.Net Application. This
happens when the first user normally goes to the home page for the application for the
first time. During this time, there is a method called Application_start which is
executed by the web server. Usually, in this method, all global variables are set to
their default values.

> Object creation - The next stage is the creation of the HttpContext, HttpRequest &
HttpResponse by the web server. The HttpContext is just the container for the
HttpRequest and HttpResponse objects. The HttpRequest object contains information

>

>

15

about the current request, including cookies and browser information. The
HttpResponse object contains the response that is sent to the client.

HttpApplication creation - This object is created by the web server. It is this object
that is used to process each subsequent request sent to the application. For example,
let's assume we have 2 web applications. One is a shopping cart application, and the
other is a news website. For each application, we would have 2 HttpApplication
objects created. Any further requests to each website would be processed by each
HttpApplication respectively.

Dispose - This event is called before the application instance is destroyed. During this
time, one can use this method to manually release any unmanaged resources.
Application End - This is the final part of the application. In this part, the application
is finally unloaded from memory.

What is ASP.Net Page Lifecycle?

When an ASP.Net page is called, it goes through a particular lifecycle. This is done
before the response is sent to the user. There are series of steps which are followed for the
processing of an ASP.Net page.

Postoack event W pppp

Poge Rodyest nanding Rendéring

i 0 A

1.

Page Start Vaidadion Unioad

Page Load

ASP.Net Page Lifecycle

Page Request- This is when the page is first requested from the server. When the
page is requested, the server checks if it is requested for the first time. If so, then it
needs to compile the page, parse the response and send it across to the user. If it is not

16

the first time the page is requested, the cache is checked to see if the page output
exists. If so, that response is sent to the user.

Page Start — During this time, 2 objects, known as the Request and Response object
are created. The Request object is used to hold all the information which was sent
when the page was requested. The Response object is used to hold the information
which is sent back to the user.

Page Initialization — During this time, all the controls on a web page is initialized. So
if you have any label, textbox or any other controls on the web form, they are all
initialized.

Page Load — This is when the page is actually loaded with all the default values. So if
a textbox is supposed to have a default value, that value is loaded during the page load
time.

. Validation — Sometimes there can be some validation set on the form. For example,
there can be a validation which says that a list box should have a certain set of values.
If the condition is false, then there should be an error in loading the page.

Postback event handling — This event is triggered if the same page is being loaded
again. This happens in response to an earlier event. Sometimes there can be a situation
that a user clicks on a submit button on the page. In this case, the same page is
displayed again. In such a case, the Postback event handler is called.

Page Rendering — This happens just before all the response information is sent to the
user. All the information on the form is saved, and the result is sent to the user as a
complete web page.

Unload — Once the page output is sent to the user, there is no need to keep the
ASP.net web form objects in memory. So the unloading process involves removing all
unwanted objects from memory.

17

ASP.NET First Program Example to display your information
(The students may watch the video lesson provided by me)

Step 1) The first step involves the creation of a new project in Visual Studio. After launching
Visual Studio, you need to choose the menu option New->Project.

D ¥ QuickLaunch (Ctri+Q
WINDOW __ HELP
Ctrl+ Shift+N
b 51 Shift+Alt+N
Team Project...

Ctrl+N

m Existing Code... T
rel wiiar neve o rremium

Ctrl+Shift+5
[

You can find infc hd

enhancements i he followin
sections. i OV\UOS@ W f 9
project option

Alt+F4

Command Wine /eb Publish Activity

Ready

Step 2) The next step is to choose the project type as an ASP.Net Web application. Here we
also need to mention the name and location of our project.

> In the project dialog box, you can see various options for creating different types of
projects. Click the Web option on the left-hand side.

» When we click the Web option in the previous step, we will be able to see an option
for ASP.Net Web Application. Click this option.

» We then give a name for the application, which in our case is DemoApplication. We
also need to provide a location to store our application.

> Finally, we click the 'OK' button to let Visual Studio to create our project.

New Project 2]|

b Recent K 5 - Sortby: Default

4 Installed
ET Web Application (153

\

Choose ASPNet Web

e GIVe & name and
Application

location for the

Browse 10 o
application

Click the 0K button

= Browse...

18

Step 3) In the next screen, you have to choose the type of ASP.net web application that needs
to be created. In our case, we are going to create a simple Web Form application.

» First, choose the project type as 'Empty'. This will ensure that we start with a basic
application which is simple to understand.

» We choose the option "web Forms". This adds the basic folders. These are required
for a basic Web Forms Application.

Finally, we click the 'OK' button to allow Visual Studio to create our application.

In the Solution Explorer, you will be able to see the DemoApplication Solution. This
solution will contain 2 project files as shown above. At the moment, one of the key
files in the project is the 'Global.asax.cs'. This file contains application specific
information. In this file, you would initialize all application specific variables to their

Y VvV

default values.
New ASP.NET Project - WebApplication1 _
Select a template:
An empty project template for creating ASP.NET
£3 £ £ c2 applications. This template does not have any content in
51 &1 &1 &
Empty Web Forms MVC Web API
Learn more
C# C#
5 51
Singl.e Pa.ge ook .
Application Omosa EWIPM C/“OK W OK bvrron

project Type

Add folders and core references for:

Web Forms [MVC [] Web API

9 Authentication: Mo Authentication
[[] Add unitTests

Test project name: WebApplication.Tests

Change Authentication

- Choose Web £orms

Search Solution Explorer (Ctrl+;)
wJ Solution ‘Demofpplication’ (1 project)
& Properties
p =-m References

Bl App_Data
4 3D Gl ADplication Naume

b7 Glo

4 4] Web.config
T Web.Debug.config

Y Web.Release.config

common filg for the
enfire appl‘mﬂon

19

Step 4) Now, it's time to add a Web Form file to the project. This is the file which will
contain all the web-specific code for our project.

> Right-click on the DemoApplication project and
» Choose Add->Web Form from the context menu.

<Search=

Choose Web
\ B Newftem. Form from
Manage MuGet Packages... em... W C;Oﬂf@)(f

Set as StartUp Project

Solution Explorer & X Debug % New Folde nv

Llj ® - nais & Ctrl+X

on 'DemoApplication’ (bel

DemoApplication L Rename P

& Properties Unload Project JavaScript File
References -

M App_Data Open Folder in File Explorer

B Models Properties Alt+Enter

Web AP Controllel

Step 5) In the next screen we are going to be prompted to provide a name for the web form.

» Give a name for the Web Form. In our case, we are giving it a name of Demo.
» Click the Ok button.

Specify Name for ltem

[termn narme: Demaol

o | QK | | Cancel |

bIVE A naume
0 the Form

Automatically Visual Studio will create the Demo Web Form and will open it in Visual
Studio.

20

Step 6) The next step is to add the code, which will do the work of displaying your personal
details This can be done by just adding one line of code to the Demo.aspx file.

<html xmIns="www.w3.0rg/1999/xhtml">

<head runat="server">
<title>Personal Details</title>

</head>

<body>
<form id="form1" runat="server">
<div>
<%Response. Write("Name: Ravichandran"); %>
<%Response. Write("Class: MCA"); %>
<%Response. Write("Year: Third Year"); %>
<%Response. Write("Roll No: 1234999"); %>
</div>
</form>

</body>

</html>

Output

The Response object in ASP.Net is used to send information back to the user. So in our case,
we are using the method "Write" of the Response object to write the text. The <% and %>
markers are used to add ASP.net specific code.

If you follow all of the above steps and run your program in Visual Studio, you will get the
following output.

21

Web Form fundamentals

Y VvV

Y VvV

Web Forms are web pages built on the ASP.NET Technology.

It executes on the server and generates output to the browser. It is compatible to any
browser to any language supported by .NET common language runtime.

It is flexible and allows us to create and add custom controls.

We can use Visual Studio to create ASP.NET Web Formes. It is an IDE (Integrated
Development Environment) that allows us to drag and drop server controls to the web
forms. It also allows us to set properties, events and methods for the controls.

To write business logic, we can choose any .NET language like: Visual Basic or
Visual C#.

Web Forms are made up of two components: the visual portion (the ASPX file), and
the code behind the form, which resides in a separate class file.

Client
Browser
I Server
s
ASP.NET Framework
WebForms NET Language

WebControls (VB, C# C++ etc)

The components of the ASP.NET
The main purpose of Web Forms is to overcome the limitations of ASP and separate

view from the application logic.

Web Forms Features

ASP.NET is full of features and provides an awesome platform to create and develop web

application. Here, we are discussing these features of Web Forms.

Y

VVYVY VYV VYV

Server Controls

Master Pages

Working with data

Membership

Client Script and Client Frameworks
Routing

State Management

Security

Performance

Error Handling

22

Server Controls

Web Forms provides rich set of server controls. These controls are objects that run when the
page is requested and render markup to the browser. Some Web server controls are similar to
familiar HTML elements, such as buttons and text boxes. It also provides controls that we
can use to connect to data sources and display data.

Master Pages

It allowsus to create a consistent layout for the pages in our application. This page defines the
look and feel and standard behavior that we want for all of the pages in our application. When
users request the content pages, they merge with the master page to produce output that
combines the layout of the master page with the content from the content page.

Working with Data

In an ASP.NET Web Forms application, we use data-bound controls to automate the
presentation or input of data in web page Ul elements such as tables and text boxes and drop-
down lists.

Membership

Project's Account folder contains the files that implement the various parts of membership:
registering, logging in, changing a password, and authorizing access. Additionally, ASP.NET
Web Forms supports OAuth and OpenlID. These authentication enhancements allow users to
log into your site using existing credentials, from such accounts as Facebook, Twitter and
Google.

Client Script and Client Frameworks

We can enhance the server-based features of ASP.NET by including client-script
functionality in ASP.NET Web Form pages. We can use client script to provide a richer,
more responsive user interface to the users. We can also use client script to make
asynchronous calls to the Web server while a page is running in the browser.

Routing

We can configure URL routing of our application. A request URL is simply the URL a user
enters into their browser to find a page on our web site. We use routing to define URLSs that
are semantically meaningful to users and that can help with search-engine optimization
(SEO).

State Management

ASP.NET Web Forms includes several options that help you preserve data on both a per-page
basis and an application-wide basis.

Security

Developing a secure application is most important aspect of software development process.
ASP.NET Web Forms allow us to add extensibility points and configuration options that
enable us to customize various security behaviors in the application.

23

Performance

Web Forms provides good performance and allows us to modify performance related to page
and server control processing, state management, data access, application configuration and
loading, and efficient coding practices.

Debugging and Error Handling

We can diagnose problems that occur in our Web Forms application. Debugging and error
handling are well supported within ASP.NET Web Forms so that our applications compile
and run effectively.

ASP.NET provides various controls like: server controls and HTML controls for the Web
Forms. We have tables all these controls below.

Web control classes

Web control classes are defined in the System.Web.Ul.WebControls namespace. They
follow a slightly more tangled object hierarchy than HTML server controls, as shown in
Figure.

| System.ﬂbjf-:t |
| System.UI.Web.Control |

System.Web.UI.WebControls

[WebControl | L BaseBoundControl |
- Literal | H DataBalnundl:ontrol |
CompositeDataBoundControl |
[Detailsview |
: | FormView I| [HierarchicalDataBoundControl|
ImageButton | [ValidationSummary | [Gridview I (Menu]
ImageMap | [BaseValidator]
[BaseCompareValidator | | CheckBoxList I
\onparevalidator | [DropDownList -
{CustonValidator | [ListBox -
| [RangeValidator | [RadioButtonList|-
| RegularExpressionValidator| [BulletedList |-
TableHeaderCell| | [RequiredFieldvalidator |

The web control hierarchy

Server Controls are the tags that are understood by the server. There are basically three types
of server controls.

24

HTML Server Controls - Traditional HTML tags
Web Server Controls - New ASP. NET tags
Validation Server Controls - For input validation

ASP.NET HTML Server Controls

ASP.NET provides a way to work with HTML Server controls on the server side;
programming with a set of controls collectively is called HTML Controls.

>

>

>

These controls are grouped together in the Visual Studio Toolbox in the the HTML
Control tab. The markup of the controls are similar to the HTML control.

These controls are basically the original HTML controls but enhanced to enable
server side processing.

HTML elements in ASP. NET files are, by default, treated as text. To make these
elements programmable, add a runat="server" attribute to the HTML element. This
attribute indicates that the element should be treated as a server control.

ASP.NET Web Server Controls

Y VvV

Web server controls are special ASP. NET tags understood by the server.

Like HTML server controls, Web server controls are also created on the server and
they require a runat="server" attribute to work.

However, Web server controls do not necessarily map to any existing HTML
elements and they may represent more complex elements.

Mostly all Web Server controls inherit from a common base class, namely
the WebControl class defined in theSystem.Web.Ul.WebControls nhamespace.

ASP.NET Validation Server Controls

>

After you create a web form, you should make sure that mandatory fields of the form
elements such as login name and password are not left blank; data inserted is correct
and is within the specified range. Validation is the method of scrutinizing (observing)
that the user has entered the correct values in input fields.

A Validation server control is used to validate the data of an input control. If the data
does not pass validation, it will display an error message to the user.

In ASP. NET you can use ASP. NET Validation Controls while creating the form and
specify what ASP. NET Validation Controls you want to use and to which server
control you want bind this.

Validation Controls are derived from a common base class and share a common set of
properties and methods. You just have to drag and drop the ASP. NET Validation
Control in the web form and write one line of code to describe its functionality.

25

» This reduces the developer time from writing JavaScript for each type of validation.
Moreover, through ASP. NET Validation Controls if any invalid data is entered the
browser itself detects the error on the client side and displays the error without
requesting the server. This is another advantage because it reduces the server load.

Rich Controls
ASP.NET provides large set of controls. These controls are divided into different categories,
depends upon their functionalities. The followings control comes under the rich controls
category.

> FileUpload control

» Calendar control

» AdRotator control

» MultiView control

» Wizard control
FileUpload control
FileUpload control is used to browse and upload files. After the file is uploaded, you can
store the file on any drive or database. FileUpload control is the combination of a browse
button and a text box for entering the filename.
The FileUpload control supports the following important properties.
FileBytes: It returns the contents of uploaded file as a byte array
FileContent: You can get the uploaded file contents as a stream.
FileName: Provides the name of uploaded file.
HasFile: It is a Boolean property that checks whether particular file is available or
not.
> PostedFile: Gets the uploaded file wrapped in the HttpPostedFile object.

YV V VYV V

Example
using System;
using System.Text;
public partial class RichControl : System.Web.Ul.Page
{
protected void Page_Load(object sender, EventArgs e)
{
}
protected void btnSave_Click(object sender, EventArgs e)
{
StringBuilder sb = new StringBuilder();
if (FileUpload1.HasFile)
{
try
{
sb.AppendFormat(" Uploaded file: {0}", FileUpload1.FileName);
//save the file
FileUpload1.SaveAs(@"C:\" + FileUpload1.FileName);
//Showing the file information

26

sb.Append("
 File Name: {0}" + FileUpload1.PostedFile.FileName);
sb.Append("
 File type: {0}"+ FileUpload1.PostedFile.ContentType);
sb.Append("
 File length: {0}" + FileUpload1.FileBytes.Length);
Labell.Text = sb.ToString();
}
catch (Exception ex)
{
sb.Append("
 Error
");
sb.Append(ex.Message);
Labell.Text = sh.ToString();
}
}
else
{
Labell.Text = sb.ToString();
}

File Upload:
Choose File | No file chosen

Save

Label

Calendar control
Calendar control provides you lots of property and events. By using these properties and
events you can perform the following task with calendar control.

> Select date.

» Selecting a day, a week or a month.

» Customize the calendar's appearance.

The Calendar control supports three important events:

Event Description

SelectionChanged This event is fired when you select a day, a week or an entire
month.

DayRender This event is fired when each data cell of the calendar control is
rendered.

VisibleMonthChanged It is raised when user changes a month.

27

Calendar control supports SelectionMode property that allows you to select a single day,
week, or entire month.

Example
using System;
using System.Text;
public partial class RichControl : System.Web.Ul.Page
{
protected void Page L oad(object sender, EventArgs e)
{
}
protected void Calendarl_SelectionChanged(object sender, EventArgs e)
{
Labell.Text ="Todays date is: "+ Calendarl.TodaysDate.ToShortDateString();
Label2.Text = "Your date of birth is: " + Calendarl.SelectedDate. ToShortDateString();

k
k

When you select a date, SelectionChanged event will fired and displays the date in a label
controls.
In this example the date format is MM/DD/YYYY.

< December 2016 >

Su Mo Tu We Th Fr Sa
1

Ina
| (#3])

|&
ln
o
J
|{¥s)

(=

b
i
IS
(]
|H
(&})
|'—-‘
I
l&
an
IS
J

i
(es}
i
\0
)
i
ot
N
J
I
(%3]
|l
I

Il--J
wn
(%]
o
Il J
J
|r J
(e}
| J
0
[
o
|L<J
s

Todays date is: 12/15/2016

Your date of birth is: 12/8/2016

AdRotator control
» AdRotator control is used to display different advertisements randomly in a page.
» The list of advertisements is stored in either an XML file or in a database table.
» Lots of websites uses AdRotator control to display the advertisements on the web

page.

Code

To create an advertisement list, first add an XML file to

for XML file

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

<A

d>

<ImageUrl>~ /Images/logol.png</ImageUrl>
<NavigateUrl>http://www.TutorialRide.com</NavigateUrl>
<AlternateText>Advertisement</AlternateText>
<Impressions>100</Impressions>
<Keyword>banner</Keyword>

</Ad>
<Ad>

<ImageUrl>~ /Images/logo2.png</ImageUrl>
<NavigateUrl>http://www.TutorialRide.com</NavigateUr|>
<AlternateText>Advertisement</AlternateText>
<Impressions>100</Impressions>
<Keyword>banner</Keyword>

</Ad>
<Ad>

<ImageUrl>~ /Images/logo3.png</ImageUrl>
<NavigateUrl>http://www.CareerRide.com</NavigateUr|>
<AlternateText>Advertisement</AlternateText>
<Impressions>100</Impressions>
<Keyword>banner</Keyword>

</Ad>
<Ad>

<ImageUrl>~ /Images/logo4.png</ImageUrl>
<NavigateUrl>http://www.TutorialRide.com</NavigateUr|>
<AlternateText>Advertisement</AlternateText>
<Impressions>50</Impressions>
<Keyword>banner</Keyword>

</Ad>
</Advertisements>
In the given XML file 'Images’ is the name of the folder, where we stored all the images to

display. Now set the AdRotator control's AdvertisementFile property. Set the path of the
XML file that you created above to AdRotator control's AdvertisementFile property.
Important properties of AdRotator control.
ImageUrl: The URL of the image that will be displayed through AdRotator control.

NavigateUrl: If the user clicks the banner or ad then the new page is opened

>
>

Y VvV

according to given URL.

28

your project.

AlternateText: It is used for displaying text instead of the picture if picture is not

displayed. It is also used as a tooltip.

Impressions: It is a number that sets how frequently an advertisement will appear.

Keyword: It is used to filter ads or identifies a group of advertisement.

29

MultiView control

>
>

MultiView control can be used when you want to create a tabbed page.

In many situations, a web form may be very long, and then you can divide a long
form into multiple sub forms. MultiView control is made up of multiple view
controls. You can put multiple ASP.NET controls inside view controls. One View
control is displayed at a time and it is called as the active view. View control does not
work separately. It is always used with a Multiview control.

If working with Visual Studio 2010 or later, you can drag and drop a MultiView
control onto the form. You can drag and drop any number of View controls inside the
MultiView control. The number of view controls is depends upon the need of your
application.

The MultiView control supports the following important properties

>
>

>

ActiveViewlIndex: It is used to determine which view will be active or visible.

Views: It provides the collection of View controls contained in the MultiView
control.

For understand the Multiview control, first we will create a user interface as given
below.

In the given example, in Multiview control, we have taken three separate View control.
1. In First step we will design to capture Product details.

2. In Second step we will design to capture Order details.

3. Next we will show summary for confirmation.

MultiView1
Viewl
Step 1 - Product Details
Product ID l—
Product Name [________.,__.
Price/Unit]
Next == ‘
View2
Step 2 - Order Details
Order ID)
Quantity T
<< Previous ‘ Next »> l
View3

Step 3 - Summary
Product Details

Product ID [IbProductID]
Product Name :[IbIProductName]

Price/Unit [Ib[Price]
Order Details
Order ID [IbOrderID]

Quantity {IblQuantity]

<<Previous [Submit >> |

30

MultiViewControlDemo.aspx file
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="RichControl.aspx.cs" Inherits="RichControl" %>
<! DOCTYPE html>
<html xmlIns="http://www.w3.0rg/1999/xhtml">
<head runat="server">
<title></title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:MultiView ID="MultiView1" runat="server">
<asp:View ID="View1" runat="server">
<table style="border:1px solid black">
<tr>
<td colspan="2">
<h2>Step 1 - Product Details</h2>
</td>
</tr>
<tr>
<td>Product ID</td>
<td>
<asp:TextBox ID="txtProductID" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>Product Name</td>
<td>
<asp:TextBox ID="txtProductName" runat="server"></asp:TextBox>

</td>
</tr>
<tr>
<td>Price/Unit</td>
<td>
<asp:TextBox ID="txtProductPrice" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td colspan="2" style="text-align:right">
<asp:Button ID="btnStep2" runat="server"
Text="Next >>" onclick="btnStep2_Click" />
</td>
</tr>
</table>
</asp:View>
<asp:View ID="View2" runat="server">
<table style="border:1px solid black">
<tr>

<td colspan="2">

<h2>Step 2 - Order Details</h2>
</td>
</tr>
<tr>
<td>Order ID</td>
<td>
<asp:TextBox ID="txtOrderID" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>Quantity</td>
<td>
<asp:TextBox ID="txtQuantity" runat="server"></asp:TextBox>
</td>
</tr>
<tr>
<td>
<asp:Button ID="btnBackToStep1" runat="server" Text="<< Previous"
onclick="btnBackToStep1_Click" />
</td>
<td style="text-align:right">

<asp:Button ID="btnStep3" runat="server" Text="Next >>"

onclick="btnGoToStep3_Click" />
</td>
</tr>
</table>
</asp:View>
<asp:View ID="View3" runat="server">

<table style="border:1px solid black">

<tr>
<td colspan="2"><h2>Step 3 - Summary</h2></td>

</tr>
<tr>
<td colspan="2"><h3>Product Details</h3></td>
</tr>
<tr>
<td>Product ID</td>
<td>
<asp:Label ID="IbIProductID" runat="server"></asp:Label>
</td>
</tr>
<tr>
<td>Product Name</td>

<td>
<asp:Label ID="IbIProductName" runat="server"></asp:Label>
</td>
</tr>
<tr>
<td>Price/Unit</td>
<td>
<asp:Label ID="IblPrice" runat="server"></asp:Label>
</td>
</tr>
<tr>
<td colspan="2"><h3>0rder Details</h3></td>
</tr>
<tr>
<td>Order ID</td>
<td>
<asp:Label ID="IblOrderID" runat="server"></asp:Label>
</td>
</tr>
<tr>
<td>Quantity</td>
<td>
<asp:Label ID="IblQuantity" runat="server"></asp:Label>
</td>
</tr>
<tr>
<td>

32

<asp:Button ID="btnBackToStep2" runat="server" OnClick="btnBackToStep2_Click" style="height:
26px" Text="<<Previous" />

</td>
<td style="text-align:right

<asp:Button ID="btnSubmit" runat="server" Text="Submit >>" OnClick="btnSubmit_Click"

/>
</td>
</tr>

</table>
</asp:View>

</asp:MultiView>

</div>

</form>

</body>
</html>

MultiViewControlDemo.aspx.cs file

using System;

using System.Text;

public partial class RichControl : System.Web.Ul.Page

{

protected void Page_Load(object sender, EventArgs e)

}

ActiveViewlIndex property of MultiView control is zero based.

if (! IsPostBack)

{
MultiViewl.ActiveViewlndex = 0;

}
protected void btnStep2_Click(object sender, EventArgs e)
{
MultiViewl.ActiveViewIndex = 1;
}
protected void btnBackToStep1_Click(object sender, EventArgs e)
{
MultiView1.ActiveViewlIndex = 0;
}
protected void btnGoToStep3_Click(object sender, EventArgs e)
{
MultiView1.ActiveViewlIndex = 2;
IbIProductID.Text = txtProductID.Text;
IbIProductName.Text = txtProductName.Text;
IblPrice.Text = txtProductPrice.Text;
IblOrderID.Text = txtOrderID.Text;
IblQuantity.Text = txtQuantity.Text;
}
protected void btnSubmit_Click(object sender, EventArgs e)
{
Response.Redirect("SaveData.aspx");
}
protected void btnBackToStep2_Click(object sender, EventArgs e)
{

MultiView1.ActiveViewlIndex = 1;

33

34

Wizard Control

» This control is same as MultiView control but the main difference is that, it has inbuilt
navigation buttons.

» The wizard control enables you to design a long form in such a way that you can work
in multiple sub form. You can perform the task in a step by step process. It reduces
the work of developers to design multiple forms. It enables you to create multi step
user interface. Wizard control provides with built-in previous/next functionality.

» The Wizard control can contains one or more WizardStep as child controls. Only one
WizardStep is displayed at a time. WizardStep control has an important property
called as StepType. The StepType property determines the type of navigation buttons
that will be displayed for that step. The possible values are:

» The StepType associated with each WizardStep determines the type of navigation
buttons that will be displayed for that step.

The StepTypes are:

» Start:

» Step:

» Finish:

» Complete:

» Auto:

Drag the Wizard control on the web page from toolbox, you will get the following code.
You can put WizardStep according to application need.
Important events of Wizard control are as follows:
» ActiveStepChanged:
CancelButtonClick:
FinishButtonClick:
NextButtonClick:
PreviousButtonClick:

YV V V V

Now we will create an application as we had done with MultiView control. We will create
three different WizardStep in Wizard control.

1. In First step we will design to capture Product details.

2. In Second step we will design to capture Order details.

3. Next we will show summary for confirmation.
WizardControlDemo.aspx.cs file

using System;

using System.Web.Ul.WebControls;

public partial class WizardControl : System.Web.Ul.Page
{

protected void Page_Load(object sender, EventArgs e)
{
}

protected void Wizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)

{

Response.Redirect("SaveData.aspx");

}

protected void Wizard1_NextButtonClick(object sender, WizardNavigationEventArgs e)

{
if (e.NextStepIndex == 2)

{

IbIProductID.Text = txtProductID.Text;

IblIProductName.Text = txtProductName.Text;

IblPrice.Text = txtProductPrice.Text;
IblOrderID.Text = txtOrderID.Text;
IblQuantity.Text = txtQuantity.Text;

Step 1- Product Details

Step 2- Order Details
Step 3- Summary

%Step 1 - Product Details

EProduct D

[Product Name |

' Price/Unit

Next

Step 1- Product Details
Step 2- Order Details

Step 3- Summary

‘Step 2 - Order Details

‘Order ID |

Quantity |

Previous | Next!

35

Register the event for Next button by using property window with event tab. In the given

example, for going third step from second we have to set e.NextStepindex

SteplIndex is zero based.

2. Here

FinishButtonClick event performs the final WizardStep with a summary of the answers
entered in the previous WizardStep controls.

36

State management

» Maintaining state is an important part of any web application. State Management
System is a mechanism to track the user state, or data, which is significant with
particular application. State management manages the state of an object on different
request.

» The HTTP protocol is the fundamental protocol of the World Wide Web. HTTP is a
stateless protocol means every request is from new user with respect to web server.
HTTP protocol does not provide any method of determining whether any two requests
are made by the same person.

There are two types of state management system in ASP.NET.

» Client-side state management
» Server-side state management

Client-side state management stores information on the client’s computer and server-side
state management stores the information in the server’s memory or a database.

Client side state management system

ASP.NET provides several techniques for storing state information on the client. These
include the following:

> View state: ASP.NET uses view state to track values in controls between page
requests. It works within the page only. You cannot use view state value in next page.
ASP.NET page contains a hidden form field named _ VIEWSTATE. This hidden
form field stores the value of the control’s property. When the page is posted back to
the server, then the value of _ VIEWSTATE is pulled out and re-creates the values of
all the properties stored in View State.

» Control state: The data that is associated with the server controls is called as control
state. You can persist information about a control that is not part of the view state. If
view state is disabled for a control or the page, the control state will still work.

» Hidden fields: It store data without displaying that control and data to the user’s
browser. This data is presented back to the server and is available when the form is
processed. Hidden fields data is available within the page only (page-scoped data). It
is rendered as an <input type= "hidden"/> HTML tag. Hidden field should not be used
to store confidential data.

» Cookies: Cookies are small piece of information that server creates on the browser.
Cookies store a value in the user’s browser that the browser sends with every page
request to the web server. It works on key/value pair.

There are two types of cookies:

> Session cookies
> Persistent cookies

37

» Query strings: In query strings values are stored at the end of the URL. These values
are visible to the user through his or her browser’s address bar. Query strings are not
secure. You should not send secret information through the query string.

View state

> View state is an inbuilt feature of ASP.NET that retains values between multiple
requests for the same page. ASP.NET page contains a hidden form field named
__ VIEWSTATE.

» This hidden form field stores the value of the control’s property. By default view state
is enabled for page and its controls.

> You can disable view state by setting the property EnableViewState as false. Storing
too much data into View State can hamper the performance of web page.

Therefore we should take care while enabling and disabling the property EnableViewState.

Example

//writing information to view state
ViewState.Add("MylInfo", "Welcome");
//read information from view state
if (ViewState["MyInfo"] I= null)
{

string data = (string)ViewState["MyInfo"];

}
Hidden fields

Hidden fields in HTML are simply input fields and not visible on the browser during
execution. Hidden fields are used to store data at the page level. Hidden fields are simple to
implement for a page specific data and stores small amount of data. We should not use
hidden fields for sensitive data. It has no built-in compression, encryption technique.
<asp:HiddenField ID="HiddenField1" runat="server" />

Example

//writing information to Hidden field
HiddenField1.Value = "Welcome";
//read information from Hidden field
string str = HiddenField1.Value;

Cookies

A cookie is a small amount of data that server creates on the client. Cookie is small text
information. You can store only string values when using a cookie. When a request sent to
web server, server creates a cookie, and sent to browser with an additional HTTP header.

The HTTP header looks like this:
Set-Cookie: message=Hello.

38

Here cookie name is message and value is hello.
If the cookies has created on a browser and user requests a page from the same application,
then the browser sends a header that looks like this:
Cookie: message=Hello
There are two types of cookies:
» Session cookies: A session cookie exists only till the user closes the web browser, the
session cookie deleted permanently.
> Persistent cookies: A persistent cookie, on the other hand, can available for months or
even years. When you create a persistent cookie, the cookie is stored permanently by
the user’s browser on the user’s computer.
Use of Cookies
Some common uses of cookies are:

» Authentication of user.

» ldentification of a user session.
> User's preferences.

» Shopping cart contents.

» Remember users between visits.

Creating and reading cookies
We can create cookies in different ways.

Example 1
Response.Cookies["Message"].Value = TextBox1.Text;
string msg = Request.Cookies["Message"].Value;

Example 2

HttpCookie UserCookies = new HttpCookie("Message");
UserCookies.Value = TextBox1.Text;
Response.Cookies.Add(UserCookies);

// Reading the cookie.

string roll = Request.Cookies["Message"].Value;

Example 3

//Writing Multiple values in single cookie
Response.Cookies["EmpCookies"]["EmpID"] = txtID.Text;
Response.Cookies["EmpCookies"]["FirstName"] = txtFirstName.Text;
Response.Cookies["EmpCookies"]["LastName"] = txtLastName.Text;
Response.Cookies["EmpCookies"]["Address"] = txtAddress. Text;

/IReading Cookie.
string info;
if (Request.Cookies["EmpCookies"] = null)
{
info = Request.Cookies["EmpCookies"]["EmpID"] + "</br>";
info += Request.Cookies["EmpCookies"]["FirstName"] + "</br>";
info += Request.Cookies["EmpCookies"]["LastName"] + "</br>";

39

info += Request.Cookies["EmpCookies"]["Address"] + "</br>";

Labell.Text = info;

¥

/I cookie names are case sensitive. Cookie named EmpCookies is different from setting a
cookie named empcookies.

The above examples create a session cookie. The cookie disappears when you close your web
browser. If you want to create a persistent cookie, then you need to specify an expiration date
for the cookie.

Response.Cookies["message"].Expires = DateTime.Now.AddYears(1);

Limitation of cookies

>
>
>
>
>

Cookie can store only string value.
Cookies are browser dependent.
Cookies are not secure.

Cookies can store small amount of data.
Size of cookies is limited to 4096 bytes.

Important properties of HttpCookie

>

YV V VYV VY

>

Domain: Enables you to get or set the domain of the cookie.

Expires: It contains the expiration time of the cookie.

HasKeys: Returns bool value, indicating whether the cookie has subkeys.
Name: Provides the name of the cookie.

Path: Enables you to get or set the virtual path to submit with the cookie.
Secure: It contains true if the cookie is to be passed with SSL.

Value: It contains the value of the cookie.

Example

using System;

using System.Web;

public partial class _Default : System.Web.UIl.Page

{

protected void Page_Load(object sender, EventArgs e)

{

HttpCookie obj = new HttpCookie("MyCookie");
obj.Value="Welcome !!";

Response.Cookies.Add(obj);

string info;

info = "Domain =: " + obj.Domain + "</br>";

info +="Name =: " + obj.Name + "</br>";

info += "Path =: " + obj.Path+"</br>";

info +="Value =: " + obj.Value + "</br>";

info += "HasKeys =: " + obj.HasKeys + "</br>";

info +="Secure =: " + obj.Secure + "</br>";
Labell.Text = info;}

40

Query strings

» Query String object is helpful when we want to transfer a value from one page to
another. Query String is very easy to use. Query string values are appended to the end
of the page URL. It uses a question mark (?), followed by the parameter name
followed by an equal sign (=) and its value.
You can append multiple query string parameters using the ampersand (&) sign.
Always remember, we should not send lots of data through QueryString. Another
limitation is that information we send through QueryString is visible on the address
bar.

Y VvV

Example

Response.Redirect("Default.aspx?msg="+txtMessage.Text);

In the example, the Response.Redirect method requests the Default.aspx page. The query
string contains a single parameter named msg. The value for that parameter is set at run time
by entering the data into textbox control. In this example the query string has one parameter
but we can pass more than one parameter as given below.
Response.Redirect("Default2.aspx?ID=" + txtID.Text + "&Name=" + txtFirstName.Text);
Reading values from QueryString

Labell.Text = "ID: " + Server.HtmlEncode(Request.QueryString["ID"]) + ", Name: " +
Server.HtmlEncode(Request.QueryString["Name"]);

We should use Server.HtmlEncode method while using QueryString. Server.HtmIEncode
method encode the "<" sign with "<." Special characters that a Web browser cannot process,
it helps to process that browser understands easily.

Important points about QueryString
> Itiseasy to use.
» Sensitive data should not pass using QuerysString.
> Browsers have 2,083-character limits on URLs. Therefore there is limit to pass the
data.
QueryString is a part of URL.
It uses one or more than one parameter.
It uses "&" sign while using more than one parameter.
SPACE is encoded as '+' or '%20'

YV V V V

41

Server side state management system - ASP.NET

There are two important objects which work on server.

» Session

» Application
State management is the technique that is used to maintain user and page information over
multiple requests while browsing the web.

» HTTP is a stateless protocol. It does not store any information about user on web
page. It is a general requirement that information should be maintained while
navigating the website.

» Session provides that facility to store information on server memory not browse. It
stores the user’s specific information. It can store any type of object. For every user
Session data store separately, means session is user specific.

Storing the data in Session object
Session ["UserName"] = txtName.Text;
Retreving the data from Session object

Labell.Text = Session ["UserName"].ToString();
When we store data to Session state, a session cookie named is ASP.NET_Sessionld is

created automatically. It contains a unique identifier that is used to track the user while
moving from one page to another page.
Important properties of Session object

Session Description
Properties

CookieMode It specifies whether cookieless sessions are enabled.
Possible values are AutoDetect, UseCookies, UseDeviceProfile, and
UseUri.

SessionID It provides the unique session identifier. It is secure enough and can't be
decoded or hampered. When client communicate with server, only session
id is transmitted, between them.

Count It provides the number of items in Session state.

IsCookieless Provides the information whether sessions are cookieless or not.

IsNewSession | It determines whether session is new or not.

IsReadOnly It determines whether the Session state is read-only.
Keys Provides the list of item names stored in Session state.
Mode It determines the current Session state store provider. Possible values are

Custom, InProc, Off, SglServer, and StateServer.

42

Important methods of Session object
» Abandon: It is used to end a user session.
» Clear: It clears all items from Session state.
» Remove: This method is used to remove a particular item from Session state.

Example

using System;
using System.Web;
public partial class _Default : System.Web.Ul.Page

{
protected void Page_Load(object sender, EventArgs e)
{
string info;
info = "CookieMode =: "+Session.CookieMode.ToString() + "</br>"; ;
info += "Count =: "+ Session.Count.ToString() + "</br>"; ;
info += "IsCookieless =: " + Session.IsCookieless.ToString() + "</br>"; ;
info += "IsNewSession =: " + Session.IsNewSession.ToString() + "</br>"; ;
info += "IsReadOnly =: " + Session.IsReadOnly.ToString() + "</br>"; ;
info += "Keys =: "+Session.Keys.Count + "</br>"; ;
info += "Mode =: "+Session.Mode.ToString() + "</br>"; ;
info += "SessionID =: " + Session.SessionID.ToString() + "</br>"; ;
Labell.Text = info;
}
}

Session Events
There are two events that session object supports. These two events are handled in
Global.aspx file.

» Session_Start
» Session_End

Whenever a new user sessions starts, Session_Start events fires. The Session_End event is
raised when a session ends.

Example: Global.asax file
<%@ Application Language="C#" %>
<script runat="server">
void Application_Start(object sender, EventArgs e)
{
Application["UserCount"] = 0;
}
void Application_End(object sender, EventArgs e)
{

// Code that runs on application shutdown

}

void Application_Error(object sender, EventArgs e)

43

{

// Code that runs when an unhandled error occurs

void Session_Start(object sender, EventArgs e)

{
Application.Lock();
int count = (int)Application["UserCount"];
Application["UserCount"] = count + 1;
Application.UnLock();

}

void Session_End(object sender, EventArgs e)

{
Application.Lock();
int count = (int)Application["UserCount"];
Application["UserCount"] = count - 1;
Application.UnLock();

</icript>

In the above example, the variable UserCount is incremented by one, whenever a new session
begins.

The Session_End event is raised, when a session ends and the UserCount variable is
decremented by one.

We can display the result on web page as follows:

void Page_Load()

{
Labell.Text = Application["UserCount"];ToString();

}
Session Times Out property

By default, the ASP.NET Framework provides 20 minutes as session timeout. We can change
this time according to application need.

Be aware that when you increase the value of session timeout property more memory is
consumed by your application.

You can specify the Session timeout in the web configuration file or you can do it

programmatically.
<configuration>
<system.web>
<sessionState timeout="60" />
</system.web>
</configuration>

44

Session Mode
In ASP.NET there are following session modes available,

» InProc

» StateServer

» SQLServer

» Custom

> Off
By default, the Session state mode is InProc means Session state is stored in memory in the
same process as the ASP.NET process. So accessing data is very fast. Another advantage is
that there are no requirements of serialization to store data in InProc Session Mode.

There are two main disadvantages to storing Session state in the ASP.NET process.

» We can’t use in-process Session state with a web farm.

> All Session state is lost, if application restarts.
You can store Session data out-of-process. You can choose StateServer option for storing
session data. It stores Session state in a Windows NT process.
SqlServer mode stores Session state in a SQL Server database. It is the most reliable and
secure session management and Session data do not affected if we restart the I1S.

Custom mode stores Session state in a custom location.
If we set Session Mode=""0ff"" in web.config, Session will be disabled for the application.
For this we need to configure web.config in following way.
<configuration>

<system.web>

<sessionState mode="0ff"></sessionState>

</system.web>

</configuration>

Session State Mode State Provider
InProc In-Memory Object

StateServer Aspnet_state.exe

SQLServer DataBase

Custom CustomProvider

Cookieless Session State

If a user disables cookies in the browser, then Session state doesn’t work because by default,
Session state depends on cookies. The ASP.NET Framework uses the ASP.NET_Sessionld
cookie identifier to identity the user while browsing the web. If you want that Session state
should work even when cookies are disabled, then you can use cookieless sessions.

45

You can enable cookieless sessions by adjusting the sessionState element in the web
configuration file as.

<configuration>
<system.web>
<sessionState cookieless="AutoDetect" regenerateExpiredSessionld="true" />
</system.web>
</configuration>

Advantages and disadvantages of Session
Following are the basic advantages and disadvantages of using session.
Advantages:
» It stores user states and data to all over the application.
» Easy mechanism to implement and we can store any kind of object.
» Stores every user data separately.
» Session is secure and transparent from user because session object is stored on the
server.
Disadvantages:
» Performance overhead in case of big number of user, because of session data stored in
server memory.
» Overhead involved in serializing and De-Serializing session Data. Because In case of
StateServer and SQLServer session mode we need to serialize the object before store.

Application State

Application object is used to store information at application level rather than user level. All
pages of your application can access the Application object. Application variables are stored
on a web server.

If you are using Application object, then you may face concurrency problem. To avoid this
problem we should use the lock and unlock methods. Therefore if multiple thread requests
came for same data then only one thread can do the work.

Writing data to Application object

Application[*Message"] = "Hello to all™;

We can use Application object in a scenario where we want to count the number of visitors of
web site.
Application State variables are empty, when the process hosting the application is restarted.

46

Difference between session state and application state

Application Session

It works at application level rather than user|Session object is user specific.
level.

Application state is stored only in the memory | Session state is stored in inProc and outProc
on the server.

Application state does not depends upon|Session object depends upon cookie or can be
client's cookies cookieless.

Application state does not depend upon the|Session state has scope to the current browser
current browser. only.

47

Tracing, Debugging, Error Handling
In any application, errors are bound to occur during the development process. It is important
to be able to discover errors at an early stage.
In Visual Studio, it is possible to do this for ASP.Net applications. Visual Studio is used for
Debugging and has error handling techniques for ASP.Net.
What is Debugging in ASP.NET?
Debugging is the process of adding breakpoints to an application. These breakpoints are used
to pause the execution of a running program. This allows the developer to understand what is
happening in a program at a particular point in time.
Let's take an example of a program. The program displays a string "We are debugging" to the
user. Suppose when we run the application, for some reason, the string is not displayed. To
identify the problem we need to add a breakpoint. We can add a breakpoint to the code line
which displays the string. This breakpoint will pause the execution of the program. At this
point, the programmer can see what is possibly going wrong. The programmer rectifies the
program accordingly.
Here in the example, we will use our 'DemoApplication’ that was created in earlier chapters.
In the following example, we will see

« How to make the demo application display a string.

o How to add breakpoints to an application.

e How to debug the application using this breakpoint.
Step 1) Let's first ensure we have our web application open in Visual Studio. Ensure the
DemoApplication is open in Visual Studio.

Properties Output Solution Explorer & > Demo.aspx

T

® o--udE £ -

fa] Solution 'DemoApplication’ (1 project)
4 @] DemoApplication
b & Properties
> u-8 References
Bl App_Data
B Models
@ Demno.aspx
™ Demo
b T4 Demo.aspr.designer.cs
4 51 Global.asax
P 7Y Global.asax.cs
b 1 Web.config

Step 2) Now open the Demo.aspx.cs file and add the below code line.
o We are just adding the code line Response.Write to display a string.
e So when the application executes, it should display the string "We are debugging” in
the web browser.

48

s Demo : System.Web.UI.Pag

d void Page_Load(object sender, EventArgs e)

Response.Write("We are debugging");) .
P Display 4. string

namespace DemoApplication

{
public partial class Demo : System.Web.UI.Page
{
protected void Page Load(object sender, EventArgs €)
{
Response.Write("We are debugging");
}
¥
}

Step 3) Now let's add a breakpoint. A breakpoint is a point in Visual Studio where you want
the execution of the program to stop.

s Demo : System.Web.UI.Page

oid Page_Load(object sender, EventArgs e)

{
@] 1\ Response.Write("We are debugging"); @
}

' code line will now

1. To add a breakpoint, you need to click the column where you want the breakpoint to
be inserted. So in our case, we want our program to stop at the code line
"Response.Write". You don't need to add any command to add a breakpoint. You just
need to click on the line on which you want to add a breakpoint.

2. Once this is done, you will notice that the code gets marked in red. Also, a red bubble
comes up in the column next to the code line.

Note: - You can add multiple breakpoints in an application

49

Step 4) Now you need to run your application using Debugging Mode. In Visual Studio,
choose the menu option Debug->Start Debugging.
DEBUG | TEAM TOOLS TEST AMNALYZE WINDOW

Windows [=

Graphics b

Start Debugging F5

Start Without Debugging \QK oY A ..

Attach to Process... =
Debug Installed App Package... Omosa OPmn
Exceptions... Ctrl+Alt+E

Performance and Diagnostics Alt+F2 g‘rafr‘r

Step Into F11

Step Over F10 D@'OU@@'IH@

Toggle Breakpoint F9
Mew Breakpoint

Delete All Breakpoints Ctrl+Shift+F9

Demo : System.Web.UI.Page

Page_Load(sender, EventArgs e)

Response.Write("We are debugging");

Ling wil be hghligted

When you perform all the steps correctly, the execution of the program will break. Visual
Studio will go to the breakpoint and mark the line of code in yellow.

50

What is Tracing in ASP.NET?

Application tracing allows one to see if any pages requested results in an error. When tracing
is enabled, an extra page called trace.axd is added to the application. (See image below). This
page is attached to the application. This page will show all the requests and their status.

" [localhost53003/trace.axd }(_ .

| :53003/trace.ax
- C localhost:53003/tra d

Let's look at how to enable tracing for an application.
Step 1) Let's work on our 'DemoApplication’. Open the web.config file from the Solution
Explorer.

fal Solution 'DemoApplication’ (1 project)
4 =] DemoApplication
4 J Properties
4 | PublishProfiles
I FileCopy.pubxml
I WebPublish.pubxml
P c# Assemblylnfo.cs

[=W References

M App Data Dwa C’“Gk On

B Models . .
4 g Fflerr'ln:n.as.p:-:: Wﬂbﬂ{}ﬂf’\@ ‘hlﬂ
TN Demo .5
b Y Demo.asp
4 #41 Global.as
b Glohal.asaxcs

b 41 Web.config

Step 2) Add the below line of code to the Web.config file.
The trace statement is used to enable tracing for the application.
o The 'requestLimit’ in trace statement is used. It specifies the number of page requests
that has to be traced.
« In our example, we are giving a limit of 40. We give limit because a higher value will
degrade the performance of the application.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci6.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci7.png

51

true” targetFramework="4.@
tFramework="4.8@

pageQutput="false" requestLimit="408" localOnly="false

T enaole tracing

<?xml version="1.0" encoding="utf-8"?>

<l--

For more information on how to configure your ASP.NET application, please visit

http://go.microsoft.com/fwlink/?Linkld=169433

>

<configuration>

<system.web>

<compilation debug="true" targetFramework="4.0" />
<httpRuntime targetFramework="4.0" />

<trace enable="true" pageOutput="false" requestLimit="40" localOnly="false"/>

</system.web>
</configuration>
Run the "demoapplication” in Visual Studio.

Output:-

D localhost53003/trace.axd X %
F

L c localhost trace.axd =

Application Trace

[clear current trace]
Physical Directory:C:\Guru29\Demospplication\Demoapplication),

Requests to this Anplication Remaining:
- 3 Status

MNb. Time of Request File Code Verb o

1 :ﬁﬁmom S22 200 GET | view Details
126/ - 0.4

2| 3/26/2016 12:22:0 2] 200 GET | View Details

/ -22:08
3| 3/26/201612:22:0 __browserLink/requestData/78dd65b7dc3a46c33e4915043b26f688| 200 GET | view Detail

Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.34274

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci8.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci9.png

52

If you now browse to the URL — http://localhost:53003/trace.axd, you will see the
information for each request. Here you can see if any errors occur in an application. The
following types of information are shown on the above page

1. The time of the request for the web page.

2. The Name of the web page being requested.

3. The status code of the web request. (status code of 200 means that the request is
successful).

4. The View details which you allow to view more details about the web request. An
example of this is shown below. One important detailed information provided is the
header information. This information shows what is the information sent in the header
of each web request.

¥ [localhost53003/Traceanc X '\
J

c localhost

Request Cookies Collection

Name Value Size
Response Cookies Collection

Name value

Headers Collection

Name Value

Connection keep-alive

Accept text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept- .

Encoding gzip, deflate, sdch

Accept } L

Language en-us,en;q=0.8

Host localhost: 53003

g;z:{t Mozilla/5.0 (Windows NT 6.3; WOWS&4) AppleWebkKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safar
Upgrade

Insecure- 1

Requests

Form Collection

Name Value

-

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci10.png

53

Error Handling: Displaying a Custom Error Page
In ASP.Net, you can have custom error pages displayed to the users. If an application
contains any sort of error, a custom page will display this error to the user.
In our example, we are first going to add an HTML page. This page will display a string to
the user "We are looking into the problem™. We will then add some error code to our
demo.aspx page so that the error page is shown.
Let's follow the below mentioned steps
Step 1) Let's work on our DemoApplication. Let's add an HTML page to the application

1. Right-click on the DemoApplication in Solution Explorer

2. Choose the menu optlon Add >HTML Page

Ctrl+Shift+A

Shift+Alt+A

MNew Folder

Add ASP.NET Folder

Service Reference...

HTML Page e

¥ Properties b Build Javascript Fle

4 gl Publishl Rebuild
1 FileC Clean
AW View Choose HTML Pﬂgﬂ
b Assemb
P =® References
Ml App Data Publish...
M Models Publish to AWS... XML File
4 :!r!‘l Demo.aspx) ~
b T Demo.a
P 1) Demo.a &°
4 &1 Global.asax Add
b' ': Global.z %

J:l.r'la|'_-,':F'_

to This

¥ alutinn Fynlorer Wiss:

Manage NuGet Packages..

Step 2) In the next step, we need to prowde a name to the new HTML page.
1. Provide the name as 'ErrorPage.'
2. Click the 'OK' button to proceed.

Specify Name for ltem

[temn name: ErrcrPage]

o | QK | Cancel |

Provide a naue Click. 0K

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci14.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci15.png

54

Step 3) The Errorpage will automatically open in Visual Studio. If you go to the Solution
Explorer, you will see the file added.

wd Solution 'Demofpplication’ (1 project]
4] DemoApplication
4 S Properties
4] PublishProfiles
I FileCopy.pubxml
I\ WebPublish.pubxml
P o Assemblylnfo.cs
[=B References
M App_Data
B Models

o Do EXvorPagentm
l"J Enn;Pa!;I;.html PW Wd

44" Glohal.asax
BTN Global.asax.cs

b ¢ Web.config

Add the code line "We are looking into the problem” to the HTML page. You don't need to
close the HTML file before making the change to the web.config file.

Vaq Lve 18Xt
/

M& 9LE TOOKIWE Tufo fps bLopTsw

<IDOCTYPE html>
<html xmIns="http://www.w3.0re/1999/xhtmI">
<head runat="server">

<title></title>
</head>

<body>

We are looking into the problem

</body>
</html>
Step 4) Now you need to make a change in the web.config file. This change will notify that

whenever an error occurs in the application, the custom error page needs to be displayed.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci16.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci17.png

55

The 'customErrors' tag allows defining a custom error page. The defaultRedirect property is
set to the name of our custom error's page created in the previous step.

debug="true" targetFramework="4.8
targetFramework="4.0

mode="0n" defaultRedirect="ErrorPage.html

™~~~

Cvstom ervor block

<configuration>
<system.web>
<compilation debug="true" targetFramework="4.0" />
<httpRuntime targetFramework="4.0" />
<customErrors mode="0n" defaultRedirect="ErrorPage.html">

</customErrors>
</system.web>
</configuration>

Step 5) Now let's add some faulty code to the demo.aspx.cs page. Open this page bydouble-
clickingg the file in Solution Explorer

fa] Solution 'DemoApplication’ (1 project)
4 =] DemoApplication
4 J Properties
4 @] PublishProfiles
I FileCopy.pubxml
I WebPublish.pubxml
P Assemblylnfo.cs
[=B References

M App_Data Dovble click. on

B Models

L e demoaspx.cs file

b Y Demo.aspr.designer.cs
.1 ErrorPage.html

4 41 Global.asax
b 79 Global.asax.cs

b ¢ Web.config

Add the below code to the Demo.aspx.cs file.
e These lines of code are designed to read the lines of a text from a file.
o The file is supposed to be located in the D drive with the name 'Example.txt.'

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci18.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci19.png

56

e But in our situation, this file does not really exist. So this code will result in an error

when the application runs.

id Page_Load(object sender,

g path = @"D:\Example.txt";

g[] lines;

in an error

namespace DemoApplication

{
public partial class Demo : System.Web.UI.Page
{
protected void Page_Load(object sender, EventArgs e)
{
String path = @"D:\Example.txt";
string[] lines;
lines = File.ReadAllLines(path);
}
}
}

Now execute the code in Visual Studio and you should get the below output.
Output:-

/[localhost53003/ErrorPag X |
y [4 localhost:53 rrorPac _

C' | [localhost:53003/ErrorPage.html?aspxerrorpath=/Dem

We are looking into the problem
L

Exyor s’mn@ 1S
d‘tsplaqad

The above page shows that an error was triggered in the application. As a result, the

Error.html page is displayed to the user.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci20.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci21.png

57

ASP.NET Unhandled Exception
Even in the best of scenarios, there can be cases of errors which are just not forseen.
Suppose if a user browses to the wrong page in the application. This is something that cannot
be predicted. In such cases, ASP.Net can redirect the user to the errorpage.html.
Let's see an example on this.
e We are going to use our same '‘DemoApplication’ which has the Errorpage.html.
o And we will try to view a web page which does not exist in our application.
e We should be redirected to our ErrorPage.html page in this case. Let's see the steps to
achieve this.
Step 1) Let's work on our DemoApplication. Open the Global.asax.cs file from the Solution
Explorer

wl Solution 'Demofpplication’ (1 project)
4 3] DemoApplication
4 J Properties
4 @] PublishProfiles
I FileCopy.pubxml
I WebPublish.pubxm|
P Assemblylnfo.cs

[=B References
Bl App Data

Bl Models Dwa C’“Gk Dn

4 @l Flerﬂn:n.as.p:-::)
) o pemosees Globalasax.cs file

D ErrarPage.html
A 1:]'—2 Glabal ocau

B 7Y Global.asax.cs

b Eebeanfiy

NOTE: The global.asax.cs file is used to add code that will be applicable throughout all
pages in the application.

Step 2) Add the below line of code to the global.asax.cs. These lines will be used to check for
errors and display the ErrorPage.html page accordingly.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci22.png

58

/ Add event handier
srotected void Application_Error(object sender, EventArgs e) @

HttpException lastErrorWrapper = Server.GetLastError() as HttpException;

(lastErrorWrapper.GetHttpCode() == 484) 2

Server.Transfer("~/ErrorPage.html"); \

3
Create an ervor
page

namespace DemoApplication

{
public partial class Demo : System.Web.UI.Page
{
protected void Application_Error(object sender, EventArgs €)
{
HttpException lastErrorWrapper = Server.GetLastError() as
HttpException;
if(lastErrorWrapper.GetHttpCode() == 404)
Server.T ransfer("~/ErrorPage.html");
}
¥
}

Code Explanation:-

1. The first line is the Application_Error event handler. This event is called whenever an
error occurs in an application. Note that the event name has to be 'Application_Error'.
And the parameters should be as shown above.

2. Next, we define an object of the class type HttpException. This is a standard object
which will hold all the details of the error. We then use the Server.GetLastError
method to get all the details of the last error which occurred in the application.

3. We then check if the error code of the last error is 404. (The error code 404 is the
standard code returned when a user browses to a page which is not found). We then
transfer the user to the ErrorPage.html page if the error code matches.

Now run the code in Visual Studio and you should get the below output

Output:-

Browse the page http://localhost:53003/Demol.aspx . Remember that Demol.aspx does not
exist in our application. You will then get the below output.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci23.png

59

/ [localhost:53003/ErrorPac .‘l’_ \

C' | [localhost:53003/ErrorPage.html?aspxerrorpath=/Dem

We are looking into the problem

exror si‘ring 1S

displajed

The above page shows that an error was triggered in the application. As a result, the
Error.html page is displayed to the user.

ASP.NET Error logging

By logging application errors, it helps the developer to debug and resolve the error at a later
point of time. ASP.Net has the facility to log errors. This is done in the Global.asax.cs file
when the error is captured. During the capturing process, the error message can be written
into a log file.

Let's see an example on this.

We are going to use our same DemoApplication which has the Errorpage.html.

And we will try to view a web page which does not exist in our application.

We should be redirected to our ErrorPage.html page in this case.

And at the same time, we will write the error message to a log file. Let's see the steps
to achieve this.

Step 1) Let's work on our DemoApplication. Open the Global.asax.cs file from the Solution
Explorer

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci24.png

60

wd Solution 'Demofpplication’ (1 project)
4] DemoApplication
4 J& Properties
4 fm] PublishProfiles
I\ FileCopy.pubxm|
I WebPublish.pubxm|
oo Assemblylnfo.cs

u-B References
M App_Data

M Models Dovble CHGK on

g Demo.aspx

b TY Demo.aspx.cs &Wbalmx.os {v‘w
b TY Demo.aspx.designer.cs

.1 ErrorPage.htrml

de=Glabalacan

b 7Y Global.asax.cs

Step 2) Add the below line of code to the global.asax.cs. It will check for errors and display
the ErrorPage.html page accordingly. Also at the same time, we will log the error details in a
file called 'AllErrors.txt." For our example, we will write code to have this file created on the
D drive.

cted void Application_Error(object sender,

Exception exc = Server.GetLastError();

String str = ""; n—

str = exc.Message;

string path = @"D:\AllErrors.txt";
File.WriteAllText(path, str);

Server.Transfer("~/ErrorPage.html"); (&4

AN cedivect to ervor

namespace DemoApplication

{

public partial class Demo : System.Web.Ul.Page
{

protected void Application_Error(object sender, EventArgs €)

{

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci25.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci26.png

61

String str =""";
str = exc.Message;

String path = @"D:\AllErrors.txt";
File.WriteAll Test(path,str);
Server.trrasfer("~/ErrorPage.html");

¥
¥
¥

Code Explanation:-

1. The first line is to get the error itself by using the 'Server.GetLastError' method. This
is then assigned to the variable ‘exc'.

2. We then create an empty string variable called 'str'. We get the actual error message
using the 'exc.Message' property. The exc.Message property will have the exact
message for any error which occurs when running the application. This is then
assigned to the string variable.

3. Next, we define the file called 'AllErrrors.txt." This is where all the error messages
will be sent. We write the string 'str' which contains all the error messages to this file.

4. Finally, we transfer the user to the ErrorPage.html file.

Output:-
Browse the page http://localhost:53003/Demol.aspx . Remember that Demol.aspx does not
exist in our application. You will then get the below output.

/ [localhost:53003/ErrorPac .‘l’_ \

C' | [3 localhost:53003/ErrorPage.html?aspxerrorpath=/Dem

We are looking into the problem

exror si‘ring 1S
displaued

And at the same time, if you open the 'AllErrors.txt' file you will see the below information.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci27.png

62

File Edit Format View Help

E AllErrors - Notepad M

hhe file '"/Demol.aspx' does not exist.

Actval exror
message aged

The error message can then be passed on to the developer at a later point in time for
debugging purposes.
Summary
e ASP.Net has the facility to perform debugging and Error handling.
o Debugging can be achieved by adding breakpoints to the code. One then runs the Start
with Debugging option in Visual Studio to debug the code.
e Tracing is the facility to provide more information while running the application. This
can be done at the application or page level.
o At the page level, the code Trace=true needs to be added to the page directive.
« At the application level, an extra page called Trace.axd is created for the application.
This provides all the necessary tracing information.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci28.png

Unit IV — Missing Topics

Unit - IV - Developing C#.NET Applications - Introducing C# - overview of C#
Literals, Variables- Data Types, -Operators, -checked and unchecked operators —

Expressions — Branching -Looping-Object Oriented Aspects Of C#: Class — Objects

Constructors and its types- inheritance, properties, indexers, index overloading
polymorphism - sealed class and methods - interface, - abstract class, operator

overloading, - delegates, events, errors and exception - Threading.

1. Branching Statements
> if Statement :
It executes its block only if the condition is true
Syntax:
if (condition)
{

[Istatement;

}

Program

public static void Main(string[] args)

{

int number = 3;

if (number < 10)

{

Console.WriteLine("{0} is less than 10", number);

}

Console.WriteLine("This statement is always executed.");
}

> if else Statement
It executes if block if condition is true; otherwise it will execute the else block
Syntax:
if (condition)
{

[/statement;

¥

else

{

/Istatement;
}
Program
// Determine if a value is positive or negative.
using System;
class PosNeg {
static void Main() {
inti;
for(i=-3; i <= 3; i++) {
Console.Write("Testing" +i+":");
if(i < 0)
Console.WriteLine("negative");
else Console.WriteLine("positive");
}
}
}
Output
Testing -3: negative
Testing -2: negative
Testing -1: negative
Testing O: positive
Testing 1: positive
Testing 2: positive

Testing 3: positive

In this example, if i is less than zero, then the target of the if is executed.
Otherwise, the target of the else is executed. In no case are both executed.

> else if Statement:
1. It checks the condition of both if and else if block and executes the respective block;
otherwise it will execute the else block.
1. Syntax:
if (condition)
{

[/statement;

¥

else if(condition)

{
/Istatement;
}
else
{
/Istatement;
}
public static void Main(string[] args)
{
int number =12;
if (number < 5)
{
Console.WriteLine("{0} is less than 5", number);
}
else if (number > 5)
{
Console.WriteLine("{0} is greater than 5", number);
}
else
{
Console.WriteLine("{0} is equal to 5");
}
}

The value of number is initialized to 12. The first test expression number < 5 is false, so the
control will move to the else if block. The test expression number > 5 is true hence the block

of code inside else if will be executed.
Similarly, we can change the value of number to alter the flow of execution.

» Switch Statement
The switch block consists of several cases which includes a default case too.
Each case has break statement to jump out of switch block on its execution.
The cases are matched and then executed provided the condition for cases in switch
statement..
Syntax:
switch (variable)

{

case 1:
/[statement;
break;

case 2:
[[statement;
break;
default:
[[statement;
break;

}

Program

int day = 4;
switch (day)
{
case 1:
Console.WriteLine("Monday");
break;
case 2:
Console.WriteLine("Tuesday");
break;
case 3:
Console.WriteLine("Wednesday");
break;
case 4:
Console.WriteLine("Thursday");
break;
case 5:
Console.WriteLine("Friday");
break;
case 6:
Console.WriteLine("Saturday");
break;
case 7:
Console.WriteLine("Sunday");
break;

}
// Outputs "Thursday" (day 4)

1. Looping Statements

while Statement
It executes the block until the condition fails.

It will execute its block only if the condition is true and continues to loop

w Py

Syntax:
while (condition)

{

[[statement;
}
Program
inti=0;
while (i < 5)
{

Console.WriteLine(i);

» do-while Statement
1. It executes its statements and checks the condition.

2. It continues looping if condition is true; else it aborts.

3. Syntax:
do
{
/Istatement;
k
while (condition);
Program
inti=0;
do
{

Console.WriteLine(i);

i++;

’

}
while (i < 5);
Output

A W N B O

» for Statement
It executes its block until the condition fails.
2. Syntax:
for(initialization; condition; iteration)
{
[[statement;
}
Program
class Program

{

static void Main(string[] args)
{
for (inti=0;i<5;i++)
{
Console.WriteLine(i);
}
}

}
Output

A W DN -

» foreach Statement
It executes the block for each values.
Syntax:
foreach (datatype values in variable)

{

/Istatement;
}
The foreach loop in C# executes a block of code on each element in an array or a collection
of items. When executing foreach loop it traversing items in a collection or an array.
Program
string[] days = { "Sunday", "Monday", "TuesDay"};
foreach (string day in days)
{
MessageBox.Show(""The day is : " + day);
}
Output
Sunday
Monday
TuesDay

4. Jumping Statements

» goto Statement

It defines a region with a label; on goto execution the region is called and executed
respectively.

The C# goto statement is also known jump statement. It is used to transfer control to the other
part of the program. It unconditionally jumps to the specified label.

It can be used to transfer control from deeply nested loop or switch case label.
Syntax:

Label:

/[statements

Program

public class GotoExample

{
public static void Main(string[] args)

{
ineligible:
Console.WriteLine("You are not eligible to vote!");
Console.WriteLine("Enter your age:\n");
int age = Convert.Tolnt32(Console.ReadLine());
if (age < 18){

goto ineligible;

else

Console.WriteLine("You are eligible to vote!");

}

Output

You are not eligible to vote!
Enter your age:

11

You are not eligible to vote!
Enter your age:

5

You are not eligible to vote!
Enter your age:

26

You are eligible to vote!

» continue Statement :
The continue statement is used to execute the current block sequentially.

conditional
code

If condition continue
is true

condition

If condition
is false

Program
static void Main(string[] args) {
/* local variable definition */
inta=10;
/* do loop execution */
do{
if (a ==15) {
/* skip the iteration */
a=a+1;
continue;
}
Console.WriteLine("value of a: {0}", a);
at+;
}
while (a < 20);
Console.ReadLine();
}
Output
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18

value of a: 19

10

> break Statement :
The break Statement is used to jump out the current block after its execution.

conditional
code

If condition

is true
condition @

If condition
is false

Program
class Program {
static void Main(string[] args) {
/* local variable definition */

inta=10;

/* while loop execution */

while (a < 20) {
Console.WriteLine("value of a: {0}", a);
at++;

if (a>15) {
/* terminate the loop using break statement */

break;

}

Console.ReadLline();

}
Output
value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14

value of a: 15

11

C# - Classes
A class definition starts with the keyword class followed by the class name; and the class
body enclosed by a pair of curly braces.
<access specifier> class class_name {
// member variables
<access specifier> <data type> variablel;

<access specifier> <data type> variable2;

<access specifier> <data type> variableN;

// member methods

<access specifier> <return type> method1(parameter_list) {
// method body

}

<access specifier> <return type> method2(parameter_list) {
// method body

}

<access specifier> <return type> methodN(parameter_list) {
// method body
}

}

» Access specifiers specify the access rules for the members as well as the class itself. If not
mentioned, then the default access specifier for a class type is internal. Default access for
the members is private.

» Data type specifies the type of variable, and return type specifies the data type of the data
the method returns, if any.

» To access the class members, you use the dot (.) operator.

» The dot operator links the name of an object with the name of a member.

Program

using System;

namespace BoxApplication {

class Box {
public double length; // Length of a box
public double breadth; // Breadth of a box
public double height; // Height of a box

}

class Boxtester {

static void Main(string[] args) {

12

Box Box1 = new Box(); // Declare Box1 of type Box
Box Box2 = new Box(); // Declare Box2 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1.height = 5.0;
Box1.length = 6.0;
Box1.breadth = 7.0;

// box 2 specification

Box2.height = 10.0;

Box2.length = 12.0;

Box2.breadth = 13.0;

// volume of box 1

volume = Box1.height * Box1.length * Box1.breadth;

Console.WriteLine("Volume of Box1 : {0}", volume);

// volume of box 2
volume = Box2.height * Box2.length * Box2.breadth;
Console.WriteLine("Volume of Box2 : {0}", volume);

Console.ReadKey();

}
Output
Volume of Box1 : 210

Volume of Box2 : 1560

13

C# Constructors
» A class constructor is a special member function of a class that is executed whenever we
create new objects of that class.
» A constructor has exactly the same name as that of class and it does not have any return
type.
» There can be two types of constructors in C#.
o Default constructor
o Parameterized constructor
C# Default Constructor
A constructor which has no argument is known as default constructor. It is invoked at the
time of creating object.
using System;
public class Employee
{
public Employee()
{

Console.WriteLine("Default Constructor Invoked");

}

class TestEmployee{
public static void Main(string[] args)
{
Employee el = new Employee();

Employee e2 = new Employee();

}
Output:
Default Constructor Invoked

Default Constructor Invoked

C# Parameterized Constructor
A constructor which has parameters is called parameterized constructor. It is used to provide
different values to distinct objects.
using System;
public class Employee
{
publicint id;

public String name;

public float salary;
public Employee(int i, String n,float s)
{
id=1i;
name =n;
salary =s;
}
public void display()
{

Console.WriteLine(id +

+ name+" "+salary);

}
class TestEmployee{
public static void Main(string[] args)
{
Employee el = new Employee(101, "Sonoo", 890000f);
Employee e2 = new Employee(102, "Mahesh", 490000f);
el.display();
e2.display();

}
Output:
101 Sonoo 890000
102 Mahesh 490000

14

15

Inheritance

» When creating a class, instead of writing completely new data members and member
functions, the programmer can designate that the new class should inherit the members of
an existing class.

» This existing class is called the base class, and the new class is referred to as
the derived class.

» The idea of inheritance implements the IS-A relationship. For example, mammal IS
A animal, dog IS-A mammal hence dog IS-A animal as well, and so on.

Base and derived class

A class can be derived from more than one class or interface, which means that it can
inherit data and functions from multiple base classes or interfaces.
<acess-specifier> class <base_class> {

class <derived_class> : <base_class> {

ks

Program

using System;

namespace InheritanceApplication {
class Shape {

public void setWidth(int w) {
width = w;

}

public void setHeight(int h) {
height = h;

}

protected int width;

protected int height;

}

// Derived class
class Rectangle: Shape {
public int getArea() {
return (width * height);

}

}

class RectangleTester {
static void Main(string[] args) {

Rectangle Rect = new Rectangle();

Rect.setWidth(5);
Rect.setHeight(7);

// Print the area of the object.
Console.WriteLine("Total area: {0}", Rect.getArea());
Console.ReadKey();

}
Ouput

Total area: 35

16

17

Interface
C# does not support multiple inheritance. However, you can use interfaces to implement

multiple inheritance.

using System;
namespace InheritanceApplication {
class Shape {
public void setWidth(int w) {
width = w;
}
public void setHeight(int h) {
height = h;
}
protected int width;
protected int height;

// Base class PaintCost
public interface PaintCost {

int getCost(int area);

// Derived class
class Rectangle : Shape, PaintCost {
public int getArea() {
return (width * height);
}
public int getCost(int area) {

return area * 70;

}

class RectangleTester {
static void Main(string[] args) {
Rectangle Rect = new Rectangle();
int area;
Rect.setWidth(5);
Rect.setHeight(7);

area = Rect.getArea();

http://tpcg.io/0jSkFW

// Print the area of the object.

Console.WriteLine("Total area: {0}", Rect.getArea());
Console.WriteLine("Total paint cost: ${0}" , Rect.getCost(area));
Console.ReadKey();

Output
Total area: 35
Total paint cost: $2450

18

19

Properties
» C# Properties doesn't have storage location. C# Properties are extension of fields and
accessed like fields.
» The Properties have accessors that are used to set, get or compute their values.
Usage of Properties
» C# Properties can be read-only or write-only.
» We can have logic while setting values in the C# Properties.
» We make fields of the class private, so that fields can't be accessed from outside the class
directly. Now we are forced to use C# properties for setting or getting values.
C# Properties Example
using System;
public class Employee
{

private string name;

public string Name
{

get

{

return name;

set

name = value;

}

class TestEmployee{
public static void Main(string[] args)
{
Employee el = new Employee();
el.Name = "Sonoo Jaiswal";
Console.WriteLine("Employee Name: " + e1.Name);
}

}
Output

Employee Name: Sonoo Jaiswal

20

Indexer
» An indexer allows an object to be indexed such as an array.
» When you define an indexer for a class, this class behaves similar to a virtual array.
» You can then access the instance of this class using the array access operator ([]).
Syntax
element-type this[int index] {

// The get accessor.

get{

// return the value specified by index

}

// The set accessor.
set {
// set the value specified by index

}

Declaration of behavior of an indexer is to some extent similar to a property.

Similar to the properties, you use get and set accessors for defining an indexer.

» However, properties return or set a specific data member, whereas indexers returns or sets
a particular value from the object instance. In other words, it breaks the instance data into
smaller parts and indexes each part, gets or sets each part.

Y V¥V

Defining a property involves providing a property name. Indexers are not defined with
names, but with the ‘this’ keyword, which refers to the object instance.
Program
using System;
namespace IndexerApplication {
class IndexedNames {
private string[] namelist = new string[size];
static public int size = 10;
public IndexedNames() {
for (inti=0;i<size; i++)
namelist[i] = "N. A.";
}
public string this[int index] {
get {
string tmp;
if(index >= 0 && index <=size-1) {

tmp = namelist[index];

}else {
tmp ="";
}
return (tmp);
}
set {

if(index >= 0 && index <= size-1) {

namelist[index] = value;

}
static void Main(string([] args) {
IndexedNames names = new IndexedNames();
names[0] = "Zara";
names[1] = "Riz";
names[2] = "Nuha";
names[3] = "Asif";
names[4] = "Davinder";
names[5] = "Sunil";

names[6] = "Rubic";

for (inti=0;i<IndexedNames.size; i++) {
Console.WriteLine(namesJi]);

}
Console.ReadKey();

}

}

Output
Zara

Riz

Nuha
Asif
Davinder
Sunil

Rubic

21

N. A.
N. A.
N. A.

22

23

Index overloading

» Indexers can be overloaded.
» Indexers can also be declared with multiple parameters and each parameter may be a

different type.
» It is not necessary that the indexes have to be integers. C# allows indexes to be of other

types, for example, a string.
using System;
namespace IndexerApplication {
class IndexedNames {
private string[] namelist = new string[size];
static public int size = 10;
public IndexedNames() {
for (inti=0; i< size; i++) {
namelist[i] = "N. A.";

}

}
public string this[int index] {

get {
string tmp;

if(index >= 0 && index <= size-1) {
tmp = namelist[index];

}else {

tmp ="
}

return (tmp);

}
set {

if(index >= 0 && index <=size-1) {

namelist[index] = value;

}
}
}
public int this[string name] {
get {
int index = 0;

while(index < size) {
if (namelist[index] == name) {

return index;

}

index++;

}

return index;

}
static void Main(string[] args) {
IndexedNames names = new IndexedNames();
names[0] = "Zara";
names[1] = "Riz";
names[2] = "Nuha";
names|3] = "Asif";
names[4] = "Davinder";
names[5] = "Sunil";
names[6] = "Rubic";
//using the first indexer with int parameter
for (inti=0; i< IndexedNames.size; i++) {
Console.WriteLine(namesJi]);
}
//using the second indexer with the string parameter
Console.WriteLine(names["Nuha"]);

Console.ReadKey();

}
Output
Zara
Riz
Nuha
Asif
Davinder
Sunil
Rubic
N. A.
N. A.
N. A.

2

24

25

Polymorphism
» The word polymorphism means having many forms.
» In object-oriented programming paradigm, polymorphism is often expressed as 'one
interface, multiple functions'.
» Polymorphism can be static or dynamic.
» In static polymorphism, the response to a function is determined at the compile time. In
dynamic polymorphism, it is decided at run-time.
Static Polymorphism
The mechanism of linking a function with an object during compile time is called early
binding. It is also called static binding. C# provides two techniques to implement static
polymorphism. They are —
» Function overloading
» Operator overloading
Function Overloading
» You can have multiple definitions for the same function name in the same scope.
» The definition of the function must differ from each other by the types and/or the number
of arguments in the argument list.
» You cannot overload function declarations that differ only by return type.
The following example shows using function print() to print different data types —
using System;
namespace PolymorphismApplication {
class Printdata {
void print(int i) {
Console.WriteLine("Printing int: {0}", i);
}
void print(double f) {
Console.WriteLine("Printing float: {0}", f);
}
void print(string s) {
Console.WriteLine("Printing string: {0}", s);
}
static void Main(string[] args) {
Printdata p = new Printdata();
// Call print to print integer
p.print(5);
// Call print to print float
p.print(500.263);

26

// Call print to print string
p.print("Hello C++");
Console.ReadKey();

}

}
Output
Printing int: 5
Printing float: 500.263
Printing string: Hello C++
Dynamic Polymorphisms
» C# allows you to create abstract classes that are used to provide partial class
implementation of an interface.
» Implementation is completed when a derived class inherits from it. Abstract classes
contain abstract methods, which are implemented by the derived class.
» The derived classes have more specialized functionality.
Here are the rules about abstract classes —
» You cannot create an instance of an abstract class
» You cannot declare an abstract method outside an abstract class
» When a class is declared sealed, it cannot be inherited, abstract classes cannot be declared
sealed.
The following program demonstrates an abstract class —
using System;
namespace PolymorphismApplication {
abstract class Shape {

public abstract int area();

class Rectangle: Shape {
private int length;

private int width;

public Rectangle(inta=0, intb=0){
length = a;
width = b;

}

27

public override int area () {
Console.WriteLine("Rectangle class area :");

return (width * length);

}
class RectangleTester {
static void Main(string([] args) {
Rectangle r = new Rectangle(10, 7);
double a =r.area();
Console.WriteLine("Area: {0}",a);

Console.ReadKey();
}

Output

Rectangle class area :

Area: 70
When you have a function defined in a class that you want to be implemented in an inherited
class(es), you use virtual functions. The virtual functions could be implemented differently
in different inherited class and the call to these functions will be decided at runtime.
Dynamic polymorphism is implemented by abstract classes and virtual functions.
The following program demonstrates this —

using System;
namespace PolymorphismApplication {
class Shape {
protected int width, height;

public Shape(inta=0,intb=0){
width = a;
height = b;

}

public virtual int area() {
Console.WriteLine("Parent class area :");

return O;

class Rectangle: Shape {

public Rectangle(inta =0, int b = 0): base(a, b) {

}

public override int area () {
Console.Writeline("Rectangle class area :");

return (width * height);

}
class Triangle: Shape {
public Triangle(int a =0, int b = 0): base(a, b) {
}
public override int area() {
Console.WriteLine("Triangle class area :");

return (width * height / 2);

}

class Caller {
public void CallArea(Shape sh) {
int a;
a =sh.area();
Console.WriteLine("Area: {0}", a);
}
}

class Tester {
static void Main(string([] args) {
Caller c = new Caller();
Rectangle r = new Rectangle(10, 7);

Triangle t = new Triangle(10, 5);

c.CallArea(r);
c.CallArea(t);
Console.ReadKey();

28

Output

Rectangle class area:

Area: 70
Triangle class area:

Area: 25

29

30

Operator Overloading

» You can redefine or overload most of the built-in operators available in C#.

» Thus a programmer can use operators with user-defined types as well.

» Overloaded operators are functions with special names the keyword operator followed by
the symbol for the operator being defined. similar to any other function, an overloaded
operator has a return type and a parameter list.

For example, go through the following function —

public static Box operator+ (Box b, Box c) {
Box box = new Box();
box.length = b.length + c.length;
box.breadth = b.breadth + c.breadth;
box.height = b.height + c.height;
return box;
}
The above function implements the addition operator (+) for a user-defined class Box. It adds
the attributes of two Box objects and returns the resultant Box object.
Implementing the Operator Overloading
The following program shows the complete implementation —
using System;
namespace OperatorOvlApplication {
class Box {
private double length; // Length of a box
private double breadth; // Breadth of a box
private double height; // Height of a box

public double getVolume() {
return length * breadth * height;

}

public void setLength(double len) {
length = len;

}

public void setBreadth(double bre) {
breadth = bre;

}

public void setHeight(double hei) {
height = hei;

}

// Overload + operator to add two Box objects.
public static Box operator+ (Box b, Box ¢) {
Box box = new Box();
box.length = b.length + c.length;
box.breadth = b.breadth + c.breadth;
box.height = b.height + c.height;

return box;

}

class Tester {
static void Main(string[] args) {
Box Box1 = new Box(); // Declare Box1 of type Box
Box Box2 = new Box(); // Declare Box2 of type Box
Box Box3 = new Box(); // Declare Box3 of type Box

double volume = 0.0; // Store the volume of a box here

// box 1 specification
Box1.setLength(6.0);
Box1.setBreadth(7.0);
Box1.setHeight(5.0);

// box 2 specification
Box2.setLength(12.0);
Box2.setBreadth(13.0);
Box2.setHeight(10.0);

// volume of box 1
volume = Box1.getVolume();

Console.WriteLine("Volume of Box1 : {0}", volume);
// volume of box 2
volume = Box2.getVolume();

Console.WriteLine("Volume of Box2 : {0}", volume);

// Add two object as follows:

Box3 = Box1 + Box2;

// volume of box 3

volume = Box3.getVolume();
Console.WriteLine("Volume of Box3 : {0}", volume);

Console.ReadKey();

}

When the above code is compiled and executed, it produces the following result —
Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

32

33

Sealed Classes

» Sealed classes are used to restrict the inheritance feature of object oriented programming.
Once a class is defined as a sealed class, this class cannot be inherited.

» In C#, the sealed modifier is used to declare a class assealed. In Visual Basic
NET, NotInheritable keyword serves the purpose of sealed. If a class is derived from a
sealed class, compiler throws an error.

» If you have ever noticed, structs are sealed. You cannot derive a class from a struct.
The following class definition defines a sealed class in C#:

I/ Sealed class

sealed class SealedClass

{
¥

In the following code, | create a sealed class SealedClass and use it from Classl. If you run
this code, it will work just fine. But if you try to derive a class from the SealedClass, you will
get an error.

using System;

class Classl

{

static void Main(string[] args)

{

SealedClass sealedCls = new SealedClass();
int total = sealedCls.Add(4, 5);
Console.WriteLine("Total =" + total.ToString());

}
// Sealed class

sealed class SealedClass

{
public int Add(int x, inty)

{

return x +vy;

34

Why Sealed Classes?

» The main purpose of a sealed class is to take away the inheritance feature from the class
users so they cannot derive a class from it.

» One of the best usage of sealed classes is when you have a class with static members. For
example, the Pens and Brushes classes of the System.Drawingnamespace.

» The Pens class represents the pens with standard colors. This class has only static
members. For example, Pens.Blue represents a pen with blue color.

» Similarly, the Brushes class represents standard brushes. The Brushes.Blue represents a
brush with blue color.

So when you're designing a class library and want to restrict your classes not to be derived

by developers, you may want to use sealed classes.

A sealed class is completely opposite to an abstract class.

This sealed class cannot contain abstract methods.

It should be the bottom most class within the inheritance hierarchy.

A sealed class can never be used as a base class.

This sealed class is specially used to avoid further inheritance.

The keyword sealed can be used with classes, instance methods, and properties.

YV V V V VYV V

Sealed Methods in C#

>
child class, we call it a sealed method.
>
method is not declared as virtual inthe parent class.
>
override that method.
For Example:
namespace SealedDemo
{
class classl
{
public virtual void show() { }
}
class class2 : classl
{
public override void show() { }
}
class class3 : class2
{

The method that is defined in a parent class, if that method cannot be overridden under a
By default, every method is a sealed method because overriding is not possible unless the

If a method is declared as virtual in a class, any child class of it can have the rights to

public override void show() { }
}
}

In the above case even if the first child is not overriding the method the second child

can still override the method.

When a child class is overriding its parent class virtual methods the child
class uses the sealed modifier in the method so that further overriding of the method will not

be possible i.e. child classes cannot override the methods.
For example:

namespace SealedDemo

{

class class1

{

public virtual void show() { }

}

class class2 : class1

{

public sealed override void show() { }

}

class class3 : class2

{

//'class3.show()": cannot override inherited member 'class2.show()' because it is sealed
public override void show() { } //Invalid

}

}

36

37

Delegates

>

YV V V V V VY Y

\ 2%

In C#, delegate is a reference to the method. It works like function pointer in C and C++.
But it is objected-oriented, secured and type-safe than function pointer.

For static method, delegate encapsulates method only. But for instance method, it
encapsulates method and instance both.

The best use of delegate is to use as event.

Provides a good way to encapsulate the methods.

Delegates are the library class in System namespace.

These are the type-safe pointer of any method.

Delegates are mainly used in implementing the call-back methods and events.

Delegates can be chained together as two or more methods can be called on a single
event.

It doesn’t care about the class of the object that it references.

Internally a delegate declaration defines a class which is the derived class
of System.Delegate.

Example
Let's see a simple example of delegate in C# which calls add() and mul() methods.

using System;

delegate int Calculator(int n);//declaring delegate

public class DelegateExample

{

static int number = 100;
public static int add(int n)
{
number = number + n;
return number;
}
public static int mul(int n)
{
number = number * n;
return number;
}
public static int getNumber()
{

return number;

}
public static void Main(string[] args)

Calculator c1 = new Calculator(add);//instantiating delegate
Calculator c2 = new Calculator(mul);

c1(20);//calling method using delegate

Console.WriteLine("After c1 delegate, Number is: " + getNumber());
c2(3);

Console.WriteLine("After c2 delegate, Number is: " + getNumber());

}

Output:

After c1 delegate, Number is: 120
After c2 delegate, Number is: 360

38

39

Events

» The Event is something special that is going to happen.

» example of Button control in Windows. Button performs multiple events such as click,
mouseover, etc.

» The eventis an encapsulated delegate. C# and .NET both support the events with the
delegates. When the state of the application changes, events and delegates give the
notification to the client application. Delegates and Events both are tightly coupled for
dispatching the events, and event handling require the implementation of the delegates.
The sending event class is known as the publisher, and the receiver class or handling the
Event is known as a subscriber.

The key points about the events are as:

» In C#, event handler will take the two parameters as input and return the void.

» The first parameter of the Event is also known as the source, which will publish the
object.

» The publisher will decide when we have to raise the Event, and the subscriber will
determine what response we have to give.

» Event can contain many subscribers.

» Generally, we used the Event for the single user action like clicking on the button.

» If the Event includes the multiple subscribers, then synchronously event handler invoked.

Declaration of the Event

Syntax

public event EventHandler CellEvent;

Steps for implementing the Event

For the declaration of the Event in the class, firstly, the event type of the delegate must be

declared.

public delegate void CellEventHandler(object sender, EventArgs e);

Declaration of the Event

public event CellEventHandler CellEvent;
Invokation of the Event

if (CellEvent !'=null) CellEvent(this, e);
We can invoke the Event only from within the class where we declared the Event.
Hooking up the Event

OurEventClass.OurEvent += new ChangedEventHandler(OurEventChanged);
Detach the Event

OurEventClass.OurEvent -= new ChangedEventHandler(OurEventChanged);

» Delegates work as pointer to a function. It is a reference data type and it holds the
reference of the method. System.Delegate class implicitly derived all the delegates.

» Delegate can be declared using the delegate keyword which is followed by the signature

40

Syntax of Delegates
<access modifier> delegate <return type> <delegate_name>(<parameters>)
Example of Delegates
public delegate void PrintWord(int value);
» The above PrintWord delegate can be used to point any method which has the same
return type and declared parameters with PrintWord.
» Here we will take an example that declares and uses the PrintWord delegates.

class Program1
{
// declare delegate
public delegate void PrintWord(int value);
static void Main(string[] args)
{
// Print delegate points to PrintNum
PrintWord printDel = PrintNum;
// or
// Print printDel = new Print(PrintNumber);
printDel(100000);
printDel(200);
// Print delegate points to PrintMoney
printDel = PrintMoney;
printDel(10000);
printDel(200);

}
public static void PrintNum(int num)
{
Console.WriteLine("Number: {0,-12:NO}",num);
}
public static void PrintMoney(int money)
{
Console.WriteLine("Money: {0:C}", money);
}
}
Output:
Number: 100,000
Number: 200

Money: $10,000.00
Money: $200.00

41

In the above example, we declared the PrintWord delegates, which accepts the int type
parameter and returns the void. In the main() method, we declare the PrintWord type method
and assigned the PrintNum name method. Now we will invoke the PrintWord delegate, which
in-turn invokes the PrintNum method. In the same way, if the PrintWord delegates variable is
assigned to the PrintMoney method, then this will invoke the PrintMoney method.

Also, we can create the delegate object by using the new operator and specify the name of the
method, as shown below:

PrintWord printDel = new PrintWord(PrintNum);

Delegates can be declared, as shown below:

public delegate void someEvent();

public organize event

42

Exception Handling

» Exception Handling in C# is a process to handle runtime errors. We perform exception
handling so that normal flow of the application can be maintained even after runtime
errors.

» In C#, exception is an event or object which is thrown at runtime. All exceptions the
derived from System.Exception class. It is a runtime error which can be handled. If we
don't handle the exception, it prints exception message and terminates the program.

Advantage

It maintains the normal flow of the application. In such case, rest of the code is executed

event after exception.

C# Exception Classes

All the exception classes in C# are derived from System.Exception class. Let's see the list of

C# common exception classes.

Exception Description

System.DivideByZeroException handles the error generated by dividing a number
with zero.

System.NullReferenceException handles the error generated by referencing the null
object.

System.InvalidCastException handles the error generated by invalid typecasting.

System.l1O.IO0Exception handles the Input Output errors.

System.FieldAccessException handles the error generated by invalid private or

protected field access.

C# Exception Handling Keywords
In C#, we use 4 keywords to perform exception handling:
o try
o catch
o finally, and
o throw
C# example without try/catch
using System;
public class ExExample

{

public static void Main(string[] args)

{
inta =10;

intb =0;
int x = a/b;
Console.WriteLine("Rest of the code");
b
b
Output:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.

C# finally example if exception is handled
using System;
public class ExExample

{
public static void Main(string[] args)
{
try
{
inta =10;
intb=0;
intx=a/b;
b
catch (Exception e) { Console.WriteLine(e); }
finally { Console.WriteLine("Finally block is executed"); }
Console.WriteLine("Rest of the code");
b
b
Output:

System.DivideByZeroException: Attempted to divide by zero.

Finally block is executed

C# User-Defined Exceptions
C# allows us to create user-defined or custom exception. It is used to make the
meaningful exception. To do this, we need to inherit Exception class.
C# user-defined exception example
using System;
public class InvalidAgeException : Exception
{

public InvalidAgeException(String message)

: base(message)

43

public class TestUserDefinedException

{
static void validate(int age)
{
if (age < 18)
{
throw new InvalidAgeException("Sorry, Age must be greater than 18");
b
b
public static void Main(string[] args)
{
try
{
validate(12);
b
catch (InvalidAgeException e) { Console.WriteLine(e); }
Console.WriteLine("Rest of the code");
b
b
Output:

InvalidAgeException: Sorry, Age must be greater than 18
Rest of the code

44

45

C# Checked and Unchecked
» C# provides checked and unchecked keyword to handle integral type exceptions.
Checked and unchecked keywords specify checked context and unchecked context
respectively.
» In checked context, arithmetic overflow raises an exception whereas, in an unchecked
context, arithmetic overflow is ignored and result is truncated.
C# Checked
The checked keyword is used to explicitly check overflow and conversion of integral type
values at compile time.
Let's first see an example that does not use checked keyword.
C# Checked Example without using checked
using System;
namespace CSharpProgram
{
class Program
{
static void Main(string[] args)
{
int val = int.MaxValue;

Console.WriteLine(val + 2);

}

Output:

2147483647

See, the above program produces the wrong result and does not throw any overflow
exception.

C# Checked Example using checked

This program throws an exception and stops program execution.

using System;

namespace CSharpProgram

{

class Program

{
static void Main(string[] args)

{
checked

{

46

int val = int.MaxValue;

Console.WriteLine(val + 2);

}

Output:

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.

C# Unchecked

The Unchecked keyword ignores the integral type arithmetic exceptions. It does not check
explicitly and produce result that may be truncated or wrong.

Example

using System;

namespace CSharpProgram

{

class Program

{
static void Main(string[] args)

{

unchecked

{

int val = int.MaxValue;

Console.WriteLine(val + 2);

}
Output:
-2147483647

47

C# SystemException class

» The SystemException is a predefined exception class in C#. It is used to handle system
related exceptions.

» It works as base class for system exception namespace. It has various child classes like:
ValidationException, ArgumentException, ArithmeticException, = DataException,
StackOverflowException etc.

It consists of rich constructors, properties and methods that we have tabled below.

C# SystemException Signature

[SerializableAttribute]

[ComVisibleAttribute(true)]

public class SystemException : Exception

using System;

namespace CSharpProgram

{

class Program
{
static void Main(string[] args)
{
try
{
int[] arr = new int[5];
arr[10] = 25;
}

catch (SystemException e)

{

Console.WritelLine(e);

}
Output:

System.IndexOutOfRangeException: Index was outside the bounds of the array.

48

Multithreading

» A thread is defined as the execution path of a program. Each thread defines a unique flow
of control.

» If your application involves complicated and time consuming operations, then it is often
helpful to set different execution paths or threads, with each thread performing a
particular job.

» Threads are lightweight processes. One common example of use of thread is
implementation of concurrent programming by modern operating systems. Use of threads
saves wastage of CPU cycle and increase efficiency of an application.

So far we wrote the programs where a single thread runs as a single process which is the

running instance of the application. However, this way the application can perform one job at

a time. To make it execute more than one task at a time, it could be divided into smaller

threads.

Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class is

created and ends when the thread is terminated or completes execution.

Following are the various states in the life cycle of a thread —

The Unstarted State — It is the situation when the instance of the thread is created but the

Start method is not called.

The Ready State — It is the situation when the thread is ready to run and waiting CPU cycle.

The Not Runnable State — A thread is not executable, when

Sleep method has been called

Wait method has been called

Blocked by 1/0O operations

The Dead State — It is the situation when the thread completes execution or is aborted.

The Main Thread

In C#, the System.Threading.Thread class is used for working with threads. It allows creating

and accessing individual threads in a multithreaded application. The first thread to be

executed in a process is called the main thread.

When a C# program starts execution, the main thread is automatically created. The threads

created using the Thread class are called the child threads of the main thread. You can access

a thread using the CurrentThread property of the Thread class.

The following program demonstrates main thread execution —

using System;

using System.Threading;

namespace MultithreadingApplication {

class MainThreadProgram {

static void Main(string[] args) {

Thread th = Thread.CurrentThread;
th.Name = "MainThread";
Console.WriteLine("This is {0}", th.Name);
Console.ReadKey();

}
When the above code is compiled and executed, it produces the following result —
This is MainThread
Complete program for multithreading
using System;
using System.Threading;
namespace MultithreadingApplication {
class ThreadCreationProgram {
public static void CallToChildThread() {
try {
Console.WriteLine("Child thread starts");
// do some work, like counting to 10
for (int counter = 0; counter <= 10; counter++) {
Thread.Sleep(500);
Console.WriteLine(counter);
}
Console.WriteLine("Child Thread Completed");
} catch (ThreadAbortException e) {
Console.WriteLine("Thread Abort Exception");
}H finally {
Console.WriteLine("Couldn't catch the Thread Exception");
}

}
static void Main(string[] args) {

ThreadStart childref = new ThreadStart(CallToChildThread);
Console.WriteLine("In Main: Creating the Child thread");
Thread childThread = new Thread(childref);
childThread.Start();

//stop the main thread for some time

Thread.Sleep(2000);

//now abort the child

49

50

Console.WriteLine("In Main: Aborting the Child thread");
childThread.Abort();
Console.ReadKey();

}
}
}

Output
In Main: Creating the Child thread
Child thread starts
0
1
2
In Main: Aborting the Child thread
Thread Abort Exception
Couldn't catch the Thread Exception
Creating Threads

Threads are created by extending the Thread class. The extended Thread class then calls
the Start() method to begin the child thread execution.
Managing Threads
The Thread class provides various methods for managing threads.
The following example demonstrates the use of the sleep() method for making a thread pause
for a specific period of time.
Destroying Threads
The Abort() method is used for destroying threads.
The runtime aborts the thread by throwing a ThreadAbortException. This exception cannot
be caught, the control is sent to the finally block, if any.
Thread Life Cycle - states
» Unstarted State
When the instance of Thread class is created, it is in unstarted state by default.
» Runnable State
When start() method on the thread is called, it is in runnable or ready to run state.
» Running State
Only one thread within a process can be executed at a time. At the time of execution,
thread is in running state.
» Not Runnable State
The thread is in not runnable state, if sleep() or wait() method is called on the thread, or
input/output operation is blocked.
» Dead State
After completing the task, thread enters into dead or terminated state.

Unit — V - ADO.NET - Overview of ADO.NET - ADO.NET data access — Connected and
Disconnected Database, Create Connection using ADO.NET Object Model, Connection
Class, Command Class - Data binding — Data list — Data grid — Repeater — Files, Streams and
Email — Using XML.

Overview of ADO.NET

What is ADO.NET?

>

ADO.NET (ActiveX Data Objects) is a module of .Net Framework which is used to
establish connection between application and data sources. Data sources can be such
as SQL Server and XML. ADO.NET consists of classes that can be used to connect,
retrieve, insert and delete data.

System.Data namespace is the core of ADO.NET and contains classes used by all
data providers.

All the ADO.NET classes are located in System.Data.dll and integrated with XML
classes located in System.Xml.dll.

ADO.NET has two main components that are used for accessing and manipulating
data are the .NET Framework Data Provider and the DataSet.

These are the components that are designed for data manipulation and fast access to
data. It provides various objects such as Connection, Command, DataReader and
DataAdapter that are used to perform database operations.

ADO.NET is a rich set of classes, interfaces, structures and enumerated types

that manage data access from various types of data stores.

ADO.NET Architecture

Provider Objects
.NET Framwork Data Provider
Connection DataAdapter
| Transaction |
[Seiecie 7] DataRowCollection
Py i il DataColumnCollection
| Parameters | ConstraintColiection
I UpdabCommnd]
DataReader | DeleteCommand | DataRelationCollection
Y -
H .
Database

ADO.NET ARCHITECTURE

DataSet ADO.NET

Data Adapter Command Data Reader
N

|

Data Source

ADO.NET Architecture

Data providers
Different databases will have different storage formats. Different languages will

support different data formats, this language formats will not be understandable to databases,
this requires a translator between a language application and database. This translator is
called driver or provider.
Driver or provider is a software component, this act like mediator between application
and database. They are the

» Microsoft SQL Server Data Provider,

» OLEDB Data Provider and

» ODBC Data Provider .

SQL Server uses the SglConnection object , OLEDB uses the OleDbConnection Object
and ODBC uses OdbcConnection Object respectively.

Corelangs.com Data Provider

A data provider contains Connection, Command, DataAdapter, and DataReader objects.
These four objects provide the functionality of Data Providers in the ADO.NET.

CONNECTION Object

» The Connection Object provides physical connection and interaction with the Data

Source.

» The .Net Framework provides two types of connection classes:
o The sqglconnection object, that is designed specially to connect to Microsoft

SQL Server and the OleDbConnection object, that is designed to provide
connection to a wide range of databases, such as Microsoft Access and Oracle.

» A Connection object helps to identify the database server name, user name and

password to connect to the database through a connection string.

» How to use the Sglconnection object:

@)

O O O O

Instantiate the SglConnection class.

Open connection.

Pass the connection to ADO.NET objects.

Perform the database operations with ADO.NET object.
Close the connection.

» The connection string is different for each of the various data providers available in

NET.

Connection

Data Source

Connection Strin "
No. Parameter Nameg Description
Identify the server. Could be local machine, machine domain
1 |Data Source
name, or IP Address.
2 |Initial Catalog Data base name.
3 |Integrated Security Set to SSIP to make connection with user's window login.
4 |\User ID Name of user configured in SQL Server.
5 |Password Password matching SQL Server User ID
Code:

1. SqglConnection con;
2. con = new SqlConnection("Server=Krushna;Database=Anagha;Uid=sa;Pwd=sa");

ASP.NET Sqgl Server Connection

The SqglConnection Object is Handling the part of physical communication between the
ASP.NET application and the SQL Server Database. An instance of the SqlConnection class
in ASP.NET is supported the Data Provider for SQL Server Database.

string connectionString=ConfigurationManager.ConnectionStrings["SQLDbConnection"]. ToString();

When the connection is established, SQL Commands will execute with the help of the
Command Object and retrieve or manipulate the data in the database. Once the Database
activities is over , Connection should be closed and released with the Data Source resources.
The Close() method in SglConnection Class is used to close the Database Connection.

The following ASP.NET program connect to a database server and display the message in the
Label control.

Default.aspx program

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtm|1/DTD/xhtml1-
transitional.dtd">
<html xmiIns="http://www.w3.0rg/1999/xhtml|">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />
</div>
<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</form>
</body>
</html>

Default aspx.cs

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
protected void Button1_Click(object sender, EventArgs e)
{
string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
SqlConnection connection = new SqlConnection(connectionString);
connection.Open();
Labell.Text = "Connected to Database Server !!";
connection.Close();

COMMAND Object

» A Command object executes SQL statements and stored procedures on the database.
These SQL statements can be SELECT, INSERT, UPDATE, or DELETE.

» It uses a connection object to perform these actions on the database.

» A Command object is used to perform various types of operations, like SELECT,
INSERT, UPDATE, or DELETE on the database.

» SELECT

1. cmd =new SqlCommand("select * from Employee", con);

» The Command Object requires an instance of an Connection Object (con) for
executing the SQL statements.
» INSERT

1. cmd = new SqlCommand("INSERT INTO Employee(Emp_ID,
Emp_Name)VALUES ('" + aa + "','" + bb + "')", con);

» UPDATE
1. SqglCommand cmd =new SqlCommand("UPDATE Employee SET
Emp_ID ='" + aa + "', Emp_Name ='" + bb + "' WHERE
Emp_ID = '" + aa + "'", con);
» DELETE

1. cmd =new SqlCommand("DELETE FROM Employee where Emp_ID='" + aa + "'", con);

Connection

Data Source
nged Feoegon dneedls Eimins ik donng:s oot

» A Command object exposes several execute methods like:
o ExecuteScalar()
ExecuteScalar method uses to retrieve a single value from a database.
Executes the query, and returns the first column of the first row in the result
set returned by the query. Extra columns or rows are ignored.

int result = Convert. ToInt32(cmd.ExecuteScalar());

> ltis very useful to use with aggregate functions like Count(*) or Sum() etc.
» The following ASP.NET program find number of rows in the author table using
ExecuteScalar method.

Default.aspx

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtml|1/DTD/xhtml1-
transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />
</div>
<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</form>
</body>
</html>

Default.aspx.cs

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.Ul.Page
{
protected void Button1_Click(object sender, EventArgs e)
{
string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
SqglConnection connection = new SqlConnection(connectionString);
string sql = "select count(*) from authors";
try
{
connection.Open();
SglCommand cmd = new SglCommand(sgl, connection);
int result = Convert.Tolnt32(cmd.ExecuteScalar());
connection.Close();
Labell.Text = "Number of rows in author table - " + result;
}
catch (Exception ex)
{
Labell.Text = "Error in ExecuteScalar " + ex.ToString();

}

o ExecuteReader()
Display all columns and all rows at client-side environment.
The ExecuteReader() in SglCommand Object sends the SQL statements to the
Connection Object and populate a SglDataReader Object based on the SQL
statement.
SqlDataReader reader = cmd.ExecuteReader();
Default.aspx

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0rg/TR/xhtml|1/DTD/xhtml1-
transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button ID="Buttonl" runat="server" Text="Button" onclick="Button1_Click" />

<asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</div>
</form>
</body>
</html>

Default.aspx.cs

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.Ul.Page

{
protected void Button1_Click(object sender, EventArgs e)
{
string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
SqglConnection connection = new SqlConnection(connectionString);
string sql = "select au_Iname,au_fname from authors";
try
{
connection.Open();
SglCommand cmd = new SglCommand(sgl, connection);
SqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
ListBox1.ltems.Add(reader.GetValue(0) + " " + reader.GetValue(1));
}
connection.Close();
}
catch (Exception ex)
{
Labell.Text = "Error in ExecuteReader " + ex.ToString();
}
}

o ExecuteNonQuery()

Something is done by the database but nothing is returned by the database.
The ExecuteNonQuery() performs Data Definition tasks as well as Data
Manipulation tasks also. The Data Definition tasks like creating Stored
Procedures, Views etc. are performed by ExecuteNonQuery(). Also Data
Manipulation tasks like Insert, Update , Delete etc. also perform by the
ExecuteNonQuery() of SqlCommand Object. Although the ExecuteNonQuery
returns no rows, any output parameters or return values mapped to
parameters are populated with data.

Default.aspx

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UIl.Page
{
protected void Button1_Click(object sender, EventArgs e)
{
string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
SqlConnection connection = new SqlConnection(connectionString);
string sql = "insert into discounts values('New Discont',8042,1000,1000,5.25)";
try
{
connection.Open();
SglCommand cmd = new SglCommand(sgl, connection);
cmd.ExecuteNonQuery();
connection.Close();
Labell.Text = "Successfully Inserted !!";
}
catch (Exception ex)
{

Labell.Text = "Error inserting data" + ex.ToString();

}

10

DataReader

» DataReader Object is a stream-based, forward-only, read-only retrieval of query
results from the Data Sources, which do not update the data.

» A DataReader object is used to obtain the results of a SELECT statement from a
command object.

» The DataReader cannot be created directly from code, they can created only by
calling the ExecuteReader() method of a Command Object.

> After creating an instance of the Command object, you have to create a DataReader
by calling Command. ExecuteReader to retrieve rows from a data source.

=

. dr = cmd.ExecuteReader();
. DataTable dt = new DataTable();
3. dt.Load(dr);

N

SqlDataReader reader = cmd.ExecuteReader();

» You should always call the Close method when you have finished using the
DataReader object.

It is used in Connected architecture.

Provide better performance.

DataReader Object has Read-only access.

YV V V V

DataReader Object supports a single table based on a single SQL query of one
database

A\

DataReader Object is Bind to a single control.
> DataReader Object has faster access to data.
» DataReader cannot modify data.

The following ASP.NET program execute sql statement and read the data using
SqlDataReader.

Default.aspx

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml|1/DTD/xhtml1-
transitional.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml|">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />

<asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</div>

11

</form>
</body>
</html>

Default.aspx.cs

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.Ul.Page

{
protected void Button1_Click(object sender, EventArgs e)
{
string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
SqglConnection connection = new SglConnection(connectionString);
string sql = "select pub_id,pub_name from publishers";
try
{
connection.Open();
SqlCommand cmd = new SglCommand(sql, connection);
SqlDataReader reader = cmd.ExecuteReader();
while (reader.Read())
{
ListBox1.ltems.Add(reader.GetValue(0) + " - " + reader.GetValue(1));
}
reader.Close();
connection.Close();
}
catch (Exception ex)
{
Labell.Text = "Error in SqlDataReader " + ex.ToString();
}
}

12

DataAdapter
> DataAdapter serves as a bridge between a DataSet and SQL Server for retrieving and
saving data.
> A DataAdapter represents a set of data commands and a database connection to fill
the dataset and update a SQL Server database.
» It maintains the data in a DataSet object.
» The user can read the data if required from the DataSet and write back the changes in
a single batch to the database.
> Additionally, the Data Adapter contains a command object reference for SELECT,
INSERT, UPDATE, and DELETE operations on the data objects and a data
source.
> A Data Adapter mainly supports the following two methods:
o Fill ()
The Fill method populates a dataset or a data table object with data from the
database.
o Update ()
The Update method commits the changes back to the database. It also analyzes the
RowsState of each record in the DataSet and calls the appriopriate INSERT,
UPDATE, and DELETE statements.
» A Data Adapter object is formed between a disconnected ADO.NET object and a
data source.
» We can use SqlDataAdapter Object in combination with Dataset Object.

Retrieving & updating data using DataAdapter J

Original
DataSet

SqlDataAdapter adapter = new SqlDataAdapter(sql,connection);
adapter.Fill(ds);

13

1. SqglDataAdapter da=new SqlDataAdapter("Select * from Employee", con);
2. da.Fill(ds,"Emp");

The following ASP.NET program shows a select operation using SqlDataAdapter.

Default.aspx

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.0org/TR/xhtml|1/DTD/xhtml1-
transitional.dtd">
<html xmins="http://www.w3.0rg/1999/xhtml|">
<head id="Head1" runat="server">
<title>Untitled Page</title>

</head>
<body>
<form id="form1" runat="server">
<div>
<asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />

<asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</div>
</form>
</body>
</html>

Default.aspx.cs

using System;

using System.Data ;

using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UIl.Page
{
protected void Button1_Click(object sender, EventArgs e)
{

string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();

SqglConnection connection = new SglConnection(connectionString);

DataSet ds = new DataSet ();

string sql = "select pub_name from publishers";

try

{
connection.Open();
SqlDataAdapter adapter = new SglDataAdapter(sqgl,connection);
adapter.Fill(ds);
for (inti = 0;i < ds.Tables[0].Rows.Count -1;i++)
{

ListBox1.ltems.Add(ds.Tables[0].Rows][i].ItemArray[0].ToString ());

1
connection.Close();

}

catch (Exception ex)

{
Labell.Text = "Error in execution " + ex.ToString();

}

14

DataSet

>

In the disconnected scenario, the data retrieved from the database is stored in a local
buffer called DataSet.

It is explicitly designed to access data from any data source. This class is defined in
the System.Data namespace.

A Data Set is a collection of DataTable and DataRelations. Each DataTable is a
collection of DataColumn, DataRows and Constraints.

So it contains rows, columns, primary keys, constraints, and relations with other
DataTable objects.

DataSet consists of a collection of DataTable objects that you can relate to each other
with DataRelation objects.

The DataAdapter Object provides a bridge between the DataSet and the Data
Source.

[

DATASET DataSet object
/ DataTableCollections \ @— DmeToleColeton
DataTable f
DataRowCollection : ! L ‘
DateColumnd ollection DatiRow Collecion Cons traints [
DataDColoumnCollection |
ConstraintCollection : DataColumn
\ / | pukdosen « Main object of disconnected
3 : architecture.
DataRelationCaliection | » Can store tables with their

Corelangs.com

‘ Waﬂch}ﬂ schema at client side.

YV V V V V V V V VY

DataTable dt = new DataTable();
DataColumn col =new DataColumn();
Dt.columns.Add(col2);

DataRow row = dt.newRow();

A WN R

It is used in a disconnected architecture.

Provides lower performance.

A DataSet object has read/write access.

A DataSet object supports multiple tables from various databases.
A DataSet object is bound to multiple controls.

A DataSet object has slower access to data.

A Dataset supports integration with XML.

A DataSet communicates with the Data Adapter only.

A DataSet can modify data.

15

CommandBuilder Object
> By default DataAdapter contains only the select command and it doesn’t contain
insert, update and delete commands.
» To create insert, update and delete commands for the DataAdapter, CommandBuilder
is used. It is used only to create these commands for the DataAdapter and has no other
purpose.

Differences Between DataReader and DataSet

16

No.

Data Reader

DataSet

It is connected object and cannot provide access
to data when connection to database was closed.

It is disconnected object and can
provide access to data even when
connection to database was closed

2 |Provides better performance Provides lower performance
3 |DataReader object has read-only access A DataSet object has read/write
access
4 |It can store data from only one table. It can store data from multiple tables.
5 |A DataReader object is bound to a single control. |A DataSet object is bound to multiple
It can contain only one record at a time. controls. It can contain multiple
records.
6 |A DataReader object has faster access to data A DataSet object has slower access to
data
7 |A DataReader object must be manually coded A DataSet object is supported by
Visual Studio tools.
8 |We can't create a relation in a data reader \We can create relations in a dataset
9 |Whereas a DataReader doesn't support data reader |A Dataset supports integration with
communicates with the command object. XML. Dataset communicates with the
Data Adapter only.
10 |It is read only and it doesn’t allow insert, It allows insert, update and delete
update and delete on data. on data
11 |All the data of a DataReader will be on All the data of a dataset will be

server and one record at a time is retrieved and
stored in datareader when you call the Read()

method of datareader.

on client system.

17

Connected Architecture of ADO.NET

>

>

In the connected architecture, connection with a data source is kept open
constantly for data access as well as data manipulation operations.
The ADO.NET Connected architecture considers mainly the following types of
objects. Connected architecture was built on the classes connection, command,
datareader and transaction.

o SglConnection con;

o SqglCommand cmd;

o SqlDataReader dr;
Connection : in connected architecture also the purpose of connection is to just
establish a connection to database and itself will not transfer any data.
DataReader : DataReader is used to store the data retrieved by command object
and make it available for .net application. Data in DataReader is read only and within
the DataReader you can navigate only in forward direction and it also only one record
at a time.
To access one by one record from the DataReader, call Read() method of the
DataReader whose return type is bool. When the next record was successfully read,
the Read() method will return true and otherwise returns false

Data Provider

Transaction

DataReader

4

Command

Parameters

1

Connection

L

Database

18

Disconnected Architecture in ADO.NET

p——— e e —————— e - — = - = ¢ = e e

What is Disconnected Architecture?

— — ——— -

Connected Maodel Disconnected Model
[Neat Applicason I | Net Application I
[-

O L onmne ctyoni]

Chpen comnec ion Reweve data ol clent swe]

Run Commands hose conmec o I

Retneve Resuls |

Clhose connection

Lipdate bl

C lorse conmes on

I
I
|
[Snpuncdm
I
I
I

|
r——
I
I

Order

Processing
databasy

The architecture of ADO.net in which data retrieved from database can be accessed even
when connection to database was closed is called as disconnected architecture. Disconnected
architecture of ADO.net was built on classes connection, dataadapter, commandbuilder and
dataset and dataview.

Data Provider

Command Builder
I l DataSet

Data Adapter DataTable
| Select Command | | W |
| Insert Command |= | Columns |
| Update Command | | Constraints |
| Delete Command | | S ataions |

’ A
Connection | Dam'View I

Database

19

The .NET application does not always stay connected with the database. The
classes are designed in a way that they automatically open and close the connection.
The data is stored client-side and is updated in the database whenever required.
The ADO.NET Disconnected architecture considers primarily the following types of
objects:

o DataSet ds;

o SqlDataAdapter da;

o SglConnection con;

o SqlCommandBuilder bldr;
Connection : Connection object is used to establish a connection to database and
connectionit self will not transfer any data.
DataAdapter : DataAdapter is used to transfer the data between database and
dataset. It has commands like select, insert, update and delete. Select command is
used to retrieve data from database and insert, update and delete commands are used
to send changes to the data in dataset to database. It needs a connection to transfer the
data.
CommandBuilder : By default dataadapter contains only the select command
and it doesn’t contain insert, update and delete commands. To create insert, update
and delete commands for the dataadapter, commandbuilder is used. It is used only to
create these commands for the dataadapter and has no other purpose.
DataSet : Dataset is used to store the data retrieved from database by dataadapter
and make it available for .net application.
To fill data in to dataset fill() method of dataadapter is used and has the following
syntax.

Da.Fill(Ds,”TableName”);
When fill method was called, dataadapter will open a connection to database, executes
select command, stores the data retrieved by select command in to dataset and
immediately closes the connection.
As connection to database was closed, any changes to the data in dataset will not be
directly sent to the database and will be made only in the dataset. To send changes
made to data in dataset to the database, Update() method of the dataadapter is used
that has the following syntax.
Da.Update(Ds,”Tablename”);

When Update method was called, dataadapter will again open the connection to
database, executes insert, update and delete commands to send changes in dataset to
database and immediately closes the connection. As connection is opened only when
it is required and will be automatically closed when it was not required, this
architecture is called disconnected architecture.
A dataset can contain data in multiple tables.

20

Steps to Create a Database Using ADO.NET

We should have the followings.

» .NET framework 4.5 or greater installed and ready to go.

» A text editor or visual studio.

> An ADO.NET Database Driver contained in products such
as MySQL, PostgreSQL or RDM.

Steps to Creating your Application

Step 1 Open a command line prompt or visual studio
Change to the directory in which you have installed the files for the sample.

Step 2 Viewing your .cs file
Using your text editor/visual studio, create the file “HelloWorld ADO.NET.cs”.

Step 3 Viewing your sample class

The class can contain the same name as the .cs file containing the class. It should appear as
follows:

Namespace HelloWorldApplication {
class HelloWorldADO.NET {

by

In this example everything is done within this class.

Step 4 Examining the main method

The main method is the entry point for your program. For this simple example, we are only
using one .cs file. Therefore, the class will contain the main method as shown below. We will
be accepting no arguments to this program.

static void main() {

Step 5 Creating and initializing your Connection Object

We have to initialize Connection object before you have access to any of the methods it
contains.

Start a new try block for every object that you initialize. When you are done with the object,
simply add a finally block that performs the corresponding close() method, and the outermost
block will contain your catch block to handle all possible Exceptions.

RDM ADO.NET driver is being used so we have an RdmConnection object.
RdmConnection connection = new
RdmConnection("host=localhost;database=hello_worldADO");

try {

} catch (Exception exception) {

https://dev.mysql.com/downloads/connector/net/
https://www.devart.com/dotconnect/postgresql/
https://raima.com/how-to-create-a-database-using-ado-net/download-table/

21

} finally {
Conn.close();

¥

Step 6 Creating your Statement Object

The newly created Connection object connection has a method in it called createCommand()
that will return a RdmCommand object. You will then use that object with this Connection to
the database.

RdmCommand command = connection.createCommand();

try {

.}.finally{
command.close();

}

Step 7 Execute Statements to Create or Open the Database

Using the RdmCommand object command you just created, you can execute several different
methods depending on the type of statement you want to execute.

For example, if you would like to execute a SQL statement such as “OPEN database name”
or “DELETE * FROM table name” you would perform a command.executeNonQuery()
method. You can see executeNonQuery() used in the code snippet below. In this example, we
will create the database programmatically.

In this example, the database is trivial, consisting of a single table named hello_table
containing a single character column named foo. The sequence will create a table if it doesn’t
yet exist, or just open it if it does exist.

try {

RdmTransaction rdmtrans = connection.BeginTransaction();
command.CommandText = “CREATE TABLE hello_table (f00 char(31))”;
command.executeNonQuery();

rdmtrans.commit();

/I now the database physically exists

} catch (Exception exception) {

/[we are here if database exists

}

Step 8 Inserting a new Row using the Statement Object

To insert a single row into this database, we use the ExecuteNonQuery() method, which is
used for complete (unprepared) INSERT, UPDATE or DELETE statements. This implicitly
starts a transaction, which will be one unit of update work applied to the database atomically.
One INSERT is shown below with a parameter binding, but more could be added at this
point.

command.CommandText = "INSERT INTO hello_table(f00) VALUES(?)";

22

command.CommandText = insertString;
RdmParameter parameter = new RdmParameter();
parameter.RdmType = RdmType.AnsiString;
parameter.Direction = ParameterDirection.Input;
parameter.Value = "Hello World!";
command.Parameters.Add(parameter);
command.ExecuteNonQuery();

Step 9 Committing Changes

In order to have your changes finalized in the database you must perform a transaction
commit. In ADO.NET this is done through a method in the RdmTransaction object. The
method we will be using is RdmTransaction.Commit() and that will finalize any changes you
made during a transaction.

rdmtrans.Commit(); //Commits all changes

Step 10 Creating your Result Set Object (retrieving data from the database)

In ADO.NET, when you want to retrieve data from the database, you perform a SQL
SELECT statement using your Command object with an execute method that returns a Result
Set object. This method is called Command.executeReader(). This means it will execute the
specified Query and return the Query results in the given Reader.
command.CommandText = "SELECT * FROM hello_table"™;

RdmDataReader reader = command.ExecuteReader();
try {

} finally {
reader.Close();

}
Step 11 Accessing the Result Set

In order to access every piece of data in your Result Set, you must iterate through it. A
method is provided within the Result Set to check if the next result in the Result Set is
NULL, meaning no more data.

If the method reader.Read() returns TRUE then there is data in the database and you can
retrieve it from your result set.

To access the data inside the Result Set you must perform a getter method. There are
numerous getter methods available to retrieve the specific data type from the Result Set.

In this example we want a string, therefore we use the reader.getString() method, with the
parameter being the column (first/only column is 0) you are retrieving from.
Take a look at the code below to see an example of how this can be done.
while(reader.Read() != false)

{
Console.WriteLine(reader.GetString(0));

23

ky

This loop will retrieve all rows in the result set. When this sample program is run for the first
time, there will be only one row. If you run it multiple times, you will find one row for each
time it has been run.

Step 12 Deallocating Resources

Here you will deallocate all of the resources you used above. In this case, your resources are
each object that you used above, being your Connection object, Statement, and Result Set
objects. For each nested try block you will have a finally block, which performs the
corresponding close method. These statements have been shown in context above, but here
are the cleanup calls in sequence from the code.

} finally {

reader.Close ();

}

} finally {

command.Close ();

}

} catch (Exception exception) {

Console.WriteLine (“Exception : ” + exception.ToString ());

} finally {
connection.Close ();

¥

Step 13 Final Catch and Finally block

The very last block contains both a catch block and a finally block. The catch block
determines what to do if an exception was thrown in the code above. In this case just
displaying the exception to standard out is sufficient. The finally block will be executed
regardless of an exception being thrown. Here we will deallocate our Connection object. In
this example, if your Connection object does throw an exception for some reason, it is
“thrown” out of the method. In a normal situation you could either add another try catch
block, or declare this program as a separate method and handle it elsewhere.

} catch (Exception exception) {
WriteLine(“Exception : ” + exception. ToString());

} finally {
connection.Close();

}
Step 14 Compiling your application

Step 15 Running the program

24

Data Binding
User can bind the data with the controls of the forms. This process is known as data binding.
There are two types of data binding in ASP.NET known as simple data binding and
declarative data binding.
Simple data binding

» In simple data binding, the control is bounded to a data set.

» The properties of the control are used for binding with the value.
> Depending on the control to be bounded, the binding’s property is set.

Consider the following example where the Academic information of the student is bounded
using various controls.
Example to demonstrate the simple data binding in ASP.NET
Consider an example where a windows form is used for displaying the details.
Create a Windows form application in Visual studio.
1. Add the windows form to the design view.
2. Add three labels and corresponding textboxes to it. Add the labels as Name, Age and

Location.
o' Forml | = | (=] | e Fam
y
Name u] 0 Age 20
|| s — =
Location

3. Select the View, Properties Window in the application

4. Select the first textbox and navigate to the properties window.

5. Expand the DataBindings property.

6. From the drop down list, select the Text property.

7. Click on the Add Project Data Source from the drop down list.

8. Add a connection to the database and select the appropriate table.

9. Select Other Data Sources, Project data source, DataSet.

10. Select the appropriate value and bind the textbox control with it.

11. Press F5 or select Start debugging option. Execute the windows form and the
following output is displayed.

Declarative data binding
The process of binding a component like listbox, DataGrid, record list with the dataset is
known as declarative binding. When there is more than one element in the database, the
declarative binding is used.
Some of the controls used for the declarative data binding are listed below.
1. DataGrid: The data from multiple records is displayed using the DataGrid view. The
DataSource property of the control is used for binding the specific element data.

25

2. ListBox: The data for a column from different dataset is displayed. The DataSource
property is used for binding the control. The control binds to the specific element
using the DisplayMember property.

3. ComboBox: The DisplayMember property is used for binding the control to the
specific data element. The DataSource property is used for binding the control to

the data source.
The following objects are needed for data binding in ASP.NET.
The data accessed from the database is stored in the dataset.
1. The data provider is used for accessing data through the command object
2. The data adapter is used for selecting, updating, inserting, deleting the data using
commands.
Consider the following example to demonstrate the declarative data binding
Create an ASP.NET web application in visual studio.
1. Add a grid view control in the design view of the application
2. Inthe source view, add the following code

Code:
<html xmiIns="http://www.w3.0rg/1999/xhtml|">
<head runat="server">
<title></title>
</head>
<body>
<form id="form1" runat="server">
<div>

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"

DataSourcelD="SqlDataSourcel" >

<Columns>

<asp:BoundField DataField="studid" HeaderText="studid" SortExpression="studid" />

<asp:BoundField DataField="studname" HeaderText="studname" SortExpression="studname" />

<asp:BoundField DataField="marks" HeaderText="marks" SortExpression="marks"/>

</Columns>

</asp:GridView>

<asp:SqlDataSource ID="SqlDataSourcel" runat="server"
ConnectionString="<%S$ConnectionStrings:demoConnectionString1 %>"

SelectCommand="SELECT * FROM [result] “> </asp:SqlDataSource>

</div>
</form>
</body>
</html>
3. The above code is compiled and executed, the following output is generated (if the

database is already created and inserted, we get the table).

studid/studname|/marks
1 Dick 20

3 Peter 30
4 John 50

26

DataL.ist and DataGrid and Repeater

What is DataList?

» The ASP.NET DatalL.ist control is a light weight server side control that works as a
container for data items.

> Itis used to display data into a list format to the web pages.

» It displays data from the data source.

» The data source can be either a DataTable or a table from database.

7} ExpertDatalistTemplateDemo.aspx - Microsoft Internet f»:-j; er Po = |D|_>g
ﬂ Clickguide Menus |
File Edt View Favortes Tools Help | A
Qback ~) - [¥] 2] | - Search - Favorites @4 Media &% | > a2
Address l@ http:{flocalhost/DataList TemplateDemo. aspx zl Go [Links >
_A_j
Employee's Home Phone Numbers:
First Name: Nancy
Last Name: Davolio
Home Phone: (206) 555-9857
First Name: Andrew
Last Name: Fuller
Home Phone: (206) 555-9482
First Name: Janet
Last Name: Leverling
Home Phone: (206) 555-3412
First Name: Margaret =l
|&] Done [[| [NJiocalintranet 7

What is DataGrid?

The DataGrid control binds to a single DataSet object. The DataSet object of the
"DataGrid Application™ is initially populated from a database using an DataAdapter object.

M DataGrid Form

Record: 1

25 Tabot Ro London
Baheami Masoud 34 Shwaz cad Tehran ltan mb@bt.com manfasine 8373287434

avic Bons Moskafrd 46 Moskow Russia b@aolcom Bors didnttu 4384454564
|Johnson mama 12KingWay Bristol UK m@testnet thereis acall 0044032343
Mendes Ak Mayiz caddes Pazarck Tuzkey almendes@a Al suanMun 00902384585
Mubler Hans Henz Westendstr.2 Frankfut Getmany hhm@tde.de Heu Heinzist 08978347843

Pamukis Costa 84 Selankos Athens Greece cp@gr.gr Elabre Casta 85487547
Lasel 123Kikitoad Tottenham Laselihas 2 87438943

27

What is repeater?

>

Y

Repeater control is used to show a repeated list of items from data source like data
table, database, xml file, list etc.

A Repeater is a Data-bound control.

Data-bound controls are container controls.

It creates a link between the Data Source and the presentation Ul to display the data.
The repeater control is used to display a repeated list of items.

Repeater control provides us a table layout.

Repeater is the fastest control in data controls available in Asp.Net. So, we can say
performance of repeater control is far better than other data control like GridView.

There are different types of template exists in Repeater.

>

Header Template

It renders on the top of the control and show the header data.

Footer Template

It renders on the bottom of the control and use to show the footer data like paging.
Item Template

It is main template which is used to display the data from database, xml, list and data
table.

Alternating Item Template

It is used as like Item Template but It renders once after other data display. Basically
use of alternating item template is providing look and style of alternative rows like
background color, font etc.

Separator Template

It renders after each item. For example a line after every record,

DataL.ist and DataGrid and Repeater

» DataList and GridView and Repeater are Data-bound controls that bound to a data

source control like SglDataSource, LingDataSource to display and modify data in
your Asp.Net web application.

» Data-bound controls are composite controls that contains others Asp.Net controls like

as Label, TextBox, DropdownList etc. into a single layout. In this article, I am going
to expose the difference among these three.

Difference between DatalL ist and Repeater

28

DataL.ist

Repeater

Rendered as Table.

Template driven.

Automatically generates columns from the
data source.

This features is not supported.

Selection of row is supported.

Selection of row is not supported.

Editing of contents is supported.

Editing of contents is not supported.

You can arrange data items horizontally or
vertically in DataL.ist by using property
RepeatDirection.

This features is not supported.

Performance is slow as compared to
Repeater

This is very light weight and fast data
control among all the data control.

Difference between GridView and Repeater

GridView

Repeater

It was introduced with Asp.Net 2.0.

It was introduced with Asp.Net 1.0

Rendered as Table.

Template driven.

Automatically generates columns from the
data source.

This features is not supported.

Selection of row is supported.

Selection of row is not supported.

Editing of contents is supported.

Editing of contents is not supported.

Built-in Paging and Sorting is provided.

You need to write custom code.

Supports auto format or style features.

This has no this features.

Performance is very slow as compared to
Repeater.

This is very light weight and fast data control
among all the data control.

Difference between GridView and DataList

GridView

DataL.ist

It was introduced with Asp.Net 2.0.

It was introduced with Asp.Net 1.0.

Built-in Paging and Sorting is provided.

You need to write custom code.

Built-in supports for Update and Delete
operations.

Need to write code for implementing Update
and Delete operations.

Supports auto format or style features.

This features is not supported.

RepeatDirection property is not supported.

You can arrange data items horizontally or
vertically in DataL.ist by using property
RepeatDirection.

Doesn’t support customizable row separator.

Supports customizable row separator by
using SeparatorTemplate.

Performance is slow as compared to
DataL.ist.

Performance is fast is compared to
GridView.

29

Files
» Reading and writing with streams
» The .NET supports to create simple “flat” files in text or binary format.
» Unlike a database these files does not have any internal structure.
Text files
We can write to and read from from file using the special classes called stream writer
and stream reader. The File class also support to read or write into a file.

Dim wr as StreamWriter

wr=File.CreateText(“D:\ourFile.txt”)

we can add information to the same file using WriteLine() method.
wr.WriteLine(“This file generated by us”)

wr.WriteLine(45)

wr.close()

Output

E Untitled - Notepad = ‘:'
Eile Edit Format View Help

This file generated by us
45

To read the file, StreamReader class support by ReadLine() method.
Dim rr As StreamReader = File.OpenText(“C:\ourFile.txt”)

Dim InputS tring As String

InputString = rr.ReadLine() ‘This file generated by us

InputString = rr.ReadLine() ‘45

30

XML
XML classes supports communication between the applications or components.
NET provides five namespace - System.Xml, System.Xml.Schema,

System.Xml.Serialization, System.Xml.XPath, and System.Xml.Xsl to support XML classes.
The System.Xml namespace contains major XML classes. This namespace contains many
classes to read and write XML documents. In this article, we are going to concentrate on
reader and write class. These reader and writer classes are used to read and write XMl
documents. These classes are - XmlReader, XmlTextReader, XmlValidatingReader,
XmINodeReader, XmIWriter, and XmITextWriter. As you can see there are four reader and
two writer classes.

Reading XML Documents

XmlTextReader textReader = new XmlITextReader("C:\\books.xml");

Writing XML Documents

// Create a new file in C:\\ dir

XmITextWriter textWriter = new XmlTextWriter("C:\\myXmFile.xml", null);

// Opens the document

textWriter.WriteStartDocument();

// Write comments

textWriter.WriteComment("First Comment XmITextWriter Sample Example");
textWriter.WriteComment("myXmlFile.xml in root dir");

// Write first element

textWriter.WriteStartElement("Student");

textWriter.WriteStartElement("r", "RECORD", "urn:record");

There are other classes to create an XML document, write and read.
Program to create an XML document and write its contents to the XML document.

using System;

using System.Xml;

using System.Data;

using System.Data.OleDb;

namespace ReadingXML2 {

class Class1 {

static void Main(string[] args) {

// create a connection

OleDbConnection con = new OleDbConnection();
con.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\\Northwind.mdb";
// create a data adapter

OleDbDataAdapter da = new OleDbDataAdapter("Select * from Customers", con);
// create a new dataset

DataSet ds = new DataSet();

// fill dataset

da.Fill(ds, "Customers");

// write dataset contents to an xml file by calling WriteXm| method
ds.WriteXml("C:\\OutputXML.xml");

}

}

}

*kkkk

31

Due to Coronoa outbreak during the lockdown period (March 24-April 21, 2020), | have
collected the study materials for assisting students from the websites listed below.
Further, I acknowledge the sources thereto.

https://www.javatpoint.com/ado-net-command
https://www.c-sharpcorner.com/UploadFile/dOalc8/database-programming-with-ado-net/
https://raima.com/architecture/
http://asp.net-informations.com/ado.net/ado-architecture.htm
http://www.programcall.com/9/aspnet/aspnet-validation-controls.aspx
https://www.go4dexpert.com/articles/data-binding-aspnet-t34155/
https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-
gridview

https://www.geeksforgeeks.org/c-sharp-delegates/
https://www.tutorialspoint.com/csharp/

https://www.javatpoint.com/ado-net-command
https://www.c-sharpcorner.com/UploadFile/d0a1c8/database-programming-with-ado-net/
https://raima.com/architecture/
http://asp.net-informations.com/ado.net/ado-architecture.htm
http://www.programcall.com/9/aspnet/aspnet-validation-controls.aspx
https://www.go4expert.com/articles/data-binding-aspnet-t34155/
https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-gridview
https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-gridview
https://www.geeksforgeeks.org/c-sharp-delegates/

