
Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

1

Unit – II - Developing VB.NET Applications - Introduction to VB.Net, The .Net Frame work

and Common language runtime, Building VB. Net Application, VB IDE, forms, properties,

events, VB language-console application and windows application, data type, declaring

variable, scope of variable, operators and statements - Windows Applications-forms, adding

controls to forms, handling events, MsgBox, Input Box, multiple forms, handling mouse and

Keyboard events, object oriented programming creating and using classes and objects,

Handling Exceptions- on Error Goto.

Operators and Statements

A R I T H ME T I C O PE R A T O R S

Operator Mathematical Function Example

+ Addition 1+2=3

– Subtraction 10-4=6

^ Exponential 3^2=9

* Multiplication 5*6=30

/ Division 21/7=3

Mod Modulus(returns the remainder of an integer division) 15 Mod 4=3

\ Integer Division(discards the decimal places) 19/4=4

Private Sub BtnCal_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles
BtnCal.Click

Dim num1, num2, difference, product, quotient As Single

Dim num1 As Single, num2 As Single

Dim sum As Single, diff As Single, pdct As Double, quo As Double

num1 = TxtNum1.Text

num2 = TxtNum2.Text

sum=num1+num2

difference=num1-num2

product = num1 * num2

quotient=num1/num2

LblSum.Text=sum

LblDiff.Text=difference

LblPdct.Text = product

LblQuo.Text = quotient

End Sub

Upon running the program, the user may enter two numbers and click on the calculate
button to perform the four basic arithmetic operations. The results will be displayed the on
the four labels, as shown in Figure

2

Conditional Operators

Operator Description

 = Equal to

 > Greater than

 < Less than

 >= Equal to or Greater than

<= Less than or Equal to

 <> Not equal to

Logical Operators

we might need to make more than one comparisons to arrive at a decision.In this case, using
numerical comparison operators alone might not be sufficient and we need to use the logical
operators.

Operator Description

And Both sides must be true

Or One side or other must be true

Xor One side or other must be true but not both

Not Negates true

3

Using the If control structure with the Comparison Operators

I F … . T H E N S T A TE ME N T

This is the simplest control structure which instructs the computer to perform a certain action

specified by the Visual Basic 2015 expression if the condition is true. However, when the

condition is false, no action will be performed.

If condition Then

Visual Basic expressions

End If

Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click

Dim myNumber As Integer

myNumber = TxtNum.Text

If myNumber> 100

Then

MsgBox(” You win a lucky prize”)

End If

End Sub

I F … . T H E N … E L S E S T A T E M E N T

In order to provide an alternative output, we need to use the If….Then…Else Statement.

Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click

Dim myNumber As Integer

myNumber = TxtNum.Text

If myNumber> 100 Then

MsgBox(” Congratulation! You win a lucky prize”) Else MsgBox(” Sorry, You did not win any prize”)

End If

End Sub

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.1.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.2.jpg

4

I F … . T H E N … E L S E I F S T A T E M E N T

In circumstances where there are more than two alternative conditions, using just

If….Then….Else statement will not be enough.

Private Sub OK_Click(sender As Object, e As EventArgs) Handles OK.Click

Dim Mark As Integer

Dim Grade As String

Mark = TxtMark.Text

If Mark >= 80 And Mark <= 100 Then

Grade = "A"

ElseIf Mark >= 60 And Mark < 80 Then

Grade = "B"

ElseIf Mark >= 40 And Mark < 60

Grade = "C"

ElseIf Mark >= 0 And Mark < 40

Grade = "D"

Else Grade = "Out of Range"

End If

MsgBox("You Grade is " & Grade)

End Sub

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.3.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.5.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig13.6.jpg

5

Select case

The Select Case control structure also involves decisions making but it slightly different from the

If….ElseIf control structure .The If … Then…ElseIf statement control structure evaluates only one

expjression but each ElseIf statement computes different values for the expression. On the other hand,

the Select Case control structure evaluates one expression for multiple values. Select Case is preferred

when there exist multiple conditions as using If…Then..ElseIf statements will become too messy.

Syntax

Select Case expression

Case value1

Block VB statements

Case value2

Block VB Statements

Case value3

.

.

Case Else

Block VB Statements

End Select

Private Sub BtnShow_Click(sender As Object, e As EventArgs) Handles BtnShow.Click

Dim grade As String

grade = TxtGrade.Text

Select Case grade

Case “A”

MsgBox(”High Distinction”)

Case “A-”

MsgBox(”Distinction”)

Case “B”

MsgBox(”Credit”)

Case “C”

MsgBox(”Pass”)

Case Else

MsgBox(”Fail”)

End Select

End Sub

https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig14.1.jpg
https://www.vbtutor.net/wordpress/wp-content/uploads/2015/04/vb2015_fig14.2.jpg

6

Looping

Forms

Visual Basic Form is the container for all the controls that make up the user interface.

Scope of variable

https://www.vbtutor.net/index.php/visual-basic-2017-lesson-9-working-variables-
constants/

In Visual Basic.NET, the Dim keyword is used to declare the data.

However, you can also use other keywords to declare the data. Three other keywords

are private, static and public.

The forms are as shown below:

 Private VariableName as Datatype

 Static VariableName as Datatype

 Public VariableName as Datatype

The above keywords indicate the scope of the declaration.

Private declares a local variable or a variable that is local to a procedure or module.

However, Private is rarely used, we normally use Dim to declare a local variable.

Static keyword declares a variable that is being used multiple times, even after a procedure

has been terminated. Most variables created inside a procedure are discarded by Visual Basic

when the procedure is terminated. Static keyword preserves the value of a variable even after

the procedure is terminated.

Public is the keyword that declares a global variable, which means it can be used by all the

procedures and modules of the whole Visual Basic program.

7

Object oriented programming creating and using classes and objects

In order for a programming language to qualify as an object oriented programming
language, it must have three core technologies namely encapsulation, inheritance and
polymorphism. These three terms are explained below:

Encapsulation

 Encapsulation is a mechanism to wrap the data (variables) and code acting on the
data (methods) together as a single unit.

 The data components of a class are called instance variables and one instance of a
class is an object. For example, in a library system, a class could be a member, and
John and Sharon could be two instances (two objects) of the library class.

Inheritance

 Inheritanceis a mechanism in which one object acquires all the properties and
behaviors of a parent object.

 The idea behind inheritance is that you can create new classes that are built upon
existing classes.

 Advantage: Less programming is required when adding functions to complex systems
(reusability).

Polymorphism

 Polymorphism is the ability of an object to take on many forms.

 Object-oriented programming allows procedures about objects to be created whose
exact type is not known until runtime.

 For example, a screen cursor may change its shape from an arrow to a line depending
on the program mode.

Class: A class consists of data members as well as methods.

VB.Net window program using class and objects

The following Program shows you how to create a class that can calculate
your BMI (Body Mass Index).

To create a class, start Visual Basic 2017 as usual and choose Windows Applications.
In the Visual Basic 2015 IDE, click on Project on the menu bar and select Add Class,
as shown in Figure.

8

After clicking the Add Class item, the Add New Item dialog appears, as shown in
Figure.

Click on the Class item and the default class Class1.vb will appear as a new tab in a
code window. Rename the class as MyClass.vb. Rename the form as MyFirstClass.vb.

Now, in the MyClass.vb window, create a new class MyClass1 and enter the following
code
Public Class MyClass1

Public Function BMI(ByVal height As Single, ByVal weight As Single)

BMI = Format((weight) / (height ^ 2), "0.00")

End Function

End Class

Now you have created a class (an object) called MyClass1 with a method known as
BMI.

In order to use the BMI class, insert a button into the form and click on the button to
enter the following code:
Private Sub BtnBMI_Click(sender As Object, e As EventArgs) Handles

BtnBMI.Click

Dim MyObjectAs Object

Dim h, w As Single

MyObject = New MyClass1()

h = InputBox(“What is your height in meter”)

w = InputBox(“What is your weight in kg”)

MessageBox.Show(MyObject.BMI(h, w), "Your BMI")

End Sub

When you run this program and click the button, the user will be presented with two
input boxes to enter his or her height and weight subsequently and the value of BMI
will be shown in a pop-up message box, as shown in the figures below:

9

10

Exception Handling

An exception is a response to an exceptional circumstance that arises while a program is

running, such as an attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net

exception handling is built upon four keywords - Try, Catch, Finally and Throw.

 Try − A Try block identifies a block of code for which particular exceptions will be

activated. It's followed by one or more Catch blocks.

 Catch − A program catches an exception with an exception handler at the place in a

program where you want to handle the problem. The Catch keyword indicates the

catching of an exception.

 Finally − The Finally block is used to execute a given set of statements, whether an

exception is thrown or not thrown. For example, if you open a file, it must be closed

whether an exception is raised or not.

 Throw − A program throws an exception when a problem shows up. This is done

using a Throw keyword.

Syntax

Try

[tryStatements]

[Exit Try]

[Catch [exception [As type]] [When expression]

[catchStatements]

[Exit Try]]

[Catch ...]

[Finally

[finallyStatements]]

End Try

Exception Classes in .Net Framework

 The exception classes in .Net Framework are mainly directly or indirectly derived

from the System.Exception class.

 System.ApplicationException and System.SystemException classes are derived

System.Exception class.

Exception Class Description

System.IO.IOException Handles I/O errors.

System.IndexOutOfRangeException Handles errors generated when a method refers to

an array index out of range.

System.ArrayTypeMismatchException Handles errors generated when type is mismatched

with the array type.

11

System.NullReferenceException Handles errors generated from deferencing a null

object.

System.DivideByZeroException Handles errors generated from dividing a dividend

with zero.

System.InvalidCastException Handles errors generated during typecasting.

System.OutOfMemoryException Handles errors generated from insufficient free

memory.

System.StackOverflowException Handles errors generated from stack overflow.

Following is an example of throwing an exception when dividing by zero condition occurs

ModuleexceptionProg

Subdivision(ByVal num1 AsInteger,ByVal num2 AsInteger)

Dim result AsInteger

Try

result= num1 \ num2

Catch e AsDivideByZeroException

Console.WriteLine("Exception caught: {0}", e)

Finally

Console.WriteLine("Result: {0}", result)

EndTry

EndSub

SubMain()

division(25,0)

Console.ReadKey()

EndSub

EndModule

Output

Exception caught: System.DivideByZeroException: Attempted to divide by zero.

at ...

Result: 0

12

Event Handling

Event: An event is an action that calls a function or may cause another event.

Event Handler: Event handlers are functions that tell how to respond to an event.

Clicking on a button, or entering some text in a text box, or clicking on a menu item, all are

examples of events.

VB.Net is an event-driven language. There are mainly two types of events −

 Mouse events

 Keyboard events

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls.

Following are the various mouse events related with a Control class −

 MouseDown − it occurs when a mouse button is pressed

 MouseEnter − it occurs when the mouse pointer enters the control

 MouseHover − it occurs when the mouse pointer hovers over the control

 MouseLeave − it occurs when the mouse pointer leaves the control

 MouseMove − it occurs when the mouse pointer moves over the control

 MouseUp − it occurs when the mouse pointer is over the control and the mouse

button is released

 MouseWheel − it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties −

 Buttons − indicates the mouse button pressed

 Clicks − indicates the number of clicks

 Delta − indicates the number of detents the mouse wheel rotated

 X − indicates the x-coordinate of mouse click

 Y − indicates the y-coordinate of mouse click

Example

Following is an example, which shows how to handle mouse events. Take the following

steps −

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - Customer ID, Name and Address,

respectively.

 Change the name properties of the text boxes to txtID, txtName and txtAddress,

respectively.

 Change the text property of the button to 'Submit'.

 Add the following code in the code editor window

13

PublicClassForm1

PrivateSubForm1_Load(sender AsObject, e AsEventArgs)HandlesMyBase.Load

' Set the caption bar text of the form.

Me.Text = "tutorialspont.com"

 End Sub

 Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_

 Handles txtID.MouseEnter

 'codefor handling mouse enter on ID textbox

txtID.BackColor=Color.CornflowerBlue

txtID.ForeColor=Color.White

EndSub

PrivateSubtxtID_MouseLeave(sender AsObject, e AsEventArgs) _

HandlestxtID.MouseLeave

'code for handling mouse leave on ID textbox

txtID.BackColor = Color.White

txtID.ForeColor = Color.Blue

 End Sub

 Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtName.MouseEnter

 'codefor handling mouse enter on Name textbox

txtName.BackColor=Color.CornflowerBlue

txtName.ForeColor=Color.White

EndSub

PrivateSubtxtName_MouseLeave(sender AsObject, e AsEventArgs) _

HandlestxtName.MouseLeave

'code for handling mouse leave on Name textbox

txtName.BackColor = Color.White

txtName.ForeColor = Color.Blue

 End Sub

 Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseEnter

 'codefor handling mouse enter on Address textbox

txtAddress.BackColor=Color.CornflowerBlue

txtAddress.ForeColor=Color.White

EndSub

PrivateSubtxtAddress_MouseLeave(sender AsObject, e AsEventArgs) _

14

HandlestxtAddress.MouseLeave

'code for handling mouse leave on Address textbox

txtAddress.BackColor = Color.White

txtAddress.ForeColor = Color.Blue

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

MsgBox("Thank you " &txtName.Text& ", for your kind cooperation")

 End Sub

End Class

While entering the text in the text boxes and check the mouse events.

15

Handling Keyboard Events

Following are the various keyboard events related with a Control class −

 KeyDown − occurs when a key is pressed down and the control has focus

 KeyPress − occurs when a key is pressed and the control has focus

 KeyUp − occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type

KeyEventArgs. This object has the following properties −

 Alt − it indicates whether the ALT key is pressed

 Control − it indicates whether the CTRL key is pressed

 Handled − it indicates whether the event is handled

 KeyCode − stores the keyboard code for the event

 KeyData − stores the keyboard data for the event

 KeyValue − stores the keyboard value for the event

 Modifiers − it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift − it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type

KeyEventArgs. This object has the following properties −

 Handled − indicates if the KeyPress event is handled

 KeyChar − stores the character corresponding to the key pressed

Example

 Add a label with text Property as 'Age' and add a corresponding text box named

txtAge.

 Add the following codes for handling the KeyUP events of the text box txtID.
PrivateSubtxtID_KeyUP(sender AsObject, e AsKeyEventArgs) _

HandlestxtID.KeyUp

If(NotChar.IsNumber(ChrW(e.KeyCode)))Then

MessageBox.Show("Enter numbers for your Customer ID")

txtID.Text=" "

EndIf

EndSub

 Add the following codes for handling the KeyUP events of the text box txtID.

PrivateSubtxtAge_KeyUP(sender AsObject, e AsKeyEventArgs) _

HandlestxtAge.KeyUp

If(NotChar.IsNumber(ChrW(e.keyCode)))Then

MessageBox.Show("Enter numbers for age")

txtAge.Text=" "

EndIf

EndSub

16

If you leave the text for age or ID as blank or enter some non-numeric data, it gives a warning

message box and clears the respective text –

17

GoTo Statement

The GoTo statement transfers control unconditionally to a specified line in a procedure.

Syntax

 GoTo label

Program

Module loops

SubMain()

' local variable definition

 Dim a As Integer = 10

Line1:

 Do

 If (a = 15) Then

' skip the iteration '

 a = a + 1

GoTo Line1

 End If

Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

Console.ReadLine()

 End Sub

End Module

Output

18

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

While a value is 15 the printing of a is skipped by a GoTo statement.

19

on Error Goto.

On Error Statement

Syntax

On Error GoToline

On Error Resume Next

On Error GoTo 0

On Error GoTo statements is an example of Vb.Net's Unstructured Exception Handling .

VB.NET has two types of Exception handling .

 Structured Error Handling and

 Unstructured Error handling .

VB.NET using Try..Catch statement for Structured Error handling and On Error GoTo

statement is using for Unstructured Error handling.

Error GoTo redirect the flow of the program in a given location.

On Error Resume Next - whenever an error occurred in runtime, skip the statement and

continue execution on following statements.

Take a look at the following program

VB.NET Source Code

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _System.EventArgs) Handles
Button1.Click

 Dim result As Integer

 Dim num As Integer

num = 100

result = num / 0

MsgBox("here")

End Sub

End Class

when u execute this program you will get error message like Arithmetic operation resulted in

an overflow .

See the program we put an On Error GoTo statement.

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e AsSystem.EventArgs) Handles Button1.Click

 On Error GoTonextstep

 Dim result As Integer

 Dim num As Integer

num = 100

20

result = num / 0

nextstep:

MsgBox("Control Here")

 End Sub

End Class

When you execute the program you will get the message box "Control Here" . Because the

On Error statement redirect the exception to the Label statement.

Sources:

1. https://www.tutorialspoint.com/vb.net/vb.net_exception_handling.htm
2. https://dotnettutorials.net/course/asp-net-core-tutorials/#

https://www.tutorialspoint.com/vb.net/vb.net_exception_handling.htm

1

Unit – III - Developing - ASP.NET Applications - ASP.NET Applications – Understanding

ASP.NET Controls - Overview of ASP.NET framework, Web Form fundamentals - Web

control classes – Using Visual Stdio.NET - Validation and Rich Controls - State

management – Tracing, Logging, and Error Handling.

Developing ASP.NET Applications

What is ASP.NET?

 ASP.NET is a web development platform.

 It is a complete software infrastructure and various services required to build up web

applications for PC, as well as mobile devices.

 ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and

policies to set a browser-to-server bilateral communication and cooperation.

Development

 ASP.NET is a part of Microsoft .Net platform.

 ASP.NET applications are compiled codes. It is written using the extensible and

reusable components or objects present in .Net framework.

 ASP.NET is used to produce interactive, data-driven web applications over the

internet. It consists of a large number of controls such as text boxes, buttons, and

labels for assembling, configuring, and manipulating code to create HTML pages.

An ASP.NET application consists of two major parts:

 The .aspx file: this is essentially the GUI that you see on the web page.

 The .cs file (code behind): this is essentially the code that executes the logic

(calculations) associated with the GUI of the web page.

The ASP.NET application codes can be written in any of the following languages:

 C#

 Visual Basic.Net

 Jscript

 J#

2

Understanding ASP.NET Controls

What are controls?

 Controls are small building blocks of the graphical user interface, which include text

boxes, buttons, check boxes, list boxes, labels, and numerous other tools.

 Using these tools, the users can enter data, make selections and indicate their

preferences, etc.

 Controls are also used for structural jobs, like validation, data access, security,

creating master pages, and data manipulation.

 An ASP.NET control is a .NET class that executes on the server and renders certain

content to the browser.

For example, a Label control was used to display the current date and time. The ASP.NET

framework includes more than 90 controls, which enable you to do everything from

displaying a list of database records to displaying a randomly rotating banner advertisement.

Overview of ASP.NET Controls

The ASP.NET Framework contains more than 90 controls. These controls can be divided into

seven groups:

 Standard Controls—Enable you to render standard form elements such as buttons,

input fields, and labels.

 Validation Controls—Enable you to validate form data before you submit the data to

the server. For example, you can use a ‘RequiredFieldValidator’ control to check

whether a user entered a value for a required input field.

 Rich Controls—Enable you to render things such as calendars, file upload buttons,

rotating banner advertisements, and multistep wizards.

 Data Controls—Enable you to work with data such as database data. For example,

you can use these controls to submit new records to a database table or display a list

of database records.

 Navigation Controls—Enable you to display standard navigation elements such as

menus, tree views, and bread crumb trails.

 Login Controls—Enables you to display login, change password, and registration

forms.

 HTML Controls—Enable you to convert any HTML tag into a server-side control.

With the exception of the HTML controls, you declare and use all ASP.NET controls in a

page in exactly the same way. For example, if you want to display a text input field in a page,

you can declare a TextBox control like this:

<asp:TextBox id="TextBox1" runat="Server" />

3

 This control declaration looks like the declaration for an HTML tag. Remember,

however, unlike an HTML tag, a control is a .NET class that executes on the server

and not in the web browser.

When the TextBox control is rendered to the browser, it renders the following content:

<input name="TextBox1" type="text" id="TextBox1" />

 The first part of the control declaration, the asp: prefix, indicates the namespace for

the control. All the standard ASP.NET controls are contained in

the System.Web.UI.WebControls namespace. The prefix asp: represents this

namespace.

 Next, the declaration contains the name of the control being declared. In this case,

a TextBox control is declared.

 This declaration also includes an ID attribute. You use the ID to refer to the control in

the page within your code.

 Every control must have a unique ID.

The declaration also includes a runat="Server" attribute. This attribute marks the tag as

representing a server-side control. If you neglect to include this attribute, the TextBox tag

would be passed to the browser.

Understanding HTML Controls

HTML controls in a different way than you declare standard ASP.NET controls. The

ASP.NET Framework enables you to take any HTML tag (real or imaginary) and add a

runat="server" attribute to the tag. The runat="server" attribute converts the HTML tag into a

server-side ASP.NET control.

Understanding and Handling Control Events

The majority of ASP.NET controls support one or more events. For example, the

ASP.NET Button control supports the Click event. The Click event is raised on the server

after you click the button rendered by the Button control in the browser.

The following code illustrates how you can write code that executes when a user

clicks the button rendered by the Button control (in other words, it illustrates how you can

create a Click event handler):

Code. ShowButtonClick.aspx

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

4

 Label1.Text = "Thanks!";

 }

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head id="Head1" runat="server">

 <title>Show Button Click</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:Button

 id="btnSubmit"

 Text="Click Here"

 OnClick="btnSubmit_Click"

 Runat="server" />

 <asp:Label

 id="Label1"

 Runat="server" />

 </div>

 </form>

</body>

</html>

 You can add an event handler automatically to a control in multiple ways when using

Visual Web Developer.

 In Design view, you can double-click a control to add a handler for the control's

default event.

 Double-clicking a control switches you to Source view and adds the event handler.

5

 Finally, from Design view, after selecting a control on the designer surface, you can

add an event handler from the Properties window by clicking the Events button (the

lightning bolt) and double-clicking next to the name of any of the events

Adding an event handler from the Properties window.

6

ASP.NET validation controls

ASP.NET validation controls validate the user input data to ensure that useless,

unauthenticated, or contradictory data don't get stored.

ASP.NET provides the following validation controls:

 RequiredFieldValidator

 RangeValidator

 CompareValidator

 RegularExpressionValidator

 CustomValidator

 ValidationSummary

BaseValidator Class

 The validation control classes are inherited from the BaseValidator class.

 Therefore, it would help to take a look at the properties and the methods of this base

class, which are common for all the validation controls.

Members Description

ControlToValidate Indicates the input control to validate.

Display Indicates how the error message is shown.

EnableClientScript Indicates whether client side validation will take.

Enabled Enables or disables the validator.

ErrorMessage Indicates error string.

Text Error text to be shown if validation fails.

IsValid Indicates whether the value of the control is valid.

SetFocusOnError It indicates whether in case of an invalid control, the focus

should switch to the related input control.

ValidationGroup The logical group of multiple validators, where this control

belongs.

Validate() This method revalidates the control and updates the IsValid

property.

RequiredFieldValidator Cobntrol

The RequiredFieldValidator control ensures that the required field is not empty. It is

generally tied to a text box to force input into the text box.

7

Syntax

<asp:RequiredFieldValidator ID="rfvcandidate"

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

 </asp:RequiredFieldValidator>

CompareValidator Control

The CompareValidator control compares a value in one control with a fixed value or a

value in another control.

It has the following specific properties:

Properties Description

Type It specifies the data type.

ControlToCompare It specifies the value of the input control to compare with.

ValueToCompare It specifies the constant value to compare with.

Operator It specifies the comparison operator, the available values are:

Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan,

LessThanEqual, and DataTypeCheck.

Syntax

<asp:CompareValidator ID="CompareValidator1" runat="server"

 ErrorMessage="CompareValidator">

</asp:CompareValidator>

RegularExpressionValidator

The RegularExpressionValidator allows validating the input text by matching against a

pattern of a regular expression. The regular expression is set in the ValidationExpression

property.

The following table summarizes the commonly used syntax constructs for regular

expressions:

Character Escapes Description

\b Matches a backspace.

\t Matches a tab.

\r Matches a carriage return.

\v Matches a vertical tab.

8

\f Matches a form feed.

\n Matches a new line.

\ Escape character.

Apart from single character match, a class of characters could be specified that can be

matched, called the metacharacters.

Meta characters Description

. Matches any character except \n.

[abcd] Matches any character in the set.

[^abcd] Excludes any character in the set.

[2-7a-mA-M] Matches any character specified in the range.

\w Matches any alphanumeric character and underscore.

\W Matches any non-word character.

\s Matches whitespace characters like, space, tab, new line etc.

\S Matches any non-whitespace character.

\d Matches any decimal character.

\D Matches any non-decimal character.

Quantifiers could be added to specify number of times a character could appear.

Quantifier Description

* Zero or more matches.

+ One or more matches.

? Zero or one matches.

{N} N matches.

{N,} N or more matches.

{N,M} Between N and M matches.

Syntax

<asp:RegularExpressionValidator ID="string" runat="server" ErrorMessage="string"

 ValidationExpression="string" ValidationGroup="string">

</asp:RegularExpressionValidator>

9

CustomValidator

 The CustomValidator control allows writing application specific custom validation

routines for both the client side and the server side validation.

 The client side validation is accomplished through the ClientValidationFunction

property. The client side validation routine should be written in a scripting language,

such as JavaScript or VBScript, which the browser can understand.

 The server side validation routine must be called from the control's ServerValidate

event handler. The server side validation routine should be written in any .Net

language, like C# or VB.Net.

Syntax

<asp:CustomValidator ID="CustomValidator1" runat="server"

 ClientValidationFunction=.cvf_func. ErrorMessage="CustomValidator">

</asp:CustomValidator>

ValidationSummary

The ValidationSummary control does not perform any validation but shows a summary of

all errors in the page. The summary displays the values of the ErrorMessage property of

all validation controls that failed validation.

The following two mutually inclusive properties list out the error message:

 ShowSummary : shows the error messages in specified format.

 ShowMessageBox : shows the error messages in a separate window.

Syntax

<asp:ValidationSummary ID="ValidationSummary1" runat="server"

 DisplayMode = "BulletList" ShowSummary = "true" HeaderText="Errors:" />

Validation Groups

 Complex pages have different groups of information provided in different panels. In

such situation, a need might arise for performing validation separately for separate

group. This kind of situation is handled using validation groups.

 To create a validation group, you should put the input controls and the validation

controls into the same logical group by setting their ValidationGroup property.

10

Example Program for Validation Control

The following example describes a form to be filled up by all the students of a school,

divided into four houses, for electing the school president. Here, we use the validation

controls to validate the user input.

This is the form in design view:

The content file code is as given:

<form id="form1" runat="server">

 <table style="width: 66%;">

 <tr>

 <td class="style1" colspan="3" align="center">

 <asp:Label ID="lblmsg"

 Text="President Election Form : Choose your president"

 runat="server" />

 </td>

 </tr>

 <tr>

 <td class="style3">

 Candidate:

 </td>

 <td class="style2">

 <asp:DropDownList ID="ddlcandidate" runat="server" style="width:239px">

 <asp:ListItem>Please Choose a Candidate</asp:ListItem>

 <asp:ListItem>M H Kabir</asp:ListItem>

 <asp:ListItem>Steve Taylor</asp:ListItem>

 <asp:ListItem>John Abraham</asp:ListItem>

 <asp:ListItem>Venus Williams</asp:ListItem>

 </asp:DropDownList>

 </td>

 <td>

 <asp:RequiredFieldValidator ID="rfvcandidate"

11

 runat="server" ControlToValidate ="ddlcandidate"

 ErrorMessage="Please choose a candidate"

 InitialValue="Please choose a candidate">

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

 House:

 </td>

 <td class="style2">

 <asp:RadioButtonList ID="rblhouse" runat="server" RepeatLayout="Flow">

 <asp:ListItem>Red</asp:ListItem>

 <asp:ListItem>Blue</asp:ListItem>

 <asp:ListItem>Yellow</asp:ListItem>

 <asp:ListItem>Green</asp:ListItem>

 </asp:RadioButtonList>

 </td>

 <td>

 <asp:RequiredFieldValidator ID="rfvhouse" runat="server"

 ControlToValidate="rblhouse" ErrorMessage="Enter your house name" >

 </asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

 Class:

 </td>

 <td class="style2">

 <asp:TextBox ID="txtclass" runat="server"></asp:TextBox>

 </td>

 <td>

 <asp:RangeValidator ID="rvclass"

 runat="server" ControlToValidate="txtclass"

 ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"

 MinimumValue="6" Type="Integer">

 </asp:RangeValidator>

 </td>

 </tr>

 <tr>

 <td class="style3">

 Email:

12

 </td>

 <td class="style2">

 <asp:TextBox ID="txtemail" runat="server" style="width:250px">

 </asp:TextBox>

 </td>

 <td>

 <asp:RegularExpressionValidator ID="remail" runat="server"

 ControlToValidate="txtemail" ErrorMessage="Enter your email"

 ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 </asp:RegularExpressionValidator>

 </td>

 </tr>

 <tr>

 <td class="style3" align="center" colspan="3">

 <asp:Button ID="btnsubmit" runat="server" onclick="btnsubmit_Click"

 style="text-align: center" Text="Submit" style="width:140px" />

 </td>

 </tr>

 </table>

 <asp:ValidationSummary ID="ValidationSummary1" runat="server"

 DisplayMode ="BulletList" ShowSummary ="true" HeaderText="Errors:" />

</form>

The code behind the submit button

protected void btnsubmit_Click(object sender, EventArgs e)

{

 if (Page.IsValid)

 {

 lblmsg.Text = "Thank You";

 }

 else

 {

 lblmsg.Text = "Fill up all the fields";

 }

}

13

ASP.NET Architecture and its Components

ASP.Net is a framework which is used to develop a Web-based application.

ASP.NET Architecture Diagram

The architecture of the.Net framework is based on the following key components

 Language – A variety of languages exists for .net framework. They are VB.net and

C#. These can be used to develop web applications.

 Library - The .NET Framework includes a set of standard class libraries. The most

common library used for web applications in .net is the Web library. The web library

has all the necessary components used to develop.Net web-based applications.

 Common Language Runtime - The Common Language Infrastructure or CLI is a

platform. .Net programs are executed on this platform. The CLR is used for

performing key activities. Activities include Exception handling and Garbage

collection.

Below are some of the key characteristics of the ASP.Net framework

 Code Behind Mode – This is the concept of separation of design and code. By

making this separation, it becomes easier to maintain the ASP.Net application. The

general file type of an ASP.Net file is aspx. Assume we have a web page called

MyPage.aspx. There will be another file called MyPage.aspx.cs which would denote

the code part of the page. So Visual Studio creates separate files for each web page,

one for the design part and the other for the code.

 State Management – ASP.Net has the facility to control state management. HTTP is

known as a stateless protocol. Let's take an example of a shopping cart application.

Now, when a user decides what he wants to buy from the site, he will press the submit

button.

 The application needs to remember the items the user choose for the purchase. This

is known as remembering the state of an application at a current point in time. HTTP

14

is a stateless protocol. When the user goes to the purchase page, HTTP will not store

the information on the cart items. Additional coding needs to be done to ensure that

the cart items can be carried forward to the purchase page. Such an implementation

can become complex at times. But ASP.Net can do state management on your

behalf. So ASP.Net can remember the cart items and pass it over to the purchase page.

 Caching – ASP.Net can implement the concept of Caching. This improve's the

performance of the application. By caching those pages which are often requested

by the user can be stored in a temporary location. These pages can be retrieved

faster and better responses can be sent to the user. So caching can significantly

improve the performance of an application.

ASP.Net is a development language used for constructing web-based applications. ASP.Net

is designed to work with the standard HTTP protocol.

What is ASP.Net Lifecycle?

 When an ASP.Net application is launched, there are series of steps which are carried

out. These series of steps make up the lifecycle of the application.

 Let's look at the various stages of a typical page lifecycle of an ASP.Net Web

Application.

 Application Start - The life cycle of an ASP.NET application starts when a request is

made by a user. This request is to the Web server for the ASP.Net Application. This

happens when the first user normally goes to the home page for the application for the

first time. During this time, there is a method called Application_start which is

executed by the web server. Usually, in this method, all global variables are set to

their default values.

 Object creation - The next stage is the creation of the HttpContext, HttpRequest &

HttpResponse by the web server. The HttpContext is just the container for the

HttpRequest and HttpResponse objects. The HttpRequest object contains information

15

about the current request, including cookies and browser information. The

HttpResponse object contains the response that is sent to the client.

 HttpApplication creation - This object is created by the web server. It is this object

that is used to process each subsequent request sent to the application. For example,

let's assume we have 2 web applications. One is a shopping cart application, and the

other is a news website. For each application, we would have 2 HttpApplication

objects created. Any further requests to each website would be processed by each

HttpApplication respectively.

 Dispose - This event is called before the application instance is destroyed. During this

time, one can use this method to manually release any unmanaged resources.

 Application End - This is the final part of the application. In this part, the application

is finally unloaded from memory.

What is ASP.Net Page Lifecycle?

When an ASP.Net page is called, it goes through a particular lifecycle. This is done

before the response is sent to the user. There are series of steps which are followed for the

processing of an ASP.Net page.

ASP.Net Page Lifecycle

1. Page Request- This is when the page is first requested from the server. When the

page is requested, the server checks if it is requested for the first time. If so, then it

needs to compile the page, parse the response and send it across to the user. If it is not

16

the first time the page is requested, the cache is checked to see if the page output

exists. If so, that response is sent to the user.

2. Page Start – During this time, 2 objects, known as the Request and Response object

are created. The Request object is used to hold all the information which was sent

when the page was requested. The Response object is used to hold the information

which is sent back to the user.

3. Page Initialization – During this time, all the controls on a web page is initialized. So

if you have any label, textbox or any other controls on the web form, they are all

initialized.

4. Page Load – This is when the page is actually loaded with all the default values. So if

a textbox is supposed to have a default value, that value is loaded during the page load

time.

5. Validation – Sometimes there can be some validation set on the form. For example,

there can be a validation which says that a list box should have a certain set of values.

If the condition is false, then there should be an error in loading the page.

6. Postback event handling – This event is triggered if the same page is being loaded

again. This happens in response to an earlier event. Sometimes there can be a situation

that a user clicks on a submit button on the page. In this case, the same page is

displayed again. In such a case, the Postback event handler is called.

7. Page Rendering – This happens just before all the response information is sent to the

user. All the information on the form is saved, and the result is sent to the user as a

complete web page.

8. Unload – Once the page output is sent to the user, there is no need to keep the

ASP.net web form objects in memory. So the unloading process involves removing all

unwanted objects from memory.

17

ASP.NET First Program Example to display your information

(The students may watch the video lesson provided by me)

Step 1) The first step involves the creation of a new project in Visual Studio. After launching

Visual Studio, you need to choose the menu option New->Project.

Step 2) The next step is to choose the project type as an ASP.Net Web application. Here we

also need to mention the name and location of our project.

 In the project dialog box, you can see various options for creating different types of

projects. Click the Web option on the left-hand side.

 When we click the Web option in the previous step, we will be able to see an option

for ASP.Net Web Application. Click this option.

 We then give a name for the application, which in our case is DemoApplication. We

also need to provide a location to store our application.

 Finally, we click the 'OK' button to let Visual Studio to create our project.

18

Step 3) In the next screen, you have to choose the type of ASP.net web application that needs

to be created. In our case, we are going to create a simple Web Form application.

 First, choose the project type as 'Empty'. This will ensure that we start with a basic

application which is simple to understand.

 We choose the option "web Forms". This adds the basic folders. These are required

for a basic Web Forms Application.

 Finally, we click the 'OK' button to allow Visual Studio to create our application.

 In the Solution Explorer, you will be able to see the DemoApplication Solution. This

solution will contain 2 project files as shown above. At the moment, one of the key

files in the project is the 'Global.asax.cs'. This file contains application specific

information. In this file, you would initialize all application specific variables to their

default values.

19

Step 4) Now, it's time to add a Web Form file to the project. This is the file which will

contain all the web-specific code for our project.

 Right-click on the DemoApplication project and

 Choose Add->Web Form from the context menu.

Step 5) In the next screen we are going to be prompted to provide a name for the web form.

 Give a name for the Web Form. In our case, we are giving it a name of Demo.

 Click the Ok button.

Automatically Visual Studio will create the Demo Web Form and will open it in Visual

Studio.

20

Step 6) The next step is to add the code, which will do the work of displaying your personal

details This can be done by just adding one line of code to the Demo.aspx file.

<html xmlns="www.w3.org/1999/xhtml">

<head runat="server">

 <title>Personal Details</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <%Response. Write("Name: Ravichandran"); %>

 <%Response. Write("Class: MCA"); %>

 <%Response. Write("Year: Third Year"); %>

 <%Response. Write("Roll No: 1234999"); %>

 </div>

 </form>

</body>

</html>

Output

The Response object in ASP.Net is used to send information back to the user. So in our case,

we are using the method "Write" of the Response object to write the text. The <% and %>

markers are used to add ASP.net specific code.

If you follow all of the above steps and run your program in Visual Studio, you will get the

following output.

21

Web Form fundamentals

 Web Forms are web pages built on the ASP.NET Technology.

 It executes on the server and generates output to the browser. It is compatible to any

browser to any language supported by .NET common language runtime.

 It is flexible and allows us to create and add custom controls.

 We can use Visual Studio to create ASP.NET Web Forms. It is an IDE (Integrated

Development Environment) that allows us to drag and drop server controls to the web

forms. It also allows us to set properties, events and methods for the controls.

 To write business logic, we can choose any .NET language like: Visual Basic or

Visual C#.

 Web Forms are made up of two components: the visual portion (the ASPX file), and

the code behind the form, which resides in a separate class file.

The components of the ASP.NET

The main purpose of Web Forms is to overcome the limitations of ASP and separate

view from the application logic.

Web Forms Features

ASP.NET is full of features and provides an awesome platform to create and develop web

application. Here, we are discussing these features of Web Forms.

 Server Controls

 Master Pages

 Working with data

 Membership

 Client Script and Client Frameworks

 Routing

 State Management

 Security

 Performance

 Error Handling

22

Server Controls

Web Forms provides rich set of server controls. These controls are objects that run when the

page is requested and render markup to the browser. Some Web server controls are similar to

familiar HTML elements, such as buttons and text boxes. It also provides controls that we

can use to connect to data sources and display data.

Master Pages

It allowsus to create a consistent layout for the pages in our application. This page defines the

look and feel and standard behavior that we want for all of the pages in our application. When

users request the content pages, they merge with the master page to produce output that

combines the layout of the master page with the content from the content page.

Working with Data

In an ASP.NET Web Forms application, we use data-bound controls to automate the

presentation or input of data in web page UI elements such as tables and text boxes and drop-

down lists.

Membership

Project's Account folder contains the files that implement the various parts of membership:

registering, logging in, changing a password, and authorizing access. Additionally, ASP.NET

Web Forms supports OAuth and OpenID. These authentication enhancements allow users to

log into your site using existing credentials, from such accounts as Facebook, Twitter and

Google.

Client Script and Client Frameworks

We can enhance the server-based features of ASP.NET by including client-script

functionality in ASP.NET Web Form pages. We can use client script to provide a richer,

more responsive user interface to the users. We can also use client script to make

asynchronous calls to the Web server while a page is running in the browser.

Routing

We can configure URL routing of our application. A request URL is simply the URL a user

enters into their browser to find a page on our web site. We use routing to define URLs that

are semantically meaningful to users and that can help with search-engine optimization

(SEO).

State Management

ASP.NET Web Forms includes several options that help you preserve data on both a per-page

basis and an application-wide basis.

Security

Developing a secure application is most important aspect of software development process.

ASP.NET Web Forms allow us to add extensibility points and configuration options that

enable us to customize various security behaviors in the application.

23

Performance

Web Forms provides good performance and allows us to modify performance related to page

and server control processing, state management, data access, application configuration and

loading, and efficient coding practices.

Debugging and Error Handling

We can diagnose problems that occur in our Web Forms application. Debugging and error

handling are well supported within ASP.NET Web Forms so that our applications compile

and run effectively.

ASP.NET provides various controls like: server controls and HTML controls for the Web

Forms. We have tables all these controls below.

Web control classes

Web control classes are defined in the System.Web.UI.WebControls namespace. They

follow a slightly more tangled object hierarchy than HTML server controls, as shown in

Figure.

The web control hierarchy

Server Controls are the tags that are understood by the server. There are basically three types

of server controls.

24

 HTML Server Controls - Traditional HTML tags

 Web Server Controls - New ASP. NET tags

 Validation Server Controls - For input validation

ASP.NET HTML Server Controls

ASP.NET provides a way to work with HTML Server controls on the server side;

programming with a set of controls collectively is called HTML Controls.

 These controls are grouped together in the Visual Studio Toolbox in the the HTML

Control tab. The markup of the controls are similar to the HTML control.

 These controls are basically the original HTML controls but enhanced to enable

server side processing.

 HTML elements in ASP. NET files are, by default, treated as text. To make these

elements programmable, add a runat="server" attribute to the HTML element. This

attribute indicates that the element should be treated as a server control.

ASP.NET Web Server Controls

 Web server controls are special ASP. NET tags understood by the server.

 Like HTML server controls, Web server controls are also created on the server and

they require a runat="server" attribute to work.

 However, Web server controls do not necessarily map to any existing HTML

elements and they may represent more complex elements.

 Mostly all Web Server controls inherit from a common base class, namely

the WebControl class defined in theSystem.Web.UI.WebControls namespace.

ASP.NET Validation Server Controls

 After you create a web form, you should make sure that mandatory fields of the form

elements such as login name and password are not left blank; data inserted is correct

and is within the specified range. Validation is the method of scrutinizing (observing)

that the user has entered the correct values in input fields.

 A Validation server control is used to validate the data of an input control. If the data

does not pass validation, it will display an error message to the user.

 In ASP. NET you can use ASP. NET Validation Controls while creating the form and

specify what ASP. NET Validation Controls you want to use and to which server

control you want bind this.

 Validation Controls are derived from a common base class and share a common set of

properties and methods. You just have to drag and drop the ASP. NET Validation

Control in the web form and write one line of code to describe its functionality.

25

 This reduces the developer time from writing JavaScript for each type of validation.

Moreover, through ASP. NET Validation Controls if any invalid data is entered the

browser itself detects the error on the client side and displays the error without

requesting the server. This is another advantage because it reduces the server load.

Rich Controls

ASP.NET provides large set of controls. These controls are divided into different categories,

depends upon their functionalities. The followings control comes under the rich controls

category.

 FileUpload control

 Calendar control

 AdRotator control

 MultiView control

 Wizard control

FileUpload control

FileUpload control is used to browse and upload files. After the file is uploaded, you can

store the file on any drive or database. FileUpload control is the combination of a browse

button and a text box for entering the filename.

The FileUpload control supports the following important properties.

 FileBytes: It returns the contents of uploaded file as a byte array

 FileContent: You can get the uploaded file contents as a stream.

 FileName: Provides the name of uploaded file.

 HasFile: It is a Boolean property that checks whether particular file is available or

not.

 PostedFile: Gets the uploaded file wrapped in the HttpPostedFile object.

Example

using System;

using System.Text;

public partial class RichControl : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void btnSave_Click(object sender, EventArgs e)

 {

 StringBuilder sb = new StringBuilder();

 if (FileUpload1.HasFile)

 {

 try

 {

 sb.AppendFormat(" Uploaded file: {0}", FileUpload1.FileName);

 //save the file

 FileUpload1.SaveAs(@"C:\" + FileUpload1.FileName);

 //Showing the file information

26

 sb.Append("
 File Name: {0}" + FileUpload1.PostedFile.FileName);

 sb.Append("
 File type: {0}"+ FileUpload1.PostedFile.ContentType);

 sb.Append("
 File length: {0}" + FileUpload1.FileBytes.Length);

 Label1.Text = sb.ToString();

 }

 catch (Exception ex)

 {

 sb.Append("
 Error
");

 sb.Append(ex.Message);

 Label1.Text = sb.ToString();

 }

 }

 else

 {

 Label1.Text = sb.ToString();

 }

 }

}

Calendar control

Calendar control provides you lots of property and events. By using these properties and

events you can perform the following task with calendar control.

 Select date.

 Selecting a day, a week or a month.

 Customize the calendar's appearance.

The Calendar control supports three important events:

Event Description

SelectionChanged This event is fired when you select a day, a week or an entire

month.

DayRender This event is fired when each data cell of the calendar control is

rendered.

VisibleMonthChanged It is raised when user changes a month.

27

Calendar control supports SelectionMode property that allows you to select a single day,

week, or entire month.

Example

using System;

using System.Text;

public partial class RichControl : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void Calendar1_SelectionChanged(object sender, EventArgs e)

 {

 Label1.Text ="Todays date is: "+ Calendar1.TodaysDate.ToShortDateString();

 Label2.Text = "Your date of birth is: " + Calendar1.SelectedDate.ToShortDateString();

 }

}

When you select a date, SelectionChanged event will fired and displays the date in a label

controls.

In this example the date format is MM/DD/YYYY.

AdRotator control

 AdRotator control is used to display different advertisements randomly in a page.

 The list of advertisements is stored in either an XML file or in a database table.

 Lots of websites uses AdRotator control to display the advertisements on the web

page.

28

To create an advertisement list, first add an XML file to your project.

Code for XML file

<?xml version="1.0" encoding="utf-8" ?>

<Advertisements>

 <Ad>

 <ImageUrl>∼ /Images/logo1.png</ImageUrl>

 <NavigateUrl>http://www.TutorialRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>∼ /Images/logo2.png</ImageUrl>

 <NavigateUrl>http://www.TutorialRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>∼ /Images/logo3.png</ImageUrl>

 <NavigateUrl>http://www.CareerRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>100</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

 <Ad>

 <ImageUrl>∼ /Images/logo4.png</ImageUrl>

 <NavigateUrl>http://www.TutorialRide.com</NavigateUrl>

 <AlternateText>Advertisement</AlternateText>

 <Impressions>50</Impressions>

 <Keyword>banner</Keyword>

 </Ad>

</Advertisements>

In the given XML file 'Images' is the name of the folder, where we stored all the images to

display. Now set the AdRotator control's AdvertisementFile property. Set the path of the

XML file that you created above to AdRotator control's AdvertisementFile property.

Important properties of AdRotator control.

 ImageUrl: The URL of the image that will be displayed through AdRotator control.

 NavigateUrl: If the user clicks the banner or ad then the new page is opened

according to given URL.

 AlternateText: It is used for displaying text instead of the picture if picture is not

displayed. It is also used as a tooltip.

 Impressions: It is a number that sets how frequently an advertisement will appear.

 Keyword: It is used to filter ads or identifies a group of advertisement.

29

MultiView control

 MultiView control can be used when you want to create a tabbed page.

 In many situations, a web form may be very long, and then you can divide a long

form into multiple sub forms. MultiView control is made up of multiple view

controls. You can put multiple ASP.NET controls inside view controls. One View

control is displayed at a time and it is called as the active view. View control does not

work separately. It is always used with a Multiview control.

 If working with Visual Studio 2010 or later, you can drag and drop a MultiView

control onto the form. You can drag and drop any number of View controls inside the

MultiView control. The number of view controls is depends upon the need of your

application.

The MultiView control supports the following important properties

 ActiveViewIndex: It is used to determine which view will be active or visible.

 Views: It provides the collection of View controls contained in the MultiView

control.

 For understand the Multiview control, first we will create a user interface as given

below.

In the given example, in Multiview control, we have taken three separate View control.

1. In First step we will design to capture Product details.

2. In Second step we will design to capture Order details.

3. Next we will show summary for confirmation.

30

MultiViewControlDemo.aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="RichControl.aspx.cs" Inherits="RichControl" %>

<! DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <asp:MultiView ID="MultiView1" runat="server">

 <asp:View ID="View1" runat="server">

 <table style="border:1px solid black">

 <tr>

 <td colspan="2">

 <h2>Step 1 - Product Details</h2>

 </td>

 </tr>

 <tr>

 <td>Product ID</td>

 <td>

 <asp:TextBox ID="txtProductID" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Product Name</td>

 <td>

 <asp:TextBox ID="txtProductName" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Price/Unit</td>

 <td>

 <asp:TextBox ID="txtProductPrice" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td colspan="2" style="text-align:right">

 <asp:Button ID="btnStep2" runat="server"

 Text="Next >>" onclick="btnStep2_Click" />

 </td>

 </tr>

 </table>

 </asp:View>

 <asp:View ID="View2" runat="server">

 <table style="border:1px solid black">

 <tr>

 <td colspan="2">

31

 <h2>Step 2 - Order Details</h2>

 </td>

 </tr>

 <tr>

 <td>Order ID</td>

 <td>

 <asp:TextBox ID="txtOrderID" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>Quantity</td>

 <td>

 <asp:TextBox ID="txtQuantity" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Button ID="btnBackToStep1" runat="server" Text="<< Previous"

 onclick="btnBackToStep1_Click" />

 </td>

 <td style="text-align:right">

 <asp:Button ID="btnStep3" runat="server" Text="Next >>"

 onclick="btnGoToStep3_Click" />

 </td>

 </tr>

 </table>

 </asp:View>

 <asp:View ID="View3" runat="server">

 <table style="border:1px solid black">

 <tr>

 <td colspan="2"><h2>Step 3 - Summary</h2></td>

 </tr>

 <tr>

 <td colspan="2"><h3>Product Details</h3></td>

 </tr>

 <tr>

 <td>Product ID</td>

 <td>

 <asp:Label ID="lblProductID" runat="server"></asp:Label>

 </td>

 </tr>

 <tr>

 <td>Product Name</td>

32

 <td>

 <asp:Label ID="lblProductName" runat="server"></asp:Label>

 </td>

 </tr>

 <tr>

 <td>Price/Unit</td>

 <td>

 <asp:Label ID="lblPrice" runat="server"></asp:Label>

 </td>

 </tr>

 <tr>

 <td colspan="2"><h3>Order Details</h3></td>

 </tr>

 <tr>

 <td>Order ID</td>

 <td>

 <asp:Label ID="lblOrderID" runat="server"></asp:Label>

 </td>

 </tr>

 <tr>

 <td>Quantity</td>

 <td>

 <asp:Label ID="lblQuantity" runat="server"></asp:Label>

 </td>

 </tr>

 <tr>

 <td>

 <asp:Button ID="btnBackToStep2" runat="server" OnClick="btnBackToStep2_Click" style="height:

26px" Text="<<Previous" />

 </td>

 <td style="text-align:right

 <asp:Button ID="btnSubmit" runat="server" Text="Submit >>" OnClick="btnSubmit_Click"

 />

 </td>

 </tr>

 </table>

 </asp:View>

 </asp:MultiView>

 </div>

 </form>

</body>

</html>

MultiViewControlDemo.aspx.cs file

using System;

using System.Text;

public partial class RichControl : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

33

 {

 if (! IsPostBack)

 {

 MultiView1.ActiveViewIndex = 0;

 }

 }

 protected void btnStep2_Click(object sender, EventArgs e)

 {

 MultiView1.ActiveViewIndex = 1;

 }

 protected void btnBackToStep1_Click(object sender, EventArgs e)

 {

 MultiView1.ActiveViewIndex = 0;

 }

 protected void btnGoToStep3_Click(object sender, EventArgs e)

 {

 MultiView1.ActiveViewIndex = 2;

 lblProductID.Text = txtProductID.Text;

 lblProductName.Text = txtProductName.Text;

 lblPrice.Text = txtProductPrice.Text;

 lblOrderID.Text = txtOrderID.Text;

 lblQuantity.Text = txtQuantity.Text;

 }

 protected void btnSubmit_Click(object sender, EventArgs e)

 {

 Response.Redirect("SaveData.aspx");

 }

 protected void btnBackToStep2_Click(object sender, EventArgs e)

 {

 MultiView1.ActiveViewIndex = 1;

 }

}

ActiveViewIndex property of MultiView control is zero based.

34

Wizard Control

 This control is same as MultiView control but the main difference is that, it has inbuilt

navigation buttons.

 The wizard control enables you to design a long form in such a way that you can work

in multiple sub form. You can perform the task in a step by step process. It reduces

the work of developers to design multiple forms. It enables you to create multi step

user interface. Wizard control provides with built-in previous/next functionality.

 The Wizard control can contains one or more WizardStep as child controls. Only one

WizardStep is displayed at a time. WizardStep control has an important property

called as StepType. The StepType property determines the type of navigation buttons

that will be displayed for that step. The possible values are:

 The StepType associated with each WizardStep determines the type of navigation

buttons that will be displayed for that step.

The StepTypes are:

 Start:

 Step:

 Finish:

 Complete:

 Auto:

Drag the Wizard control on the web page from toolbox, you will get the following code.

You can put WizardStep according to application need.

Important events of Wizard control are as follows:

 ActiveStepChanged:

 CancelButtonClick:

 FinishButtonClick:

 NextButtonClick:

 PreviousButtonClick:

Now we will create an application as we had done with MultiView control. We will create

three different WizardStep in Wizard control.

1. In First step we will design to capture Product details.

2. In Second step we will design to capture Order details.

3. Next we will show summary for confirmation.

WizardControlDemo.aspx.cs file

using System;

using System.Web.UI.WebControls;

public partial class WizardControl : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 }

35

 protected void Wizard1_FinishButtonClick(object sender, WizardNavigationEventArgs e)

 {

 Response.Redirect("SaveData.aspx");

 }

 protected void Wizard1_NextButtonClick(object sender, WizardNavigationEventArgs e)

 {

 if (e.NextStepIndex == 2)

 {

 lblProductID.Text = txtProductID.Text;

 lblProductName.Text = txtProductName.Text;

 lblPrice.Text = txtProductPrice.Text;

 lblOrderID.Text = txtOrderID.Text;

 lblQuantity.Text = txtQuantity.Text;

 }

 }

}

Register the event for Next button by using property window with event tab. In the given

example, for going third step from second we have to set e.NextStepIndex == 2. Here

StepIndex is zero based.

FinishButtonClick event performs the final WizardStep with a summary of the answers

entered in the previous WizardStep controls.

36

State management

 Maintaining state is an important part of any web application. State Management

System is a mechanism to track the user state, or data, which is significant with

particular application. State management manages the state of an object on different

request.

 The HTTP protocol is the fundamental protocol of the World Wide Web. HTTP is a

stateless protocol means every request is from new user with respect to web server.

HTTP protocol does not provide any method of determining whether any two requests

are made by the same person.

There are two types of state management system in ASP.NET.

 Client-side state management

 Server-side state management

Client-side state management stores information on the client’s computer and server-side

state management stores the information in the server’s memory or a database.

Client side state management system

ASP.NET provides several techniques for storing state information on the client. These

include the following:

 View state: ASP.NET uses view state to track values in controls between page

requests. It works within the page only. You cannot use view state value in next page.

ASP.NET page contains a hidden form field named __VIEWSTATE. This hidden

form field stores the value of the control’s property. When the page is posted back to

the server, then the value of __VIEWSTATE is pulled out and re-creates the values of

all the properties stored in View State.

 Control state: The data that is associated with the server controls is called as control

state. You can persist information about a control that is not part of the view state. If

view state is disabled for a control or the page, the control state will still work.

 Hidden fields: It store data without displaying that control and data to the user’s

browser. This data is presented back to the server and is available when the form is

processed. Hidden fields data is available within the page only (page-scoped data). It

is rendered as an <input type= "hidden"/> HTML tag. Hidden field should not be used

to store confidential data.

 Cookies: Cookies are small piece of information that server creates on the browser.

Cookies store a value in the user’s browser that the browser sends with every page

request to the web server. It works on key/value pair.

There are two types of cookies:

 Session cookies

 Persistent cookies

37

 Query strings: In query strings values are stored at the end of the URL. These values

are visible to the user through his or her browser’s address bar. Query strings are not

secure. You should not send secret information through the query string.

View state

 View state is an inbuilt feature of ASP.NET that retains values between multiple

requests for the same page. ASP.NET page contains a hidden form field named

__VIEWSTATE.

 This hidden form field stores the value of the control’s property. By default view state

is enabled for page and its controls.

 You can disable view state by setting the property EnableViewState as false. Storing

too much data into View State can hamper the performance of web page.

Therefore we should take care while enabling and disabling the property EnableViewState.

Example

//writing information to view state

ViewState.Add("MyInfo", "Welcome");

//read information from view state

if (ViewState["MyInfo"] != null)

{

 string data = (string)ViewState["MyInfo"];

}

Hidden fields

Hidden fields in HTML are simply input fields and not visible on the browser during

execution. Hidden fields are used to store data at the page level. Hidden fields are simple to

implement for a page specific data and stores small amount of data. We should not use

hidden fields for sensitive data. It has no built-in compression, encryption technique.

<asp:HiddenField ID="HiddenField1" runat="server" />

Example

//writing information to Hidden field

HiddenField1.Value = "Welcome";

//read information from Hidden field

string str = HiddenField1.Value;

Cookies

A cookie is a small amount of data that server creates on the client. Cookie is small text

information. You can store only string values when using a cookie. When a request sent to

web server, server creates a cookie, and sent to browser with an additional HTTP header.

The HTTP header looks like this:

Set-Cookie: message=Hello.

38

Here cookie name is message and value is hello.

If the cookies has created on a browser and user requests a page from the same application,

then the browser sends a header that looks like this:

Cookie: message=Hello

There are two types of cookies:

 Session cookies: A session cookie exists only till the user closes the web browser, the

session cookie deleted permanently.

 Persistent cookies: A persistent cookie, on the other hand, can available for months or

even years. When you create a persistent cookie, the cookie is stored permanently by

the user’s browser on the user’s computer.

Use of Cookies

Some common uses of cookies are:

 Authentication of user.

 Identification of a user session.

 User's preferences.

 Shopping cart contents.

 Remember users between visits.

Creating and reading cookies

We can create cookies in different ways.

Example 1

Response.Cookies["Message"].Value = TextBox1.Text;

string msg = Request.Cookies["Message"].Value;

Example 2

HttpCookie UserCookies = new HttpCookie("Message");

UserCookies.Value = TextBox1.Text;

Response.Cookies.Add(UserCookies);

// Reading the cookie.

string roll = Request.Cookies["Message"].Value;

Example 3

//Writing Multiple values in single cookie

Response.Cookies["EmpCookies"]["EmpID"] = txtID.Text;

Response.Cookies["EmpCookies"]["FirstName"] = txtFirstName.Text;

Response.Cookies["EmpCookies"]["LastName"] = txtLastName.Text;

Response.Cookies["EmpCookies"]["Address"] = txtAddress.Text;

//Reading Cookie.

string info;

 if (Request.Cookies["EmpCookies"] != null)

 {

 info = Request.Cookies["EmpCookies"]["EmpID"] + "</br>";

 info += Request.Cookies["EmpCookies"]["FirstName"] + "</br>";

 info += Request.Cookies["EmpCookies"]["LastName"] + "</br>";

39

 info += Request.Cookies["EmpCookies"]["Address"] + "</br>";

 Label1.Text = info;

 }

// cookie names are case sensitive. Cookie named EmpCookies is different from setting a

cookie named empcookies.

The above examples create a session cookie. The cookie disappears when you close your web

browser. If you want to create a persistent cookie, then you need to specify an expiration date

for the cookie.

Response.Cookies["message"].Expires = DateTime.Now.AddYears(1);

Limitation of cookies

 Cookie can store only string value.

 Cookies are browser dependent.

 Cookies are not secure.

 Cookies can store small amount of data.

 Size of cookies is limited to 4096 bytes.

Important properties of HttpCookie

 Domain: Enables you to get or set the domain of the cookie.

 Expires: It contains the expiration time of the cookie.

 HasKeys: Returns bool value, indicating whether the cookie has subkeys.

 Name: Provides the name of the cookie.

 Path: Enables you to get or set the virtual path to submit with the cookie.

 Secure: It contains true if the cookie is to be passed with SSL.

 Value: It contains the value of the cookie.

Example

using System;

using System.Web;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 HttpCookie obj = new HttpCookie("MyCookie");

 obj.Value="Welcome !!";

 Response.Cookies.Add(obj);

 string info;

 info = "Domain =: " + obj.Domain + "</br>";

 info += "Name =: " + obj.Name + "</br>";

 info += "Path =: " + obj.Path+"</br>";

 info += "Value =: " + obj.Value + "</br>";

 info += "HasKeys =: " + obj.HasKeys + "</br>";

 info += "Secure =: " + obj.Secure + "</br>";

 Label1.Text = info;}

}

40

Query strings

 Query String object is helpful when we want to transfer a value from one page to

another. Query String is very easy to use. Query string values are appended to the end

of the page URL. It uses a question mark (?), followed by the parameter name

followed by an equal sign (=) and its value.

 You can append multiple query string parameters using the ampersand (&) sign.

 Always remember, we should not send lots of data through QueryString. Another

limitation is that information we send through QueryString is visible on the address

bar.

Example

Response.Redirect("Default.aspx?msg="+txtMessage.Text);

In the example, the Response.Redirect method requests the Default.aspx page. The query

string contains a single parameter named msg. The value for that parameter is set at run time

by entering the data into textbox control. In this example the query string has one parameter

but we can pass more than one parameter as given below.

Response.Redirect("Default2.aspx?ID=" + txtID.Text + "&Name=" + txtFirstName.Text);

Reading values from QueryString

Label1.Text = "ID: " + Server.HtmlEncode(Request.QueryString["ID"]) + ", Name: " +

Server.HtmlEncode(Request.QueryString["Name"]);

We should use Server.HtmlEncode method while using QueryString. Server.HtmlEncode

method encode the "<" sign with "<." Special characters that a Web browser cannot process,

it helps to process that browser understands easily.

Important points about QueryString

 It is easy to use.

 Sensitive data should not pass using QueryString.

 Browsers have 2,083-character limits on URLs. Therefore there is limit to pass the

data.

 QueryString is a part of URL.

 It uses one or more than one parameter.

 It uses "&" sign while using more than one parameter.

 SPACE is encoded as '+' or '%20'

41

Server side state management system - ASP.NET

There are two important objects which work on server.

 Session

 Application

State management is the technique that is used to maintain user and page information over

multiple requests while browsing the web.

 HTTP is a stateless protocol. It does not store any information about user on web

page. It is a general requirement that information should be maintained while

navigating the website.

 Session provides that facility to store information on server memory not browse. It

stores the user’s specific information. It can store any type of object. For every user

Session data store separately, means session is user specific.

Storing the data in Session object

Session ["UserName"] = txtName.Text;

Retreving the data from Session object

Label1.Text = Session ["UserName"].ToString();

When we store data to Session state, a session cookie named is ASP.NET_SessionId is

created automatically. It contains a unique identifier that is used to track the user while

moving from one page to another page.

Important properties of Session object

Session

Properties

Description

CookieMode It specifies whether cookieless sessions are enabled.

Possible values are AutoDetect, UseCookies, UseDeviceProfile, and

UseUri.

SessionID It provides the unique session identifier. It is secure enough and can't be

decoded or hampered. When client communicate with server, only session

id is transmitted, between them.

Count It provides the number of items in Session state.

IsCookieless Provides the information whether sessions are cookieless or not.

IsNewSession It determines whether session is new or not.

IsReadOnly It determines whether the Session state is read-only.

Keys Provides the list of item names stored in Session state.

Mode It determines the current Session state store provider. Possible values are

Custom, InProc, Off, SqlServer, and StateServer.

42

Important methods of Session object

 Abandon: It is used to end a user session.

 Clear: It clears all items from Session state.

 Remove: This method is used to remove a particular item from Session state.

Example

using System;

using System.Web;

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 string info;

 info = "CookieMode =: "+Session.CookieMode.ToString() + "</br>"; ;

 info += "Count =: "+ Session.Count.ToString() + "</br>"; ;

 info += "IsCookieless =: " + Session.IsCookieless.ToString() + "</br>"; ;

 info += "IsNewSession =: " + Session.IsNewSession.ToString() + "</br>"; ;

 info += "IsReadOnly =: " + Session.IsReadOnly.ToString() + "</br>"; ;

 info += "Keys =: "+Session.Keys.Count + "</br>"; ;

 info += "Mode =: "+Session.Mode.ToString() + "</br>"; ;

 info += "SessionID =: " + Session.SessionID.ToString() + "</br>"; ;

 Label1.Text = info;

 }

}

Session Events

There are two events that session object supports. These two events are handled in

Global.aspx file.

 Session_Start

 Session_End

Whenever a new user sessions starts, Session_Start events fires. The Session_End event is

raised when a session ends.

Example: Global.asax file

<%@ Application Language="C#" %>

<script runat="server">

 void Application_Start(object sender, EventArgs e)

 {

 Application["UserCount"] = 0;

 }

 void Application_End(object sender, EventArgs e)

 {

 // Code that runs on application shutdown

 }

 void Application_Error(object sender, EventArgs e)

43

 {

 // Code that runs when an unhandled error occurs

 }

 void Session_Start(object sender, EventArgs e)

 {

 Application.Lock();

 int count = (int)Application["UserCount"];

 Application["UserCount"] = count + 1;

 Application.UnLock();

 }

 void Session_End(object sender, EventArgs e)

 {

 Application.Lock();

 int count = (int)Application["UserCount"];

 Application["UserCount"] = count - 1;

 Application.UnLock();

 }

</script>

In the above example, the variable UserCount is incremented by one, whenever a new session

begins.

The Session_End event is raised, when a session ends and the UserCount variable is

decremented by one.

We can display the result on web page as follows:

void Page_Load()

{

 Label1.Text = Application["UserCount"];ToString();

}

Session Times Out property

By default, the ASP.NET Framework provides 20 minutes as session timeout. We can change

this time according to application need.

Be aware that when you increase the value of session timeout property more memory is

consumed by your application.

You can specify the Session timeout in the web configuration file or you can do it

programmatically.

<configuration>

 <system.web>

 <sessionState timeout="60" />

 </system.web>

</configuration>

44

Session Mode

In ASP.NET there are following session modes available,

 InProc

 StateServer

 SQLServer

 Custom

 Off

By default, the Session state mode is InProc means Session state is stored in memory in the

same process as the ASP.NET process. So accessing data is very fast. Another advantage is

that there are no requirements of serialization to store data in InProc Session Mode.

There are two main disadvantages to storing Session state in the ASP.NET process.

 We can’t use in-process Session state with a web farm.

 All Session state is lost, if application restarts.

You can store Session data out-of-process. You can choose StateServer option for storing

session data. It stores Session state in a Windows NT process.

SqlServer mode stores Session state in a SQL Server database. It is the most reliable and

secure session management and Session data do not affected if we restart the IIS.

Custom mode stores Session state in a custom location.

If we set Session Mode="off" in web.config, Session will be disabled for the application.

For this we need to configure web.config in following way.

<configuration>

 <system.web>

 <sessionState mode="Off"></sessionState>

 </system.web>

</configuration>

Session State Mode State Provider

InProc In-Memory Object

StateServer Aspnet_state.exe

SQLServer DataBase

Custom CustomProvider

Cookieless Session State

If a user disables cookies in the browser, then Session state doesn’t work because by default,

Session state depends on cookies. The ASP.NET Framework uses the ASP.NET_SessionId

cookie identifier to identity the user while browsing the web. If you want that Session state

should work even when cookies are disabled, then you can use cookieless sessions.

45

You can enable cookieless sessions by adjusting the sessionState element in the web

configuration file as.

<configuration>

 <system.web>

 <sessionState cookieless="AutoDetect" regenerateExpiredSessionId="true" />

 </system.web>

</configuration>

Advantages and disadvantages of Session

Following are the basic advantages and disadvantages of using session.

Advantages:

 It stores user states and data to all over the application.

 Easy mechanism to implement and we can store any kind of object.

 Stores every user data separately.

 Session is secure and transparent from user because session object is stored on the

server.

Disadvantages:

 Performance overhead in case of big number of user, because of session data stored in

server memory.

 Overhead involved in serializing and De-Serializing session Data. Because In case of

StateServer and SQLServer session mode we need to serialize the object before store.

Application State

Application object is used to store information at application level rather than user level. All

pages of your application can access the Application object. Application variables are stored

on a web server.

If you are using Application object, then you may face concurrency problem. To avoid this

problem we should use the lock and unlock methods. Therefore if multiple thread requests

came for same data then only one thread can do the work.

Writing data to Application object

Application["Message"] = "Hello to all";

We can use Application object in a scenario where we want to count the number of visitors of

web site.

Application State variables are empty, when the process hosting the application is restarted.

46

Difference between session state and application state

Application Session

It works at application level rather than user

level.

Session object is user specific.

Application state is stored only in the memory

on the server.

Session state is stored in inProc and outProc

Application state does not depends upon

client's cookies

Session object depends upon cookie or can be

cookieless.

Application state does not depend upon the

current browser.

Session state has scope to the current browser

only.

47

Tracing, Debugging, Error Handling

In any application, errors are bound to occur during the development process. It is important

to be able to discover errors at an early stage.

In Visual Studio, it is possible to do this for ASP.Net applications. Visual Studio is used for

Debugging and has error handling techniques for ASP.Net.

What is Debugging in ASP.NET?

Debugging is the process of adding breakpoints to an application. These breakpoints are used

to pause the execution of a running program. This allows the developer to understand what is

happening in a program at a particular point in time.

Let's take an example of a program. The program displays a string "We are debugging" to the

user. Suppose when we run the application, for some reason, the string is not displayed. To

identify the problem we need to add a breakpoint. We can add a breakpoint to the code line

which displays the string. This breakpoint will pause the execution of the program. At this

point, the programmer can see what is possibly going wrong. The programmer rectifies the

program accordingly.

Here in the example, we will use our 'DemoApplication' that was created in earlier chapters.

In the following example, we will see

 How to make the demo application display a string.

 How to add breakpoints to an application.

 How to debug the application using this breakpoint.

Step 1) Let's first ensure we have our web application open in Visual Studio. Ensure the

DemoApplication is open in Visual Studio.

Step 2) Now open the Demo.aspx.cs file and add the below code line.

 We are just adding the code line Response.Write to display a string.

 So when the application executes, it should display the string "We are debugging" in

the web browser.

48

namespace DemoApplication

{

 public partial class Demo : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 Response.Write("We are debugging");

 }

 }

}

Step 3) Now let's add a breakpoint. A breakpoint is a point in Visual Studio where you want

the execution of the program to stop.

1. To add a breakpoint, you need to click the column where you want the breakpoint to

be inserted. So in our case, we want our program to stop at the code line

"Response.Write". You don't need to add any command to add a breakpoint. You just

need to click on the line on which you want to add a breakpoint.

2. Once this is done, you will notice that the code gets marked in red. Also, a red bubble

comes up in the column next to the code line.

Note: - You can add multiple breakpoints in an application

49

Step 4) Now you need to run your application using Debugging Mode. In Visual Studio,

choose the menu option Debug->Start Debugging.

Output:-

When you perform all the steps correctly, the execution of the program will break. Visual

Studio will go to the breakpoint and mark the line of code in yellow.

50

What is Tracing in ASP.NET?

Application tracing allows one to see if any pages requested results in an error. When tracing

is enabled, an extra page called trace.axd is added to the application. (See image below). This

page is attached to the application. This page will show all the requests and their status.

Let's look at how to enable tracing for an application.

Step 1) Let's work on our 'DemoApplication'. Open the web.config file from the Solution

Explorer.

Step 2) Add the below line of code to the Web.config file.

The trace statement is used to enable tracing for the application.

 The 'requestLimit' in trace statement is used. It specifies the number of page requests

that has to be traced.

 In our example, we are giving a limit of 40. We give limit because a higher value will

degrade the performance of the application.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci6.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci7.png

51

<?xml version="1.0" encoding="utf-8"?>

<! --

For more information on how to configure your ASP.NET application, please visit

http://go.microsoft.com/fwlink/?LinkId=169433

-->

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.0" />

 <httpRuntime targetFramework="4.0” />

 <trace enable="true" pageOutput="false" requestLimit="40" localOnly="false"/>

 </system.web>

</configuration>

Run the "demoapplication" in Visual Studio.

Output:-

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci8.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci9.png

52

If you now browse to the URL – http://localhost:53003/trace.axd , you will see the

information for each request. Here you can see if any errors occur in an application. The

following types of information are shown on the above page

1. The time of the request for the web page.

2. The Name of the web page being requested.

3. The status code of the web request. (status code of 200 means that the request is

successful).

4. The View details which you allow to view more details about the web request. An

example of this is shown below. One important detailed information provided is the

header information. This information shows what is the information sent in the header

of each web request.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci10.png

53

Error Handling: Displaying a Custom Error Page

In ASP.Net, you can have custom error pages displayed to the users. If an application

contains any sort of error, a custom page will display this error to the user.

In our example, we are first going to add an HTML page. This page will display a string to

the user "We are looking into the problem". We will then add some error code to our

demo.aspx page so that the error page is shown.

Let's follow the below mentioned steps

Step 1) Let's work on our DemoApplication. Let's add an HTML page to the application

1. Right-click on the DemoApplication in Solution Explorer

2. Choose the menu option 'Add'->HTML Page

Step 2) In the next step, we need to provide a name to the new HTML page.

1. Provide the name as 'ErrorPage.'

2. Click the 'OK' button to proceed.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci14.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci15.png

54

Step 3) The Errorpage will automatically open in Visual Studio. If you go to the Solution

Explorer, you will see the file added.

Add the code line "We are looking into the problem" to the HTML page. You don't need to

close the HTML file before making the change to the web.config file.

<!DOCTYPE html>

<html xmlns="http://www.w3.ore/1999/xhtml">

<head runat="server">

 <title></title>

</head>

 <body>

 We are looking into the problem

 </body>

</html>

Step 4) Now you need to make a change in the web.config file. This change will notify that

whenever an error occurs in the application, the custom error page needs to be displayed.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci16.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci17.png

55

The 'customErrors' tag allows defining a custom error page. The defaultRedirect property is

set to the name of our custom error's page created in the previous step.

<configuration>

 <system.web>

 <compilation debug="true" targetFramework="4.0" />

 <httpRuntime targetFramework="4.0” />

 <customErrors mode="On" defaultRedirect="ErrorPage.html">

</customErrors>

</system.web>

</configuration>

Step 5) Now let's add some faulty code to the demo.aspx.cs page. Open this page bydouble-

clickingg the file in Solution Explorer

Add the below code to the Demo.aspx.cs file.

 These lines of code are designed to read the lines of a text from a file.

 The file is supposed to be located in the D drive with the name 'Example.txt.'

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci18.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci19.png

56

 But in our situation, this file does not really exist. So this code will result in an error

when the application runs.

namespace DemoApplication

{

 public partial class Demo : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 String path = @"D:\Example.txt";

 string[] lines;

 lines = File.ReadAllLines(path);

 }

 }

}

Now execute the code in Visual Studio and you should get the below output.

Output:-

The above page shows that an error was triggered in the application. As a result, the

Error.html page is displayed to the user.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci20.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci21.png

57

ASP.NET Unhandled Exception

Even in the best of scenarios, there can be cases of errors which are just not forseen.

Suppose if a user browses to the wrong page in the application. This is something that cannot

be predicted. In such cases, ASP.Net can redirect the user to the errorpage.html.

Let's see an example on this.

 We are going to use our same 'DemoApplication' which has the Errorpage.html.

 And we will try to view a web page which does not exist in our application.

 We should be redirected to our ErrorPage.html page in this case. Let's see the steps to

achieve this.

Step 1) Let's work on our DemoApplication. Open the Global.asax.cs file from the Solution

Explorer

NOTE: The global.asax.cs file is used to add code that will be applicable throughout all

pages in the application.

Step 2) Add the below line of code to the global.asax.cs. These lines will be used to check for

errors and display the ErrorPage.html page accordingly.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci22.png

58

namespace DemoApplication

{

 public partial class Demo : System.Web.UI.Page

 {

 protected void Application_Error(object sender, EventArgs e)

 {

 HttpException lastErrorWrapper = Server.GetLastError() as

HttpException;

 if(lastErrorWrapper.GetHttpCode() == 404)

 Server.T ransfer("~/ErrorPage.html");

 }

 }

}

Code Explanation:-

1. The first line is the Application_Error event handler. This event is called whenever an

error occurs in an application. Note that the event name has to be 'Application_Error'.

And the parameters should be as shown above.

2. Next, we define an object of the class type HttpException. This is a standard object

which will hold all the details of the error. We then use the Server.GetLastError

method to get all the details of the last error which occurred in the application.

3. We then check if the error code of the last error is 404. (The error code 404 is the

standard code returned when a user browses to a page which is not found). We then

transfer the user to the ErrorPage.html page if the error code matches.

Now run the code in Visual Studio and you should get the below output

Output:-

Browse the page http://localhost:53003/Demo1.aspx . Remember that Demo1.aspx does not

exist in our application. You will then get the below output.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci23.png

59

The above page shows that an error was triggered in the application. As a result, the

Error.html page is displayed to the user.

ASP.NET Error logging

By logging application errors, it helps the developer to debug and resolve the error at a later

point of time. ASP.Net has the facility to log errors. This is done in the Global.asax.cs file

when the error is captured. During the capturing process, the error message can be written

into a log file.

Let's see an example on this.

 We are going to use our same DemoApplication which has the Errorpage.html.

 And we will try to view a web page which does not exist in our application.

 We should be redirected to our ErrorPage.html page in this case.

 And at the same time, we will write the error message to a log file. Let's see the steps

to achieve this.

Step 1) Let's work on our DemoApplication. Open the Global.asax.cs file from the Solution

Explorer

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci24.png

60

Step 2) Add the below line of code to the global.asax.cs. It will check for errors and display

the ErrorPage.html page accordingly. Also at the same time, we will log the error details in a

file called 'AllErrors.txt.' For our example, we will write code to have this file created on the

D drive.

namespace DemoApplication

{

 public partial class Demo : System.Web.UI.Page

 {

 protected void Application_Error(object sender, EventArgs e)

 {

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci25.png
https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci26.png

61

 String str ="";

 str = exc.Message;

 String path = @"D:\AllErrors.txt";

 File.WriteAllTest(path,str);

 Server.trrasfer("~/ErrorPage.html");

 }

 }

}

Code Explanation:-

1. The first line is to get the error itself by using the 'Server.GetLastError' method. This

is then assigned to the variable 'exc'.

2. We then create an empty string variable called 'str'. We get the actual error message

using the 'exc.Message' property. The exc.Message property will have the exact

message for any error which occurs when running the application. This is then

assigned to the string variable.

3. Next, we define the file called 'AllErrrors.txt.' This is where all the error messages

will be sent. We write the string 'str' which contains all the error messages to this file.

4. Finally, we transfer the user to the ErrorPage.html file.

Output:-

Browse the page http://localhost:53003/Demo1.aspx . Remember that Demo1.aspx does not

exist in our application. You will then get the below output.

And at the same time, if you open the 'AllErrors.txt' file you will see the below information.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci27.png

62

The error message can then be passed on to the developer at a later point in time for

debugging purposes.

Summary

 ASP.Net has the facility to perform debugging and Error handling.

 Debugging can be achieved by adding breakpoints to the code. One then runs the Start

with Debugging option in Visual Studio to debug the code.

 Tracing is the facility to provide more information while running the application. This

can be done at the application or page level.

 At the page level, the code Trace=true needs to be added to the page directive.

 At the application level, an extra page called Trace.axd is created for the application.

This provides all the necessary tracing information.

https://www.guru99.com/images/asp-net/061516_0956_AspNetTraci28.png

1

Unit IV – Missing Topics

Unit – IV - Developing C#.NET Applications - Introducing C# - overview of C# -

Literals, Variables- Data Types, -Operators, -checked and unchecked operators –

Expressions – Branching -Looping-Object Oriented Aspects Of C#: Class – Objects -

Constructors and its types- inheritance, properties, indexers, index overloading –

polymorphism - sealed class and methods - interface, - abstract class, operator

overloading, - delegates, events, errors and exception - Threading.

1. Branching Statements

 if Statement :

It executes its block only if the condition is true

Syntax:

if (condition)

{

//statement;

}

Program

public static void Main(string[] args)

 {

 int number = 3;

 if (number < 10)

 {

 Console.WriteLine("{0} is less than 10", number);

 }

 Console.WriteLine("This statement is always executed.");

 }

 if else Statement

It executes if block if condition is true; otherwise it will execute the else block

Syntax:

if (condition)

{

//statement;

}

2

else

{

//statement;

}

Program

// Determine if a value is positive or negative.

using System;

class PosNeg {

static void Main() {

int i;

for(i=-3; i <= 3; i++) {

Console.Write("Testing " + i + ": ");

if(i < 0)

Console.WriteLine("negative");

else Console.WriteLine("positive");

}

}

}

Output

Testing -3: negative

Testing -2: negative

Testing -1: negative

Testing 0: positive

Testing 1: positive

Testing 2: positive

Testing 3: positive

In this example, if i is less than zero, then the target of the if is executed.

Otherwise, the target of the else is executed. In no case are both executed.

 else if Statement:

1. It checks the condition of both if and else if block and executes the respective block;

otherwise it will execute the else block.

1. Syntax:

if (condition)

{

//statement;

}

3

else if(condition)

{

//statement;

}

else

{

//statement;

}

public static void Main(string[] args)

 {

 int number = 12;

 if (number < 5)

 {

 Console.WriteLine("{0} is less than 5", number);

 }

 else if (number > 5)

 {

 Console.WriteLine("{0} is greater than 5", number);

 }

 else

 {

 Console.WriteLine("{0} is equal to 5");

 }

 }

The value of number is initialized to 12. The first test expression number < 5 is false, so the

control will move to the else if block. The test expression number > 5 is true hence the block

of code inside else if will be executed.

Similarly, we can change the value of number to alter the flow of execution.

 Switch Statement

The switch block consists of several cases which includes a default case too.

Each case has break statement to jump out of switch block on its execution.

The cases are matched and then executed provided the condition for cases in switch

statement..

Syntax:

switch (variable)

{

4

case 1:

//statement;

break;

case 2:

//statement;

break;

default:

//statement;

break;

}

Program

int day = 4;

switch (day)

{

 case 1:

 Console.WriteLine("Monday");

 break;

 case 2:

 Console.WriteLine("Tuesday");

 break;

 case 3:

 Console.WriteLine("Wednesday");

 break;

 case 4:

 Console.WriteLine("Thursday");

 break;

 case 5:

 Console.WriteLine("Friday");

 break;

 case 6:

 Console.WriteLine("Saturday");

 break;

 case 7:

 Console.WriteLine("Sunday");

 break;

}

// Outputs "Thursday" (day 4)

5

1. Looping Statements

 while Statement

1. It executes the block until the condition fails.

2. It will execute its block only if the condition is true and continues to loop

3. Syntax:

while (condition)

{

//statement;

}

Program

int i = 0;

while (i < 5)

{

 Console.WriteLine(i);

 i++;

}

Output:

0

1

2

3

4

 do-while Statement

1. It executes its statements and checks the condition.

2. It continues looping if condition is true; else it aborts.

3. Syntax:

do

{

//statement;

}

while (condition);

Program

int i = 0;

do

{

 Console.WriteLine(i);

 i++;

6

}

while (i < 5);

Output

0

1

2

3

4

 for Statement

1. It executes its block until the condition fails.

2. Syntax:

for(initialization; condition; iteration)

{

//statement;

}

Program

class Program

 {

 static void Main(string[] args)

 {

 for (int i = 0; i < 5; i++)

 {

 Console.WriteLine(i);

 }

 }

 }

Output

0

1

2

3

4

7

 foreach Statement

It executes the block for each values.

Syntax:

foreach (datatype values in variable)

{

//statement;

}

The foreach loop in C# executes a block of code on each element in an array or a collection

of items. When executing foreach loop it traversing items in a collection or an array.

Program

string[] days = { "Sunday", "Monday", "TuesDay"};

foreach (string day in days)

{

 MessageBox.Show("The day is : " + day);

}

Output

Sunday

Monday

TuesDay

8

4. Jumping Statements

 goto Statement

It defines a region with a label; on goto execution the region is called and executed

respectively.

The C# goto statement is also known jump statement. It is used to transfer control to the other

part of the program. It unconditionally jumps to the specified label.

It can be used to transfer control from deeply nested loop or switch case label.

Syntax:

Label:

//statements

Program

public class GotoExample

 {

 public static void Main(string[] args)

 {

 ineligible:

 Console.WriteLine("You are not eligible to vote!");

 Console.WriteLine("Enter your age:\n");

 int age = Convert.ToInt32(Console.ReadLine());

 if (age < 18){

 goto ineligible;

 }

 else

 {

 Console.WriteLine("You are eligible to vote!");

 }

 }

 }

Output
You are not eligible to vote!
Enter your age:
11
You are not eligible to vote!
Enter your age:
5
You are not eligible to vote!
Enter your age:
26
You are eligible to vote!

9

 continue Statement :

The continue statement is used to execute the current block sequentially.

Program

static void Main(string[] args) {

 /* local variable definition */

 int a = 10;

 /* do loop execution */

 do {

 if (a == 15) {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 Console.WriteLine("value of a: {0}", a);

 a++;

 }

 while (a < 20);

 Console.ReadLine();

 }

Output

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

10

 break Statement :

The break Statement is used to jump out the current block after its execution.

Program

class Program {

 static void Main(string[] args) {

 /* local variable definition */

 int a = 10;

 /* while loop execution */

 while (a < 20) {

 Console.WriteLine("value of a: {0}", a);

 a++;

 if (a > 15) {

 /* terminate the loop using break statement */

 break;

 }

 }

 Console.ReadLine();

 }

 }

Output

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

11

C# - Classes

A class definition starts with the keyword class followed by the class name; and the class

body enclosed by a pair of curly braces.

<access specifier> class class_name {

 // member variables

 <access specifier> <data type> variable1;

 <access specifier> <data type> variable2;

 ...

 <access specifier> <data type> variableN;

 // member methods

 <access specifier> <return type> method1(parameter_list) {

 // method body

 }

 <access specifier> <return type> method2(parameter_list) {

 // method body

 }

 ...

 <access specifier> <return type> methodN(parameter_list) {

 // method body

 }

}

 Access specifiers specify the access rules for the members as well as the class itself. If not

mentioned, then the default access specifier for a class type is internal. Default access for

the members is private.

 Data type specifies the type of variable, and return type specifies the data type of the data

the method returns, if any.

 To access the class members, you use the dot (.) operator.

 The dot operator links the name of an object with the name of a member.

Program

using System;

namespace BoxApplication {

 class Box {

 public double length; // Length of a box

 public double breadth; // Breadth of a box

 public double height; // Height of a box

 }

 class Boxtester {

 static void Main(string[] args) {

12

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 Console.WriteLine("Volume of Box2 : {0}", volume);

 Console.ReadKey();

 }

 }

}

Output

Volume of Box1 : 210

Volume of Box2 : 1560

13

C# Constructors

 A class constructor is a special member function of a class that is executed whenever we

create new objects of that class.

 A constructor has exactly the same name as that of class and it does not have any return

type.

 There can be two types of constructors in C#.

o Default constructor

o Parameterized constructor

C# Default Constructor

A constructor which has no argument is known as default constructor. It is invoked at the

time of creating object.

using System;

 public class Employee

 {

 public Employee()

 {

 Console.WriteLine("Default Constructor Invoked");

 }

 }

 class TestEmployee{

 public static void Main(string[] args)

 {

 Employee e1 = new Employee();

 Employee e2 = new Employee();

 }

 }

Output:

Default Constructor Invoked

Default Constructor Invoked

C# Parameterized Constructor

A constructor which has parameters is called parameterized constructor. It is used to provide

different values to distinct objects.

using System;

 public class Employee

 {

 public int id;

 public String name;

14

 public float salary;

 public Employee(int i, String n,float s)

 {

 id = i;

 name = n;

 salary = s;

 }

 public void display()

 {

 Console.WriteLine(id + " " + name+" "+salary);

 }

 }

 class TestEmployee{

 public static void Main(string[] args)

 {

 Employee e1 = new Employee(101, "Sonoo", 890000f);

 Employee e2 = new Employee(102, "Mahesh", 490000f);

 e1.display();

 e2.display();

 }

 }

Output:

101 Sonoo 890000

102 Mahesh 490000

15

Inheritance

 When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the members of

an existing class.

 This existing class is called the base class, and the new class is referred to as

the derived class.

 The idea of inheritance implements the IS-A relationship. For example, mammal IS

A animal, dog IS-A mammal hence dog IS-A animal as well, and so on.

Base and derived class

A class can be derived from more than one class or interface, which means that it can

inherit data and functions from multiple base classes or interfaces.

<acess-specifier> class <base_class> {

 ...

}

class <derived_class> : <base_class> {

 ...

}

Program

using System;

namespace InheritanceApplication {

 class Shape {

 public void setWidth(int w) {

 width = w;

 }

 public void setHeight(int h) {

 height = h;

 }

 protected int width;

 protected int height;

 }

 // Derived class

 class Rectangle: Shape {

 public int getArea() {

 return (width * height);

 }

16

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle Rect = new Rectangle();

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 Console.WriteLine("Total area: {0}", Rect.getArea());

 Console.ReadKey();

 }

 }

}

Ouput

Total area: 35

17

Interface

C# does not support multiple inheritance. However, you can use interfaces to implement

multiple inheritance.

Live Demo

using System;

namespace InheritanceApplication {

 class Shape {

 public void setWidth(int w) {

 width = w;

 }

 public void setHeight(int h) {

 height = h;

 }

 protected int width;

 protected int height;

 }

 // Base class PaintCost

 public interface PaintCost {

 int getCost(int area);

 }

 // Derived class

 class Rectangle : Shape, PaintCost {

 public int getArea() {

 return (width * height);

 }

 public int getCost(int area) {

 return area * 70;

 }

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle Rect = new Rectangle();

 int area;

 Rect.setWidth(5);

 Rect.setHeight(7);

 area = Rect.getArea();

http://tpcg.io/0jSkFW

18

 // Print the area of the object.

 Console.WriteLine("Total area: {0}", Rect.getArea());

 Console.WriteLine("Total paint cost: ${0}" , Rect.getCost(area));

 Console.ReadKey();

 }

 }

}

Output

Total area: 35

Total paint cost: $2450

19

Properties

 C# Properties doesn't have storage location. C# Properties are extension of fields and

accessed like fields.

 The Properties have accessors that are used to set, get or compute their values.

Usage of Properties

 C# Properties can be read-only or write-only.

 We can have logic while setting values in the C# Properties.

 We make fields of the class private, so that fields can't be accessed from outside the class

directly. Now we are forced to use C# properties for setting or getting values.

C# Properties Example

using System;

 public class Employee

 {

 private string name;

 public string Name

 {

 get

 {

 return name;

 }

 set

 {

 name = value;

 }

 }

 }

 class TestEmployee{

 public static void Main(string[] args)

 {

 Employee e1 = new Employee();

 e1.Name = "Sonoo Jaiswal";

 Console.WriteLine("Employee Name: " + e1.Name);

 }

 }

Output

Employee Name: Sonoo Jaiswal

20

Indexer

 An indexer allows an object to be indexed such as an array.

 When you define an indexer for a class, this class behaves similar to a virtual array.

 You can then access the instance of this class using the array access operator ([]).

Syntax

element-type this[int index] {

 // The get accessor.

 get {

 // return the value specified by index

 }

 // The set accessor.

 set {

 // set the value specified by index

 }

}

 Declaration of behavior of an indexer is to some extent similar to a property.

 Similar to the properties, you use get and set accessors for defining an indexer.

 However, properties return or set a specific data member, whereas indexers returns or sets

a particular value from the object instance. In other words, it breaks the instance data into

smaller parts and indexes each part, gets or sets each part.

Defining a property involves providing a property name. Indexers are not defined with

names, but with the ‘this’ keyword, which refers to the object instance.

Program

using System;

namespace IndexerApplication {

 class IndexedNames {

 private string[] namelist = new string[size];

 static public int size = 10;

 public IndexedNames() {

 for (int i = 0; i < size; i++)

 namelist[i] = "N. A.";

 }

 public string this[int index] {

 get {

 string tmp;

 if(index >= 0 && index <= size-1) {

21

 tmp = namelist[index];

 } else {

 tmp = "";

 }

 return (tmp);

 }

 set {

 if(index >= 0 && index <= size-1) {

 namelist[index] = value;

 }

 }

 }

 static void Main(string[] args) {

 IndexedNames names = new IndexedNames();

 names[0] = "Zara";

 names[1] = "Riz";

 names[2] = "Nuha";

 names[3] = "Asif";

 names[4] = "Davinder";

 names[5] = "Sunil";

 names[6] = "Rubic";

 for (int i = 0; i < IndexedNames.size; i++) {

 Console.WriteLine(names[i]);

 }

 Console.ReadKey();

 }

 }

}

Output

Zara

Riz

Nuha

Asif

Davinder

Sunil

Rubic

22

N. A.

N. A.

N. A.

23

Index overloading

 Indexers can be overloaded.

 Indexers can also be declared with multiple parameters and each parameter may be a

different type.

 It is not necessary that the indexes have to be integers. C# allows indexes to be of other

types, for example, a string.

using System;

namespace IndexerApplication {

 class IndexedNames {

 private string[] namelist = new string[size];

 static public int size = 10;

 public IndexedNames() {

 for (int i = 0; i < size; i++) {

 namelist[i] = "N. A.";

 }
 }
 public string this[int index] {

 get {

 string tmp;

 if(index >= 0 && index <= size-1) {

 tmp = namelist[index];

 } else {

 tmp = "";

 }
 return (tmp);
 }
 set {

 if(index >= 0 && index <= size-1) {

 namelist[index] = value;

 }
 }
 }
 public int this[string name] {

 get {

 int index = 0;

 while(index < size) {

 if (namelist[index] == name) {

 return index;

24

 }

 index++;

 }

 return index;

 }

 }

static void Main(string[] args) {

 IndexedNames names = new IndexedNames();

 names[0] = "Zara";

 names[1] = "Riz";

 names[2] = "Nuha";

 names[3] = "Asif";

 names[4] = "Davinder";

 names[5] = "Sunil";

 names[6] = "Rubic";

 //using the first indexer with int parameter

 for (int i = 0; i < IndexedNames.size; i++) {

 Console.WriteLine(names[i]);

 }

 //using the second indexer with the string parameter

 Console.WriteLine(names["Nuha"]);

 Console.ReadKey();

 }

 }

}

Output

Zara

Riz

Nuha

Asif

Davinder

Sunil

Rubic

N. A.

N. A.

N. A.

2

25

Polymorphism

 The word polymorphism means having many forms.

 In object-oriented programming paradigm, polymorphism is often expressed as 'one

interface, multiple functions'.

 Polymorphism can be static or dynamic.

 In static polymorphism, the response to a function is determined at the compile time. In

dynamic polymorphism, it is decided at run-time.

Static Polymorphism

The mechanism of linking a function with an object during compile time is called early

binding. It is also called static binding. C# provides two techniques to implement static

polymorphism. They are −

 Function overloading

 Operator overloading

Function Overloading

 You can have multiple definitions for the same function name in the same scope.

 The definition of the function must differ from each other by the types and/or the number

of arguments in the argument list.

 You cannot overload function declarations that differ only by return type.

The following example shows using function print() to print different data types −

using System;

namespace PolymorphismApplication {

 class Printdata {

 void print(int i) {

 Console.WriteLine("Printing int: {0}", i);

 }

 void print(double f) {

 Console.WriteLine("Printing float: {0}" , f);

 }

 void print(string s) {

 Console.WriteLine("Printing string: {0}", s);

 }

 static void Main(string[] args) {

 Printdata p = new Printdata();

 // Call print to print integer

 p.print(5);

 // Call print to print float

 p.print(500.263);

26

 // Call print to print string

 p.print("Hello C++");

 Console.ReadKey();

 }

 }

}

Output

Printing int: 5

Printing float: 500.263

Printing string: Hello C++

Dynamic Polymorphisms

 C# allows you to create abstract classes that are used to provide partial class

implementation of an interface.

 Implementation is completed when a derived class inherits from it. Abstract classes

contain abstract methods, which are implemented by the derived class.

 The derived classes have more specialized functionality.

Here are the rules about abstract classes −

 You cannot create an instance of an abstract class

 You cannot declare an abstract method outside an abstract class

 When a class is declared sealed, it cannot be inherited, abstract classes cannot be declared

sealed.

The following program demonstrates an abstract class −

using System;

namespace PolymorphismApplication {

 abstract class Shape {

 public abstract int area();

 }

 class Rectangle: Shape {

 private int length;

 private int width;

 public Rectangle(int a = 0, int b = 0) {

 length = a;

 width = b;

 }

27

 public override int area () {

 Console.WriteLine("Rectangle class area :");

 return (width * length);

 }

 }

 class RectangleTester {

 static void Main(string[] args) {

 Rectangle r = new Rectangle(10, 7);

 double a = r.area();

 Console.WriteLine("Area: {0}",a);

 Console.ReadKey();

 }

 }

}

Output

Rectangle class area :

Area: 70

When you have a function defined in a class that you want to be implemented in an inherited

class(es), you use virtual functions. The virtual functions could be implemented differently

in different inherited class and the call to these functions will be decided at runtime.

Dynamic polymorphism is implemented by abstract classes and virtual functions.

The following program demonstrates this –

using System;

namespace PolymorphismApplication {

 class Shape {

 protected int width, height;

 public Shape(int a = 0, int b = 0) {

 width = a;

 height = b;

 }

 public virtual int area() {

 Console.WriteLine("Parent class area :");

 return 0;

 }

 }

28

 class Rectangle: Shape {

 public Rectangle(int a = 0, int b = 0): base(a, b) {

 }

 public override int area () {

 Console.WriteLine("Rectangle class area :");

 return (width * height);

 }

 }

 class Triangle: Shape {

 public Triangle(int a = 0, int b = 0): base(a, b) {

 }

 public override int area() {

 Console.WriteLine("Triangle class area :");

 return (width * height / 2);

 }

 }

 class Caller {

 public void CallArea(Shape sh) {

 int a;

 a = sh.area();

 Console.WriteLine("Area: {0}", a);

 }

 }

 class Tester {

 static void Main(string[] args) {

 Caller c = new Caller();

 Rectangle r = new Rectangle(10, 7);

 Triangle t = new Triangle(10, 5);

 c.CallArea(r);

 c.CallArea(t);

 Console.ReadKey();

 }

 }

}

29

Output

Rectangle class area:

Area: 70

Triangle class area:

Area: 25

30

Operator Overloading

 You can redefine or overload most of the built-in operators available in C#.

 Thus a programmer can use operators with user-defined types as well.

 Overloaded operators are functions with special names the keyword operator followed by

the symbol for the operator being defined. similar to any other function, an overloaded

operator has a return type and a parameter list.

For example, go through the following function −

public static Box operator+ (Box b, Box c) {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

}

The above function implements the addition operator (+) for a user-defined class Box. It adds

the attributes of two Box objects and returns the resultant Box object.

Implementing the Operator Overloading

The following program shows the complete implementation −

using System;

namespace OperatorOvlApplication {

 class Box {

 private double length; // Length of a box

 private double breadth; // Breadth of a box

 private double height; // Height of a box

 public double getVolume() {

 return length * breadth * height;

 }

 public void setLength(double len) {

 length = len;

 }

 public void setBreadth(double bre) {

 breadth = bre;

 }

 public void setHeight(double hei) {

 height = hei;

31

 }

 // Overload + operator to add two Box objects.

 public static Box operator+ (Box b, Box c) {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

 }

 }

 class Tester {

 static void Main(string[] args) {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 Box Box3 = new Box(); // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

 // Add two object as follows:

32

 Box3 = Box1 + Box2;

 // volume of box 3

 volume = Box3.getVolume();

 Console.WriteLine("Volume of Box3 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

Volume of Box1 : 210

Volume of Box2 : 1560

Volume of Box3 : 5400

33

Sealed Classes

 Sealed classes are used to restrict the inheritance feature of object oriented programming.

Once a class is defined as a sealed class, this class cannot be inherited.

 In C#, the sealed modifier is used to declare a class as sealed. In Visual Basic

.NET, NotInheritable keyword serves the purpose of sealed. If a class is derived from a

sealed class, compiler throws an error.

 If you have ever noticed, structs are sealed. You cannot derive a class from a struct.

The following class definition defines a sealed class in C#:

// Sealed class

sealed class SealedClass

{

}

In the following code, I create a sealed class SealedClass and use it from Class1. If you run

this code, it will work just fine. But if you try to derive a class from the SealedClass, you will

get an error.

using System;

class Class1

{

 static void Main(string[] args)

 {

 SealedClass sealedCls = new SealedClass();

 int total = sealedCls.Add(4, 5);

 Console.WriteLine("Total = " + total.ToString());

 }

}

// Sealed class

sealed class SealedClass

{

 public int Add(int x, int y)

 {

 return x + y;

 }

}

34

Why Sealed Classes?

 The main purpose of a sealed class is to take away the inheritance feature from the class

users so they cannot derive a class from it.

 One of the best usage of sealed classes is when you have a class with static members. For

example, the Pens and Brushes classes of the System.Drawingnamespace.

 The Pens class represents the pens with standard colors. This class has only static

members. For example, Pens.Blue represents a pen with blue color.

 Similarly, the Brushes class represents standard brushes. The Brushes.Blue represents a

brush with blue color.

 So when you're designing a class library and want to restrict your classes not to be derived

by developers, you may want to use sealed classes.

 A sealed class is completely opposite to an abstract class.

 This sealed class cannot contain abstract methods.

 It should be the bottom most class within the inheritance hierarchy.

 A sealed class can never be used as a base class.

 This sealed class is specially used to avoid further inheritance.

 The keyword sealed can be used with classes, instance methods, and properties.

35

Sealed Methods in C#

 The method that is defined in a parent class, if that method cannot be overridden under a

child class, we call it a sealed method.

 By default, every method is a sealed method because overriding is not possible unless the

method is not declared as virtual inthe parent class.

 If a method is declared as virtual in a class, any child class of it can have the rights to

override that method.

For Example:

namespace SealedDemo

{

class class1

{

public virtual void show() { }

}

class class2 : class1

{

public override void show() { }

}

class class3 : class2

{

public override void show() { }

}

}

In the above case even if the first child is not overriding the method the second child

can still override the method.

When a child class is overriding its parent class virtual methods the child

class uses the sealed modifier in the method so that further overriding of the method will not

be possible i.e. child classes cannot override the methods.

For example:

namespace SealedDemo

{

class class1

{

public virtual void show() { }

}

class class2 : class1

{

36

public sealed override void show() { }

}

class class3 : class2

{

//'class3.show()': cannot override inherited member 'class2.show()' because it is sealed

public override void show() { } //Invalid

}

}

37

Delegates

 In C#, delegate is a reference to the method. It works like function pointer in C and C++.

But it is objected-oriented, secured and type-safe than function pointer.

 For static method, delegate encapsulates method only. But for instance method, it

encapsulates method and instance both.

 The best use of delegate is to use as event.

 Provides a good way to encapsulate the methods.

 Delegates are the library class in System namespace.

 These are the type-safe pointer of any method.

 Delegates are mainly used in implementing the call-back methods and events.

 Delegates can be chained together as two or more methods can be called on a single

event.

 It doesn’t care about the class of the object that it references.

 Internally a delegate declaration defines a class which is the derived class

of System.Delegate.

Example

Let's see a simple example of delegate in C# which calls add() and mul() methods.

using System;

delegate int Calculator(int n);//declaring delegate

public class DelegateExample

{

 static int number = 100;

 public static int add(int n)

 {

 number = number + n;

 return number;

 }

 public static int mul(int n)

 {

 number = number * n;

 return number;

 }

 public static int getNumber()

 {

 return number;

 }

 public static void Main(string[] args)

38

 {

 Calculator c1 = new Calculator(add);//instantiating delegate

 Calculator c2 = new Calculator(mul);

 c1(20);//calling method using delegate

 Console.WriteLine("After c1 delegate, Number is: " + getNumber());

 c2(3);

 Console.WriteLine("After c2 delegate, Number is: " + getNumber());

 }

}

Output:

After c1 delegate, Number is: 120

After c2 delegate, Number is: 360

39

Events

 The Event is something special that is going to happen.

 example of Button control in Windows. Button performs multiple events such as click,

mouseover, etc.

 The event is an encapsulated delegate. C# and .NET both support the events with the

delegates. When the state of the application changes, events and delegates give the

notification to the client application. Delegates and Events both are tightly coupled for

dispatching the events, and event handling require the implementation of the delegates.

The sending event class is known as the publisher, and the receiver class or handling the

Event is known as a subscriber.

The key points about the events are as:

 In C#, event handler will take the two parameters as input and return the void.

 The first parameter of the Event is also known as the source, which will publish the

object.

 The publisher will decide when we have to raise the Event, and the subscriber will

determine what response we have to give.

 Event can contain many subscribers.

 Generally, we used the Event for the single user action like clicking on the button.

 If the Event includes the multiple subscribers, then synchronously event handler invoked.

Declaration of the Event

Syntax

public event EventHandler CellEvent;

Steps for implementing the Event

For the declaration of the Event in the class, firstly, the event type of the delegate must be

declared.

 public delegate void CellEventHandler(object sender, EventArgs e);

Declaration of the Event

public event CellEventHandler CellEvent;

Invokation of the Event

if (CellEvent != null) CellEvent(this, e);

We can invoke the Event only from within the class where we declared the Event.

Hooking up the Event

OurEventClass.OurEvent += new ChangedEventHandler(OurEventChanged);

Detach the Event

OurEventClass.OurEvent -= new ChangedEventHandler(OurEventChanged);

 Delegates work as pointer to a function. It is a reference data type and it holds the

reference of the method. System.Delegate class implicitly derived all the delegates.

 Delegate can be declared using the delegate keyword which is followed by the signature

40

Syntax of Delegates

<access modifier> delegate <return type> <delegate_name>(<parameters>)

Example of Delegates

public delegate void PrintWord(int value);

 The above PrintWord delegate can be used to point any method which has the same

return type and declared parameters with PrintWord.

 Here we will take an example that declares and uses the PrintWord delegates.

class Program1

{

 // declare delegate

 public delegate void PrintWord(int value);

 static void Main(string[] args)

 {

 // Print delegate points to PrintNum

 PrintWord printDel = PrintNum;

 // or

 // Print printDel = new Print(PrintNumber);

printDel(100000);

 printDel(200);

 // Print delegate points to PrintMoney

 printDel = PrintMoney;

 printDel(10000);

 printDel(200);

 }

 public static void PrintNum(int num)

 {

 Console.WriteLine("Number: {0,-12:N0}",num);

 }

 public static void PrintMoney(int money)

 {

 Console.WriteLine("Money: {0:C}", money);

 }

}

Output:

Number: 100,000

Number: 200

Money: $10,000.00

Money: $200.00

41

In the above example, we declared the PrintWord delegates, which accepts the int type

parameter and returns the void. In the main() method, we declare the PrintWord type method

and assigned the PrintNum name method. Now we will invoke the PrintWord delegate, which

in-turn invokes the PrintNum method. In the same way, if the PrintWord delegates variable is

assigned to the PrintMoney method, then this will invoke the PrintMoney method.

Also, we can create the delegate object by using the new operator and specify the name of the

method, as shown below:

PrintWord printDel = new PrintWord(PrintNum);

Delegates can be declared, as shown below:

public delegate void someEvent();

public organize event

42

Exception Handling

 Exception Handling in C# is a process to handle runtime errors. We perform exception

handling so that normal flow of the application can be maintained even after runtime

errors.

 In C#, exception is an event or object which is thrown at runtime. All exceptions the

derived from System.Exception class. It is a runtime error which can be handled. If we

don't handle the exception, it prints exception message and terminates the program.

Advantage

It maintains the normal flow of the application. In such case, rest of the code is executed

event after exception.

C# Exception Classes

All the exception classes in C# are derived from System.Exception class. Let's see the list of

C# common exception classes.

Exception Description

System.DivideByZeroException handles the error generated by dividing a number

with zero.

System.NullReferenceException handles the error generated by referencing the null

object.

System.InvalidCastException handles the error generated by invalid typecasting.

System.IO.IOException handles the Input Output errors.

System.FieldAccessException handles the error generated by invalid private or

protected field access.

C# Exception Handling Keywords

In C#, we use 4 keywords to perform exception handling:

o try

o catch

o finally, and

o throw

C# example without try/catch

using System;

public class ExExample

{

 public static void Main(string[] args)

 {

 int a = 10;

43

 int b = 0;

 int x = a/b;

 Console.WriteLine("Rest of the code");

 }

}

Output:

Unhandled Exception: System.DivideByZeroException: Attempted to divide by zero.

C# finally example if exception is handled

using System;

public class ExExample

{

 public static void Main(string[] args)

 {

 try

 {

 int a = 10;

 int b = 0;

 int x = a / b;

 }

 catch (Exception e) { Console.WriteLine(e); }

 finally { Console.WriteLine("Finally block is executed"); }

 Console.WriteLine("Rest of the code");

 }

}

Output:

System.DivideByZeroException: Attempted to divide by zero.

Finally block is executed

C# User-Defined Exceptions

C# allows us to create user-defined or custom exception. It is used to make the

meaningful exception. To do this, we need to inherit Exception class.

C# user-defined exception example

using System;

public class InvalidAgeException : Exception

{

 public InvalidAgeException(String message)

 : base(message)

 {

 }

}

44

public class TestUserDefinedException

{

 static void validate(int age)

 {

 if (age < 18)

 {

 throw new InvalidAgeException("Sorry, Age must be greater than 18");

 }

 }

 public static void Main(string[] args)

 {

 try

 {

 validate(12);

 }

 catch (InvalidAgeException e) { Console.WriteLine(e); }

 Console.WriteLine("Rest of the code");

 }

}

Output:

InvalidAgeException: Sorry, Age must be greater than 18

Rest of the code

45

C# Checked and Unchecked

 C# provides checked and unchecked keyword to handle integral type exceptions.

Checked and unchecked keywords specify checked context and unchecked context

respectively.

 In checked context, arithmetic overflow raises an exception whereas, in an unchecked

context, arithmetic overflow is ignored and result is truncated.

C# Checked

The checked keyword is used to explicitly check overflow and conversion of integral type

values at compile time.

Let's first see an example that does not use checked keyword.

C# Checked Example without using checked

using System;

namespace CSharpProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 int val = int.MaxValue;

 Console.WriteLine(val + 2);

 }

 }

}

Output:

-2147483647

See, the above program produces the wrong result and does not throw any overflow

exception.

C# Checked Example using checked

This program throws an exception and stops program execution.

using System;

namespace CSharpProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 checked

 {

46

 int val = int.MaxValue;

 Console.WriteLine(val + 2);

 }

 }

 }

}

Output:

Unhandled Exception: System.OverflowException: Arithmetic operation resulted in an overflow.

C# Unchecked

The Unchecked keyword ignores the integral type arithmetic exceptions. It does not check

explicitly and produce result that may be truncated or wrong.

Example

using System;

namespace CSharpProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 unchecked

 {

 int val = int.MaxValue;

 Console.WriteLine(val + 2);

 }

 }

 }

}

Output:

-2147483647

47

C# SystemException class

 The SystemException is a predefined exception class in C#. It is used to handle system

related exceptions.

 It works as base class for system exception namespace. It has various child classes like:

ValidationException, ArgumentException, ArithmeticException, DataException,

StackOverflowException etc.

It consists of rich constructors, properties and methods that we have tabled below.

C# SystemException Signature

[SerializableAttribute]

[ComVisibleAttribute(true)]

public class SystemException : Exception

using System;

namespace CSharpProgram

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 int[] arr = new int[5];

 arr[10] = 25;

 }

 catch (SystemException e)

 {

 Console.WriteLine(e);

 }

 }

 }

}

Output:

System.IndexOutOfRangeException: Index was outside the bounds of the array.

48

Multithreading

 A thread is defined as the execution path of a program. Each thread defines a unique flow

of control.

 If your application involves complicated and time consuming operations, then it is often

helpful to set different execution paths or threads, with each thread performing a

particular job.

 Threads are lightweight processes. One common example of use of thread is

implementation of concurrent programming by modern operating systems. Use of threads

saves wastage of CPU cycle and increase efficiency of an application.

So far we wrote the programs where a single thread runs as a single process which is the

running instance of the application. However, this way the application can perform one job at

a time. To make it execute more than one task at a time, it could be divided into smaller

threads.

Thread Life Cycle

The life cycle of a thread starts when an object of the System.Threading.Thread class is

created and ends when the thread is terminated or completes execution.

Following are the various states in the life cycle of a thread −

The Unstarted State − It is the situation when the instance of the thread is created but the

Start method is not called.

The Ready State − It is the situation when the thread is ready to run and waiting CPU cycle.

The Not Runnable State − A thread is not executable, when

Sleep method has been called

Wait method has been called

Blocked by I/O operations

The Dead State − It is the situation when the thread completes execution or is aborted.

The Main Thread

In C#, the System.Threading.Thread class is used for working with threads. It allows creating

and accessing individual threads in a multithreaded application. The first thread to be

executed in a process is called the main thread.

When a C# program starts execution, the main thread is automatically created. The threads

created using the Thread class are called the child threads of the main thread. You can access

a thread using the CurrentThread property of the Thread class.

The following program demonstrates main thread execution −

using System;

using System.Threading;

namespace MultithreadingApplication {

 class MainThreadProgram {

 static void Main(string[] args) {

49

 Thread th = Thread.CurrentThread;

 th.Name = "MainThread";

 Console.WriteLine("This is {0}", th.Name);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result −

This is MainThread

Complete program for multithreading

using System;

using System.Threading;

namespace MultithreadingApplication {

 class ThreadCreationProgram {

 public static void CallToChildThread() {

 try {

 Console.WriteLine("Child thread starts");

 // do some work, like counting to 10

 for (int counter = 0; counter <= 10; counter++) {

 Thread.Sleep(500);

 Console.WriteLine(counter);

 }

 Console.WriteLine("Child Thread Completed");

 } catch (ThreadAbortException e) {

 Console.WriteLine("Thread Abort Exception");

 } finally {

 Console.WriteLine("Couldn't catch the Thread Exception");

 }

 }

 static void Main(string[] args) {

 ThreadStart childref = new ThreadStart(CallToChildThread);

 Console.WriteLine("In Main: Creating the Child thread");

 Thread childThread = new Thread(childref);

 childThread.Start();

 //stop the main thread for some time

 Thread.Sleep(2000);

 //now abort the child

50

 Console.WriteLine("In Main: Aborting the Child thread");

 childThread.Abort();

 Console.ReadKey();

 }

 }

}

Output
In Main: Creating the Child thread
Child thread starts
0
1
2
In Main: Aborting the Child thread
Thread Abort Exception
Couldn't catch the Thread Exception

Creating Threads

Threads are created by extending the Thread class. The extended Thread class then calls

the Start() method to begin the child thread execution.

Managing Threads

The Thread class provides various methods for managing threads.

The following example demonstrates the use of the sleep() method for making a thread pause

for a specific period of time.

Destroying Threads

The Abort() method is used for destroying threads.

The runtime aborts the thread by throwing a ThreadAbortException. This exception cannot

be caught, the control is sent to the finally block, if any.

Thread Life Cycle - states

 Unstarted State

When the instance of Thread class is created, it is in unstarted state by default.

 Runnable State

When start() method on the thread is called, it is in runnable or ready to run state.

 Running State

Only one thread within a process can be executed at a time. At the time of execution,

thread is in running state.

 Not Runnable State

The thread is in not runnable state, if sleep() or wait() method is called on the thread, or

input/output operation is blocked.

 Dead State

After completing the task, thread enters into dead or terminated state.

1

Unit – V - ADO.NET - Overview of ADO.NET - ADO.NET data access – Connected and

Disconnected Database, Create Connection using ADO.NET Object Model, Connection

Class, Command Class - Data binding – Data list – Data grid – Repeater – Files, Streams and

Email – Using XML.

Overview of ADO.NET

What is ADO.NET?

 ADO.NET (ActiveX Data Objects) is a module of .Net Framework which is used to

establish connection between application and data sources. Data sources can be such

as SQL Server and XML. ADO.NET consists of classes that can be used to connect,

retrieve, insert and delete data.

 System.Data namespace is the core of ADO.NET and contains classes used by all

data providers.

 All the ADO.NET classes are located in System.Data.dll and integrated with XML

classes located in System.Xml.dll.

 ADO.NET has two main components that are used for accessing and manipulating

data are the .NET Framework Data Provider and the DataSet.

 These are the components that are designed for data manipulation and fast access to

data. It provides various objects such as Connection, Command, DataReader and

DataAdapter that are used to perform database operations.

ADO.NET is a rich set of classes, interfaces, structures and enumerated types

that manage data access from various types of data stores.

2

ADO.NET ARCHITECTURE

ADO.NET Architecture

3

Data providers

Different databases will have different storage formats. Different languages will

support different data formats, this language formats will not be understandable to databases,

this requires a translator between a language application and database. This translator is

called driver or provider.

Driver or provider is a software component, this act like mediator between application

and database. They are the

 Microsoft SQL Server Data Provider,

 OLEDB Data Provider and

 ODBC Data Provider .

SQL Server uses the SqlConnection object , OLEDB uses the OleDbConnection Object

and ODBC uses OdbcConnection Object respectively.

A data provider contains Connection, Command, DataAdapter, and DataReader objects.

These four objects provide the functionality of Data Providers in the ADO.NET.

4

CONNECTION Object

 The Connection Object provides physical connection and interaction with the Data

Source.

 The .Net Framework provides two types of connection classes:

o The sqlconnection object, that is designed specially to connect to Microsoft

SQL Server and the OleDbConnection object, that is designed to provide

connection to a wide range of databases, such as Microsoft Access and Oracle.

 A Connection object helps to identify the database server name, user name and

password to connect to the database through a connection string.

 How to use the Sqlconnection object:

o Instantiate the SqlConnection class.

o Open connection.

o Pass the connection to ADO.NET objects.

o Perform the database operations with ADO.NET object.

o Close the connection.

 The connection string is different for each of the various data providers available in

.NET.

No.
Connection String

Parameter Name
Description

1 Data Source
Identify the server. Could be local machine, machine domain

name, or IP Address.

2 Initial Catalog Data base name.

3 Integrated Security Set to SSIP to make connection with user's window login.

4 User ID Name of user configured in SQL Server.

5 Password Password matching SQL Server User ID

Code:

1. SqlConnection con;
2. con = new SqlConnection("Server=Krushna;Database=Anagha;Uid=sa;Pwd=sa");

5

ASP.NET Sql Server Connection

The SqlConnection Object is Handling the part of physical communication between the

ASP.NET application and the SQL Server Database. An instance of the SqlConnection class

in ASP.NET is supported the Data Provider for SQL Server Database.

string connectionString=ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();

When the connection is established, SQL Commands will execute with the help of the

Command Object and retrieve or manipulate the data in the database. Once the Database

activities is over , Connection should be closed and released with the Data Source resources.

The Close() method in SqlConnection Class is used to close the Database Connection.

The following ASP.NET program connect to a database server and display the message in the

Label control.

Default.aspx program

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />
 </div>
 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 </form>
</body>
</html>

Default aspx.cs

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();
 Label1.Text = "Connected to Database Server !!";
 connection.Close();
 }
}

6

COMMAND Object

 A Command object executes SQL statements and stored procedures on the database.

These SQL statements can be SELECT, INSERT, UPDATE, or DELETE.

 It uses a connection object to perform these actions on the database.

 A Command object is used to perform various types of operations, like SELECT,

INSERT, UPDATE, or DELETE on the database.

 SELECT

1. cmd =new SqlCommand("select * from Employee", con);

 The Command Object requires an instance of an Connection Object (con) for

executing the SQL statements.

 INSERT

1. cmd = new SqlCommand("INSERT INTO Employee(Emp_ID,
Emp_Name)VALUES ('" + aa + "','" + bb + "')", con);

 UPDATE

1. SqlCommand cmd =new SqlCommand("UPDATE Employee SET
Emp_ID ='" + aa + "', Emp_Name ='" + bb + "' WHERE
Emp_ID = '" + aa + "'", con);

 DELETE

1. cmd =new SqlCommand("DELETE FROM Employee where Emp_ID='" + aa + "'", con);

 A Command object exposes several execute methods like:

o ExecuteScalar()

ExecuteScalar method uses to retrieve a single value from a database.

Executes the query, and returns the first column of the first row in the result

set returned by the query. Extra columns or rows are ignored.

7

int result = Convert.ToInt32(cmd.ExecuteScalar());

 It is very useful to use with aggregate functions like Count(*) or Sum() etc.

 The following ASP.NET program find number of rows in the author table using

ExecuteScalar method.

Default.aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />
 </div>
 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 </form>
</body>
</html>

Default.aspx.cs

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 string sql = "select count(*) from authors";
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(sql, connection);
 int result = Convert.ToInt32(cmd.ExecuteScalar());
 connection.Close();
 Label1.Text = "Number of rows in author table - " + result;
 }
 catch (Exception ex)
 {
 Label1.Text = "Error in ExecuteScalar " + ex.ToString();
 }
 }
}

8

o ExecuteReader()

Display all columns and all rows at client-side environment.

The ExecuteReader() in SqlCommand Object sends the SQL statements to the

Connection Object and populate a SqlDataReader Object based on the SQL

statement.

SqlDataReader reader = cmd.ExecuteReader();

Default.aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />

 <asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 </div>
 </form>
</body>
</html>

Default.aspx.cs

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 string sql = "select au_lname,au_fname from authors";
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(sql, connection);
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 ListBox1.Items.Add(reader.GetValue(0) + " " + reader.GetValue(1));
 }
 connection.Close();
 }
 catch (Exception ex)
 {
 Label1.Text = "Error in ExecuteReader " + ex.ToString();
 }
 }
}

9

o ExecuteNonQuery()

Something is done by the database but nothing is returned by the database.

The ExecuteNonQuery() performs Data Definition tasks as well as Data

Manipulation tasks also. The Data Definition tasks like creating Stored

Procedures, Views etc. are performed by ExecuteNonQuery(). Also Data

Manipulation tasks like Insert, Update , Delete etc. also perform by the

ExecuteNonQuery() of SqlCommand Object. Although the ExecuteNonQuery

returns no rows, any output parameters or return values mapped to

parameters are populated with data.

Default.aspx

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 string sql = "insert into discounts values('New Discont',8042,1000,1000,5.25)";
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(sql, connection);
 cmd.ExecuteNonQuery();
 connection.Close();
 Label1.Text = "Successfully Inserted !!";
 }
 catch (Exception ex)
 {
 Label1.Text = "Error inserting data" + ex.ToString();
 }
 }
}

10

DataReader

 DataReader Object is a stream-based, forward-only, read-only retrieval of query

results from the Data Sources, which do not update the data.

 A DataReader object is used to obtain the results of a SELECT statement from a

command object.

 The DataReader cannot be created directly from code, they can created only by

calling the ExecuteReader() method of a Command Object.

 After creating an instance of the Command object, you have to create a DataReader

by calling Command. ExecuteReader to retrieve rows from a data source.

1. dr = cmd.ExecuteReader();
2. DataTable dt = new DataTable();
3. dt.Load(dr);

SqlDataReader reader = cmd.ExecuteReader();

 You should always call the Close method when you have finished using the

DataReader object.

 It is used in Connected architecture.

 Provide better performance.

 DataReader Object has Read-only access.

 DataReader Object supports a single table based on a single SQL query of one

database

 DataReader Object is Bind to a single control.

 DataReader Object has faster access to data.

 DataReader cannot modify data.

The following ASP.NET program execute sql statement and read the data using

SqlDataReader.

Default.aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />

 <asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 </div>

11

 </form>
</body>
</html>

Default.aspx.cs

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 string sql = "select pub_id,pub_name from publishers";
 try
 {
 connection.Open();
 SqlCommand cmd = new SqlCommand(sql, connection);
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 ListBox1.Items.Add(reader.GetValue(0) + " - " + reader.GetValue(1));
 }
 reader.Close();
 connection.Close();
 }
 catch (Exception ex)
 {
 Label1.Text = "Error in SqlDataReader " + ex.ToString();
 }
 }
}

12

DataAdapter

 DataAdapter serves as a bridge between a DataSet and SQL Server for retrieving and

saving data.

 A DataAdapter represents a set of data commands and a database connection to fill

the dataset and update a SQL Server database.

 It maintains the data in a DataSet object.

 The user can read the data if required from the DataSet and write back the changes in

a single batch to the database.

 Additionally, the Data Adapter contains a command object reference for SELECT,

INSERT, UPDATE, and DELETE operations on the data objects and a data

source.

 A Data Adapter mainly supports the following two methods:

o Fill ()

The Fill method populates a dataset or a data table object with data from the

database.

o Update ()

The Update method commits the changes back to the database. It also analyzes the

RowState of each record in the DataSet and calls the appriopriate INSERT,

UPDATE, and DELETE statements.

 A Data Adapter object is formed between a disconnected ADO.NET object and a

data source.

 We can use SqlDataAdapter Object in combination with Dataset Object.

SqlDataAdapter adapter = new SqlDataAdapter(sql,connection);

adapter.Fill(ds);

13

1. SqlDataAdapter da=new SqlDataAdapter("Select * from Employee", con);
2. da.Fill(ds,"Emp");

The following ASP.NET program shows a select operation using SqlDataAdapter.

Default.aspx

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head id="Head1" runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" onclick="Button1_Click" />

 <asp:ListBox ID="ListBox1" runat="server"></asp:ListBox>

 <asp:Label ID="Label1" runat="server" Text="Label"></asp:Label>
 </div>
 </form>
</body>
</html>

Default.aspx.cs

using System;
using System.Data ;
using System.Data.SqlClient ;
using System.Configuration;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 string connectionString = ConfigurationManager.ConnectionStrings["SQLDbConnection"].ToString();
 SqlConnection connection = new SqlConnection(connectionString);
 DataSet ds = new DataSet ();
 string sql = "select pub_name from publishers";
 try
 {
 connection.Open();
 SqlDataAdapter adapter = new SqlDataAdapter(sql,connection);
 adapter.Fill(ds);
 for (int i = 0;i < ds.Tables[0].Rows.Count -1;i++)
 {
 ListBox1.Items.Add(ds.Tables[0].Rows[i].ItemArray[0].ToString ());
 }
 connection.Close();
 }
 catch (Exception ex)
 {
 Label1.Text = "Error in execution " + ex.ToString();
 }
 }
}

14

DataSet

 In the disconnected scenario, the data retrieved from the database is stored in a local

buffer called DataSet.

 It is explicitly designed to access data from any data source. This class is defined in

the System.Data namespace.

 A Data Set is a collection of DataTable and DataRelations. Each DataTable is a

collection of DataColumn, DataRows and Constraints.

 So it contains rows, columns, primary keys, constraints, and relations with other

DataTable objects.

 DataSet consists of a collection of DataTable objects that you can relate to each other

with DataRelation objects.

 The DataAdapter Object provides a bridge between the DataSet and the Data

Source.

1. DataTable dt = new DataTable();
2. DataColumn col =new DataColumn();
3. Dt.columns.Add(col2);
4. DataRow row = dt.newRow();

 It is used in a disconnected architecture.

 Provides lower performance.

 A DataSet object has read/write access.

 A DataSet object supports multiple tables from various databases.

 A DataSet object is bound to multiple controls.

 A DataSet object has slower access to data.

 A Dataset supports integration with XML.

 A DataSet communicates with the Data Adapter only.

 A DataSet can modify data.

15

CommandBuilder Object

 By default DataAdapter contains only the select command and it doesn’t contain

insert, update and delete commands.

 To create insert, update and delete commands for the DataAdapter, CommandBuilder

is used. It is used only to create these commands for the DataAdapter and has no other

purpose.

16

Differences Between DataReader and DataSet

No. Data Reader DataSet

1 It is connected object and cannot provide access

to data when connection to database was closed.

It is disconnected object and can

provide access to data even when

connection to database was closed

2 Provides better performance Provides lower performance

3 DataReader object has read-only access A DataSet object has read/write

access

4 It can store data from only one table. It can store data from multiple tables.

5 A DataReader object is bound to a single control.

It can contain only one record at a time.

A DataSet object is bound to multiple

controls. It can contain multiple

records.

6 A DataReader object has faster access to data A DataSet object has slower access to

data

7 A DataReader object must be manually coded A DataSet object is supported by

Visual Studio tools.

8 We can't create a relation in a data reader We can create relations in a dataset

9 Whereas a DataReader doesn't support data reader

communicates with the command object.

A Dataset supports integration with

XML. Dataset communicates with the

Data Adapter only.

10 It is read only and it doesn’t allow insert,

update and delete on data.

It allows insert, update and delete

on data

11 All the data of a DataReader will be on

server and one record at a time is retrieved and

stored in datareader when you call the Read()

method of datareader.

All the data of a dataset will be

on client system.

17

Connected Architecture of ADO.NET

 In the connected architecture, connection with a data source is kept open

constantly for data access as well as data manipulation operations.

 The ADO.NET Connected architecture considers mainly the following types of

objects. Connected architecture was built on the classes connection, command,

datareader and transaction.

o SqlConnection con;

o SqlCommand cmd;

o SqlDataReader dr;

 Connection : in connected architecture also the purpose of connection is to just

establish a connection to database and itself will not transfer any data.

 DataReader : DataReader is used to store the data retrieved by command object

and make it available for .net application. Data in DataReader is read only and within

the DataReader you can navigate only in forward direction and it also only one record

at a time.

 To access one by one record from the DataReader, call Read() method of the

DataReader whose return type is bool. When the next record was successfully read,

the Read() method will return true and otherwise returns false

18

Disconnected Architecture in ADO.NET

The architecture of ADO.net in which data retrieved from database can be accessed even

when connection to database was closed is called as disconnected architecture. Disconnected

architecture of ADO.net was built on classes connection, dataadapter, commandbuilder and

dataset and dataview.

19

 The .NET application does not always stay connected with the database. The

classes are designed in a way that they automatically open and close the connection.

The data is stored client-side and is updated in the database whenever required.

 The ADO.NET Disconnected architecture considers primarily the following types of

objects:

o DataSet ds;

o SqlDataAdapter da;

o SqlConnection con;

o SqlCommandBuilder bldr;

 Connection : Connection object is used to establish a connection to database and

connectionit self will not transfer any data.

 DataAdapter : DataAdapter is used to transfer the data between database and

dataset. It has commands like select, insert, update and delete. Select command is

used to retrieve data from database and insert, update and delete commands are used

to send changes to the data in dataset to database. It needs a connection to transfer the

data.

 CommandBuilder : By default dataadapter contains only the select command

and it doesn’t contain insert, update and delete commands. To create insert, update

and delete commands for the dataadapter, commandbuilder is used. It is used only to

create these commands for the dataadapter and has no other purpose.

 DataSet : Dataset is used to store the data retrieved from database by dataadapter

and make it available for .net application.

 To fill data in to dataset fill() method of dataadapter is used and has the following

syntax.

Da.Fill(Ds,”TableName”);

 When fill method was called, dataadapter will open a connection to database, executes

select command, stores the data retrieved by select command in to dataset and

immediately closes the connection.

 As connection to database was closed, any changes to the data in dataset will not be

directly sent to the database and will be made only in the dataset. To send changes

made to data in dataset to the database, Update() method of the dataadapter is used

that has the following syntax.

Da.Update(Ds,”Tablename”);

 When Update method was called, dataadapter will again open the connection to

database, executes insert, update and delete commands to send changes in dataset to

database and immediately closes the connection. As connection is opened only when

it is required and will be automatically closed when it was not required, this

architecture is called disconnected architecture.

 A dataset can contain data in multiple tables.

20

Steps to Create a Database Using ADO.NET

We should have the followings.

 .NET framework 4.5 or greater installed and ready to go.

 A text editor or visual studio.

 An ADO.NET Database Driver contained in products such

as MySQL, PostgreSQL or RDM.

Steps to Creating your Application

Step 1 Open a command line prompt or visual studio

Change to the directory in which you have installed the files for the sample.

Step 2 Viewing your .cs file

Using your text editor/visual studio, create the file “HelloWorldADO.NET.cs”.

Step 3 Viewing your sample class

The class can contain the same name as the .cs file containing the class. It should appear as

follows:

Namespace HelloWorldApplication {

class HelloWorldADO.NET {

…

}

}

In this example everything is done within this class.

Step 4 Examining the main method

The main method is the entry point for your program. For this simple example, we are only

using one .cs file. Therefore, the class will contain the main method as shown below. We will

be accepting no arguments to this program.

static void main() {

…

}

Step 5 Creating and initializing your Connection Object

We have to initialize Connection object before you have access to any of the methods it

contains.

Start a new try block for every object that you initialize. When you are done with the object,

simply add a finally block that performs the corresponding close() method, and the outermost

block will contain your catch block to handle all possible Exceptions.

RDM ADO.NET driver is being used so we have an RdmConnection object.

RdmConnection connection = new

RdmConnection("host=localhost;database=hello_worldADO");

try {

…

}

} catch (Exception exception) {

https://dev.mysql.com/downloads/connector/net/
https://www.devart.com/dotconnect/postgresql/
https://raima.com/how-to-create-a-database-using-ado-net/download-table/

21

…

} finally {

Conn.close();

}

Step 6 Creating your Statement Object

The newly created Connection object connection has a method in it called createCommand()

that will return a RdmCommand object. You will then use that object with this Connection to

the database.

RdmCommand command = connection.createCommand();

try {

…

} finally {

command.close();

}

Step 7 Execute Statements to Create or Open the Database

Using the RdmCommand object command you just created, you can execute several different

methods depending on the type of statement you want to execute.

For example, if you would like to execute a SQL statement such as “OPEN database_name”

or “DELETE * FROM table_name” you would perform a command.executeNonQuery()

method. You can see executeNonQuery() used in the code snippet below. In this example, we

will create the database programmatically.

In this example, the database is trivial, consisting of a single table named hello_table

containing a single character column named foo. The sequence will create a table if it doesn’t

yet exist, or just open it if it does exist.

try {

RdmTransaction rdmtrans = connection.BeginTransaction();

command.CommandText = “CREATE TABLE hello_table (f00 char(31))”;

command.executeNonQuery();

rdmtrans.commit();

// now the database physically exists

} catch (Exception exception) {

// we are here if database exists

}

Step 8 Inserting a new Row using the Statement Object

To insert a single row into this database, we use the ExecuteNonQuery() method, which is

used for complete (unprepared) INSERT, UPDATE or DELETE statements. This implicitly

starts a transaction, which will be one unit of update work applied to the database atomically.

One INSERT is shown below with a parameter binding, but more could be added at this

point.

command.CommandText = "INSERT INTO hello_table(f00) VALUES(?)";

22

command.CommandText = insertString;

RdmParameter parameter = new RdmParameter();

parameter.RdmType = RdmType.AnsiString;

parameter.Direction = ParameterDirection.Input;

parameter.Value = "Hello World!";

command.Parameters.Add(parameter);

command.ExecuteNonQuery();

Step 9 Committing Changes

In order to have your changes finalized in the database you must perform a transaction

commit. In ADO.NET this is done through a method in the RdmTransaction object. The

method we will be using is RdmTransaction.Commit() and that will finalize any changes you

made during a transaction.

rdmtrans.Commit(); //Commits all changes

Step 10 Creating your Result Set Object (retrieving data from the database)

In ADO.NET, when you want to retrieve data from the database, you perform a SQL

SELECT statement using your Command object with an execute method that returns a Result

Set object. This method is called Command.executeReader(). This means it will execute the

specified Query and return the Query results in the given Reader.

command.CommandText = "SELECT * FROM hello_table";

RdmDataReader reader = command.ExecuteReader();

try {

…

} finally {

reader.Close();

}

Step 11 Accessing the Result Set

In order to access every piece of data in your Result Set, you must iterate through it. A

method is provided within the Result Set to check if the next result in the Result Set is

NULL, meaning no more data.

If the method reader.Read() returns TRUE then there is data in the database and you can

retrieve it from your result set.

To access the data inside the Result Set you must perform a getter method. There are

numerous getter methods available to retrieve the specific data type from the Result Set.

In this example we want a string, therefore we use the reader.getString() method, with the

parameter being the column (first/only column is 0) you are retrieving from.

Take a look at the code below to see an example of how this can be done.

while(reader.Read() != false)

{

Console.WriteLine(reader.GetString(0));

23

}

This loop will retrieve all rows in the result set. When this sample program is run for the first

time, there will be only one row. If you run it multiple times, you will find one row for each

time it has been run.

Step 12 Deallocating Resources

Here you will deallocate all of the resources you used above. In this case, your resources are

each object that you used above, being your Connection object, Statement, and Result Set

objects. For each nested try block you will have a finally block, which performs the

corresponding close method. These statements have been shown in context above, but here

are the cleanup calls in sequence from the code.

} finally {

reader.Close ();

}

} finally {

command.Close ();

}

} catch (Exception exception) {

Console.WriteLine (“Exception : ” + exception.ToString ());

} finally {

connection.Close ();

}

Step 13 Final Catch and Finally block

The very last block contains both a catch block and a finally block. The catch block

determines what to do if an exception was thrown in the code above. In this case just

displaying the exception to standard out is sufficient. The finally block will be executed

regardless of an exception being thrown. Here we will deallocate our Connection object. In

this example, if your Connection object does throw an exception for some reason, it is

“thrown” out of the method. In a normal situation you could either add another try catch

block, or declare this program as a separate method and handle it elsewhere.

} catch (Exception exception) {

WriteLine(“Exception : ” + exception.ToString());

} finally {

connection.Close();

}

Step 14 Compiling your application

Step 15 Running the program

24

Data Binding

User can bind the data with the controls of the forms. This process is known as data binding.

There are two types of data binding in ASP.NET known as simple data binding and

declarative data binding.

Simple data binding

 In simple data binding, the control is bounded to a data set.

 The properties of the control are used for binding with the value.

 Depending on the control to be bounded, the binding’s property is set.

Consider the following example where the Academic information of the student is bounded

using various controls.

Example to demonstrate the simple data binding in ASP.NET

Consider an example where a windows form is used for displaying the details.

Create a Windows form application in Visual studio.

1. Add the windows form to the design view.

2. Add three labels and corresponding textboxes to it. Add the labels as Name, Age and

Location.

3. Select the View, Properties Window in the application

4. Select the first textbox and navigate to the properties window.

5. Expand the DataBindings property.

6. From the drop down list, select the Text property.

7. Click on the Add Project Data Source from the drop down list.

8. Add a connection to the database and select the appropriate table.

9. Select Other Data Sources, Project data source, DataSet.

10. Select the appropriate value and bind the textbox control with it.

11. Press F5 or select Start debugging option. Execute the windows form and the

following output is displayed.

Declarative data binding

The process of binding a component like listbox, DataGrid, record list with the dataset is

known as declarative binding. When there is more than one element in the database, the

declarative binding is used.

Some of the controls used for the declarative data binding are listed below.

1. DataGrid: The data from multiple records is displayed using the DataGrid view. The

DataSource property of the control is used for binding the specific element data.

25

2. ListBox: The data for a column from different dataset is displayed. The DataSource

property is used for binding the control. The control binds to the specific element

using the DisplayMember property.

3. ComboBox: The DisplayMember property is used for binding the control to the

specific data element. The DataSource property is used for binding the control to

the data source.

The following objects are needed for data binding in ASP.NET.

The data accessed from the database is stored in the dataset.

1. The data provider is used for accessing data through the command object

2. The data adapter is used for selecting, updating, inserting, deleting the data using

commands.

Consider the following example to demonstrate the declarative data binding
Create an ASP.NET web application in visual studio.

1. Add a grid view control in the design view of the application

2. In the source view, add the following code

Code:
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title></title>
</head>
<body>
 <form id="form1" runat="server">
 <div>

 <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False"
 DataSourceID="SqlDataSource1" >
 <Columns>
 <asp:BoundField DataField="studid" HeaderText="studid" SortExpression="studid" />
 <asp:BoundField DataField="studname" HeaderText="studname" SortExpression="studname" />
 <asp:BoundField DataField="marks" HeaderText="marks" SortExpression="marks"/>
 </Columns>
 </asp:GridView>

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
ConnectionString="<%$ConnectionStrings:demoConnectionString1 %>"

 SelectCommand="SELECT * FROM * result + “> </asp:SqlDataSource>

 </div>
 </form>
</body>
</html>

3. The above code is compiled and executed, the following output is generated (if the

database is already created and inserted, we get the table).

26

DataList and DataGrid and Repeater

What is DataList?

 The ASP.NET DataList control is a light weight server side control that works as a

container for data items.

 It is used to display data into a list format to the web pages.

 It displays data from the data source.

 The data source can be either a DataTable or a table from database.

What is DataGrid?

The DataGrid control binds to a single DataSet object. The DataSet object of the

"DataGrid Application" is initially populated from a database using an DataAdapter object.

27

What is repeater?

 Repeater control is used to show a repeated list of items from data source like data

table, database, xml file, list etc.

 A Repeater is a Data-bound control.

 Data-bound controls are container controls.

 It creates a link between the Data Source and the presentation UI to display the data.

The repeater control is used to display a repeated list of items.

 Repeater control provides us a table layout.

 Repeater is the fastest control in data controls available in Asp.Net. So, we can say

performance of repeater control is far better than other data control like GridView.

There are different types of template exists in Repeater.

Header Template

 It renders on the top of the control and show the header data.

Footer Template

 It renders on the bottom of the control and use to show the footer data like paging.

Item Template

 It is main template which is used to display the data from database, xml, list and data

table.

Alternating Item Template

 It is used as like Item Template but It renders once after other data display. Basically

use of alternating item template is providing look and style of alternative rows like

background color, font etc.

Separator Template

 It renders after each item. For example a line after every record,

DataList and DataGrid and Repeater

 DataList and GridView and Repeater are Data-bound controls that bound to a data

source control like SqlDataSource, LinqDataSource to display and modify data in

your Asp.Net web application.

 Data-bound controls are composite controls that contains others Asp.Net controls like

as Label, TextBox, DropdownList etc. into a single layout. In this article, I am going

to expose the difference among these three.

28

Difference between DataList and Repeater

DataList Repeater

Rendered as Table. Template driven.

Automatically generates columns from the

data source.

This features is not supported.

Selection of row is supported. Selection of row is not supported.

Editing of contents is supported. Editing of contents is not supported.

You can arrange data items horizontally or

vertically in DataList by using property

RepeatDirection.

This features is not supported.

Performance is slow as compared to

Repeater

This is very light weight and fast data

control among all the data control.

Difference between GridView and Repeater

GridView Repeater

It was introduced with Asp.Net 2.0. It was introduced with Asp.Net 1.0

Rendered as Table. Template driven.

Automatically generates columns from the

data source.

This features is not supported.

Selection of row is supported. Selection of row is not supported.

Editing of contents is supported. Editing of contents is not supported.

Built-in Paging and Sorting is provided. You need to write custom code.

Supports auto format or style features. This has no this features.

Performance is very slow as compared to

Repeater.

This is very light weight and fast data control

among all the data control.

Difference between GridView and DataList

GridView DataList

It was introduced with Asp.Net 2.0. It was introduced with Asp.Net 1.0.

Built-in Paging and Sorting is provided. You need to write custom code.

Built-in supports for Update and Delete

operations.

Need to write code for implementing Update

and Delete operations.

Supports auto format or style features. This features is not supported.

RepeatDirection property is not supported. You can arrange data items horizontally or

vertically in DataList by using property

RepeatDirection.

Doesn’t support customizable row separator.

Supports customizable row separator by

using SeparatorTemplate.

Performance is slow as compared to

DataList.

Performance is fast is compared to

GridView.

29

Files

 Reading and writing with streams

 The .NET supports to create simple “flat” files in text or binary format.

 Unlike a database these files does not have any internal structure.

Text files

We can write to and read from from file using the special classes called stream writer

and stream reader. The File class also support to read or write into a file.

Dim wr as StreamWriter

wr=File.CreateText(“D:\ourFile.txt”)

we can add information to the same file using WriteLine() method.

wr.WriteLine(“This file generated by us”)

wr.WriteLine(45)

wr.close()

Output

To read the file, StreamReader class support by ReadLine() method.

Dim rr As StreamReader = File.OpenText(“C:\ourFile.txt”)

Dim InputS tring As String

InputString = rr.ReadLine() ‘This file generated by us

InputString = rr.ReadLine() ‘45

30

XML

XML classes supports communication between the applications or components.

.NET provides five namespace - System.Xml, System.Xml.Schema,

System.Xml.Serialization, System.Xml.XPath, and System.Xml.Xsl to support XML classes.

The System.Xml namespace contains major XML classes. This namespace contains many

classes to read and write XML documents. In this article, we are going to concentrate on

reader and write class. These reader and writer classes are used to read and write XMl

documents. These classes are - XmlReader, XmlTextReader, XmlValidatingReader,

XmlNodeReader, XmlWriter, and XmlTextWriter. As you can see there are four reader and

two writer classes.

Reading XML Documents

XmlTextReader textReader = new XmlTextReader("C:\\books.xml");

Writing XML Documents

// Create a new file in C:\\ dir
XmlTextWriter textWriter = new XmlTextWriter("C:\\myXmFile.xml", null);
// Opens the document
textWriter.WriteStartDocument();
// Write comments
textWriter.WriteComment("First Comment XmlTextWriter Sample Example");
textWriter.WriteComment("myXmlFile.xml in root dir");
// Write first element
textWriter.WriteStartElement("Student");
textWriter.WriteStartElement("r", "RECORD", "urn:record");

There are other classes to create an XML document, write and read.

Program to create an XML document and write its contents to the XML document.

using System;
using System.Xml;
using System.Data;
using System.Data.OleDb;
namespace ReadingXML2 {
class Class1 {
static void Main(string[] args) {
// create a connection
OleDbConnection con = new OleDbConnection();
con.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\\Northwind.mdb";
// create a data adapter
OleDbDataAdapter da = new OleDbDataAdapter("Select * from Customers", con);
// create a new dataset
DataSet ds = new DataSet();
// fill dataset
da.Fill(ds, "Customers");
// write dataset contents to an xml file by calling WriteXml method
ds.WriteXml("C:\\OutputXML.xml");
}
}
}

31

Due to Coronoa outbreak during the lockdown period (March 24-April 21, 2020), I have

collected the study materials for assisting students from the websites listed below.

Further, I acknowledge the sources thereto.

https://www.javatpoint.com/ado-net-command

https://www.c-sharpcorner.com/UploadFile/d0a1c8/database-programming-with-ado-net/

https://raima.com/architecture/

http://asp.net-informations.com/ado.net/ado-architecture.htm

http://www.programcall.com/9/aspnet/aspnet-validation-controls.aspx

https://www.go4expert.com/articles/data-binding-aspnet-t34155/

https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-

gridview

https://www.geeksforgeeks.org/c-sharp-delegates/

https://www.tutorialspoint.com/csharp/

https://www.javatpoint.com/ado-net-command
https://www.c-sharpcorner.com/UploadFile/d0a1c8/database-programming-with-ado-net/
https://raima.com/architecture/
http://asp.net-informations.com/ado.net/ado-architecture.htm
http://www.programcall.com/9/aspnet/aspnet-validation-controls.aspx
https://www.go4expert.com/articles/data-binding-aspnet-t34155/
https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-gridview
https://www.dotnettricks.com/learn/aspnet/difference-between-repeater-and-datalist-and-gridview
https://www.geeksforgeeks.org/c-sharp-delegates/

