
ClassicalEncryptionTechniquesinNetworkSecurity

NetworkSecurityClassicalEncryptionTechniques

Basicterminology

•Plaintext:originalmessagetobeencrypted

•Ciphertext:theencryptedmessage

•Encipheringorencryption:theprocessofconvertingplaintextintociphertext

•Encryptionalgorithm:

performsencryption

–Twoinputs:

aplaintextandasecretkey4

•Decipheringordecryption:recoveringplaintextfromciphertext

•Decryptionalgorithm:performsdecryption–Twoinputs:ciphertextandsecretkey

•Secretkey:samekeyusedforencryptionanddecryption–Alsoreferredtoasa

symmetrickey5Basicterminology

 •Cipherorcryptographicsystem:aschemeforencryptionanddecryption

•Cryptography:scienceofstudyingciphers

•Cryptanalysis:scienceofstudyingattacksagainstcryptographicsystems

•Cryptology:cryptography+cryptanalysis6Basicterminology

Ciphers

•Symmetriccipher:samekeyusedforencryptionanddecryption

–Blockcipher:encryptsablockofplaintextatatime(typically64or128bits)

–Streamcipher:encryptsdataonebitoronebyteatatime

•Asymmetriccipher:differentkeysusedforencryptionanddecryption7

SymmetricCipherModelSymmetricCipherModel

•Asymmetricencryptionschemehasfiveingredients:

–Plaintext

–Encryptionalgorithm

–SecretKey

–Ciphertext

–Decryptionalgorithm

• Securitydependsonthesecrecyofthekey,notthesecrecyofthealgorithm

• SymmetricCipherModel9

 SymmetricEncryption•orconventional/secret-key/single-key•senderandrecipient

shareacommonkey•allclassicalencryptionalgorithmsaresymmetric•Theonlytypeof

cipherspriortotheinventionofasymmetric-keyciphersin1970’s•byfarmostwidely

used10

 SymmetricEncryption•Mathematically:Y=EK(X)orY=E(K,X)X=DK(Y)orX=D(K,Y)•X=

plaintext•Y=ciphertext•K=secretkey•E=encryptionalgorithm•D=decryption

algorithm•BothEandDareknowntopublic11

SymmetricEncryption

•tworequirementsforsecureuseofsymmetricencryption:

–astrongencryptionalgorithm

–asecretkeyknownonlytosender/receiver

•assumeencryptionalgorithmisknown

•impliesasecurechanneltodistributekey

ModelofConventionalModelofConventionalCryptosystemCryptosystem

 Cryptography

•Cryptographicsystemsarecharacterizedalongthreeindependentdimensions:–typeof

encryptionoperationsused

•substitution

•Transposition

•product–numberofkeysused

•single-keyorprivate

•two-keyorpublic

Cryptography–wayinwhichplaintextisprocessed

•block

•stream

 Cryptanalysis

•Objective:torecovertheplaintextofaciphertextor,moretypically,torecoverthe

secretkey.

•Kerkhoff’sprinciple:theadversaryknowsalldetailsaboutacryptosystemexceptthe

secretkey.

•Twogeneralapproaches:

–brute-forceattack–

non-brute-forceattack

. Brute-ForceAttack

•Tryeverykeytodeciphertheciphertext.

•Onaverage,needtotryhalfofallpossiblekeys

•TimeneededproportionaltosizeofkeyspaceKeySize(bits)NumberofAlternativeKeys

Timerequiredat1decryption/µsTimerequiredat106decryptions/µs32232=4.3×109

231µs=35.8minutes2.15milliseconds56256=7.2×1016255µs=1142years10.01

hours1282128=3.4×10382127µs=5.4×1024years5.4×1018years1682168=3.7×

10502167µs=5.9×1036years5.9×1030years26characters(permutation)26!=4×

10262×1026µs=6.4×1012years6.4×106years17

CryptanalyticAttacksAttackTypeKnowledgeKnowntoCryptanalystCiphertextonly

•Encryptionalgorithm

•CiphertexttobedecodedKnownPlaintext

•Encryptionalgorithm

•Ciphertexttobedecoded

•Oneormoreplaintext-ciphertextpairsformedwiththesamesecretkeyChosen

Plaintext

•Encryptionalgorithm

•Ciphertexttobedecoded

•Plaintextmessagechosenbycryptanalyst,togetherwithitscorrespondingciphertext

generatedwiththesamesecretkeyChosenCiphertext

•Encryptionalgorithm

•Ciphertexttobedecoded

•Purportedciphertextchosenbycryptanalyst,togetherwithitscorrespondingdecrypted

plaintextgeneratedwiththesecretkeyChosentext

•Encryptionalgorithm

•Ciphertexttobedecoded

•Plaintextmessagechosenbycryptanalyst,togetherwithitscorrespondingciphertext

generatedwiththesecretkey

•Purportedciphertextchosenbycryptanalyst,togetherwithitscorrespondingdecrypted

plaintextgeneratedwiththesecretkey

CryptanalyticAttacks

•Maybeclassifiedbyhowmuchinformationneededbytheattacker:–Ciphertext-only

attack–Known-plaintextattack–Chosen-plaintextattack–Chosen-ciphertextattack–

Chosentext

Ciphertext-onlyattack

•Given:aciphertextc

•Q:whatistheplaintextm?

•Anencryptionschemeiscompletelyinsecureifitcannotresistciphertext-onlyattacks.

 Known-plaintextattack•Given:(m1,c1),(m2,c2),…,(mk,ck)andanewciphertextc.•Q:

whatistheplaintextofc?•Q:whatisthesecretkeyinuse?

Chosen-plaintextattack•Given:(m1,c1),(m2,c2),…,(mk,ck),wherem1,m2,…,mkarechosenby

theadversary;andanewciphertextc.•Q:whatistheplaintextofc,orwhatisthesecretkey?

 ComputationalSecurity•Anencryptionschemeiscomputationallysecureif–Thecost

ofbreakingthecipherexceedsthevalueofinformation–Thetimerequiredtobreakthe

cipherexceedsthelifetimeofinformation

UnconditionalSecurity•Nomatterhowmuchcomputerpowerortimeisavailable,the

ciphercannotbebrokensincetheciphertextprovidesinsufficientinformationtouniquely

determinethecorrespondingplaintext•Allthecipherswehaveexaminedarenot

unconditionallysecure.

ClassicalCiphers

•Plaintextisviewedasasequenceofelements(e.g.,bitsorcharacters)

•Substitutioncipher:replacingeachelementoftheplaintextwithanotherelement.

•Transposition(orpermutation)cipher:rearrangingtheorderoftheelementsofthe

plaintext.

•Productcipher:usingmultiplestagesofsubstitutionsandtranspositions25

SubstitutionTechniques

•CaeserCipher

•MonoalphabeticCiphers

•PlayfairCipher

•PolyalphabeticCiphers

•One-TimePAD

CaesarCipher

•Earliestknownsubstitutioncipher•InventedbyJuliusCaesar•Eachletterisreplaced

bytheletterthreepositionsfurtherdownthealphabet.•Plain:abcdefghijklmnop

qrstuvwxyzCipher:DEFGHIJKLMNOPQRSTUVWXYZABC•Example:ohio

stateRKLRVWDWH27

 CaesarCipher

•Mathematically,mapletterstonumbers:a,b,c,...,x,y,z0,1,2,...,23,24,25•Then

thegeneralCaesarcipheris:c=EK(p)=(p+k)mod26p=DK(c)=(c–k)mod26•Canbe

generalizedwithanyalphabet.28

CryptanalysisofCaesarCipher•Keyspace:{0,1,...,25}•Vulnerabletobrute-force

attacks.•E.g.,breakciphertext"UNOUYZGZK“•Needtorecognizeitwhenhavethe

plaintext29

 MonoalphabeticSubstitutionCipher•Shufflethelettersandmapeachplaintextlettertoa

differentrandomciphertextletter:Plainletters:abcdefghijklmnopqrstuvwxyzCipherletters:

DKVQFIBJWPESCXHTMYAUOLRGZNPlaintext:ifwewishtoreplacelettersCiphertext:

WIRFRWAJUHYFTSDVFSFUUFYA•Whatdoesakeylooklike?30

 MonoalphabeticCipherSecurity•Nowwehaveatotalof26!keys.•Withsomanykeys,itis

secureagainstbrute-forceattacks.•Butnotsecureagainstsomecryptanalyticattacks.•

Problemislanguagecharacteristics.31

 LanguageStatisticsandCryptanalysis•Humanlanguagesarenotrandom.•Lettersarenot

equallyfrequentlyused.•InEnglish,Eisbyfarthemostcommonletter,followedbyT,R,N,I,

O,A,S.•OtherletterslikeZ,J,K,Q,Xarefairlyrare.•Therearetablesofsingle,double&

tripleletterfrequenciesforvariouslanguages32

 EnglishLetterFrequencies33

 Statisticsfordouble&tripleletters•Doubleletters:thheaninerreeson,…•Tripleletters:

theandentiontiofornde,…34

 UseinCryptanalysis•Keyconcept:monoalphabeticsubstitutiondoesnotchangerelative

letterfrequencies•Toattack,we–calculateletterfrequenciesforciphertext–comparethis

distributionagainsttheknownone35

 ExampleCryptanalysis•Givenciphertext:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ•Countrelativeletterfrequencies(see

nextpage)•Guess{P,Z}={e,t}•Ofdoubleletters,ZWhashighestfrequency,soguessZW=

thandhenceZWP=the•Proceedingwithtrialanderrorfinallyget:itwasdisclosedyesterday

thatseveralinformalbutdirectcontactshavebeenmadewithpoliticalrepresentativesofthe

vietconginmoscow36

 LetterfrequenciesinciphertextP13.33H5.83F3.33B1.67C0.00Z11.67D5.00W3.33G

1.67K0.00S8.33E5.00Q2.50Y1.67L0.00U8.33V4.17T2.50I0.83N0.00O7.50X4.17A

1.67J0.83R0.00M6.6737

 PlayfairCipher

•Noteventhelargenumberofkeysinamonoalphabeticcipherprovidessecurity.•

•Oneapproachtoimprovingsecurityistoencryptmultiplelettersatatime.

•ThePlayfairCipheristhebestknownsuchcipher.

•InventedbyCharlesWheatstonein1854,butnamedafterhisfriendBaronPlayfair.38

 PlayfairKeyMatrix•Usea5x5matrix.•Fillinlettersofthekey(w/oduplicates).•Fillthe

restofmatrixwithotherletters.•E.g.,key=MONARCHY.MMOONNAARRCCHHYYBBDD

EEFFGGI/JI/JKKLLPPQQSSTTUUVVWWXXZZ39

 EncryptingandDecryptingPlaintextisencryptedtwolettersatatime.1.Ifapairisa

repeatedletter,insertfillerlike'X’.2.Ifbothlettersfallinthesamerow,replaceeachwiththe

lettertoitsright(circularly).3.Ifbothlettersfallinthesamecolumn,replaceeachwiththe

theletterbelowit(circularly).4.Otherwise,eachletterisreplacedbytheletterinthesame

rowbutinthecolumnoftheotherletterofthepair.40

 SecurityofPlayfairCipher•Equivalenttoamonoalphabeticcipherwithanalphabetof26x

26=676characters.•Securityismuchimprovedoverthesimplemonoalphabeticcipher.•

Waswidelyusedformanydecades–eg.byUS&BritishmilitaryinWW1andearlyWW2•

Oncethoughttobeunbreakable.•Actually,itcanbebroken,becauseitstillleavessome

structureofplaintextintact.41

 PolyalphabeticSubstitutionCiphers•Asequenceofmonoalphabeticciphers(M1,M2,M3,...,

Mk)isusedinturntoencryptletters.•Akeydetermineswhichsequenceofcipherstouse.•

Eachplaintextletterhasmultiplecorrespondingciphertextletters.•Thismakescryptanalysis

hardersincetheletterfrequencydistributionwillbeflatter.42

 VigenèreCipher

•Simplestpolyalphabeticsubstitutioncipher•ConsiderthesetofallCaesarciphers:{Ca,Cb,

Cc,...,Cz}•Key:e.g.security•EncrypteachletterusingCs,Ce,Cc,Cu,Cr,Ci,Ct,Cyinturn.•

RepeatfromstartafterCy.•Decryptionsimplyworksinreverse.43

 ExampleofVigenèreCipher•Keyword:deceptivekey:deceptivedeceptivedeceptiveplaintext:

wearediscoveredsaveyourselfciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ44

 SecurityofVigenèreCiphers•Therearemultiple(howmany?)ciphertextletters

correspondingtoeachplaintextletter.•So,letterfrequenciesareobscuredbutnottotally

lost.•TobreakVigenerecipher:1.Trytoguessthekeylength.How?2.IfkeylengthisN,the

cipherconsistsofNCaesarciphers.Plaintextlettersatpositionsk,N+k,2N+k,3N+k,etc.,are

encodedbythesamecipher.3.Attackeachindividualcipherasbefore.45

 GuessingtheKeyLength•Mainidea:Plaintextwordsseparatedbymultiplesofthekey

lengthareencodedinthesameway.•Inourexample,ifplaintext=“…thexxxxxxthe…”then

“the”willbeencryptedtothesameciphertextwords.•Solookattheciphertextforrepeated

patterns.•E.g.repeated“VTW”inthepreviousexamplesuggestsakeylengthof3or9:

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ•Ofcourse,therepetitioncouldbea

randomfluke.46

TranspositionCiphers

 TranspositionCiphers•Alsocalledpermutationciphers.•Shuffletheplaintext,without

alteringtheactuallettersused.•Example:RowTranspositionCiphers48

 RowTranspositionCiphers•Plaintextiswrittenrowbyrowinarectangle.•Ciphertext:write

outthecolumnsinanorderspecifiedbyakey.Key:3421567Plaintext:Ciphertext:

TTNAAPTMTSUOAODWCOIXKNLYPETZattackpostponeduntiltwoamxyz49

ProductCiphers

•Usesasequenceofsubstitutionsandtranspositions–Hardertobreakthanjust

substitutionsortranspositions•Thisisabridgefromclassicaltomodernciphers.

CHAPTER 3

PROGRAM SECURITY:

In this chapter:programming errors with security
implications—buffer overflows, incomplete access controlmalicious
code—viruses, worms, trojan horsesprogram development controls
against malicious code and vulnerabilities—software engineering
principles and practicescontrols to protect against program flaws in
execution—operating system support and administrative controls
 in the first two chapters, we learned about the need for
computer security and we studied encryption, a fundamental tool in
implementing many kinds of security controls. In this chapter, we
begin to study how to apply security in computing. We start with
why we need security at the program level and how we can achieve
it.In one form or another, protecting programs is at the heart of
computer security. So we need to ask two important questions:
 how do we keep programs free from flaws?how do we protect
computing resources against programs that contain flaws?In later
chapters, we will examine particular types of programs—including
operating systems, database management systems, and network
implementations—and the specific kinds of security issues that are
raised by the nature of their design and functionality. In this
chapter, we address more general themes, most of which carry
forward to these special-purpose systems. Thus, this chapter not
only lays the groundwork for future chapters but a lso is significant
on its own.This chapter deals with the writing of programs. It
defers to a later chapter what may be a much larger issue in
program security: trust. The trust problem can be framed as
follows: presented with a finished program, for example, a
commercial software package, how can you tell how secure it is or
how to use it in its most secure way? In part the answer to these
questions is independent, third-party evaluations, presented for
operating systems (but applicable to other programs, as well) in
chapter 5. The reporting and fixing of discovered flaws is discussed
in chapter 9, as are liability and software warranties. For now,
however, the unfortunate state of commercial software
development is largely a case of trust your source, and buyer
beware.

3.1 SECURE PROGRAMS

Consider what we mean when we say that a program is “secure.” We
saw in Chapter 1 that security implies some degree of trust that the program
enforces expected confidentiality, integrity, and availability. From the point
of view of a program or a programmer, how can we look at a software
component or code fragment and assess its security? This question is, of
course, similar to the problem of assessing software quality in general. One
way to assess security or quality is to ask people to name the characteristics
of software that contribute to its overall security. However, we are likely to
get different answers from different people. This difference occurs because
the importance of the characteristics depends on who is analyzing the
software. For example, one person may decide that code is secure because it
takes too long to break through its security controls. And someone else may
decide code is secure if it has run for a period of time with no apparent
failures. But a third person may decide that any potential fault in meeting
security requirements makes code insecure.

An assessment of security can also be influenced by someone's general
perspective on software quality. For example, if your manager's idea of
quality is conformance to specifications, then she might consider the code
secure if it meets security requirements, whether or not the requirements
are complete or correct. This security view played a role when a major
computer manufacturer delivered all its machines with keyed locks, since a
keyed lock was written in the requirements. But the machines were not
secure, because all locks were configured to use the same key! Thus,
another view of security is fitness for purpose; in this view, the
manufacturer clearly had room for improvement.

In general, practitioners often look at quantity and types of faults for
evidence of a product's quality (or lack of it). For example, developers track
the number of faults found in requirements, design, and code inspections
and use them as indicators of the likely quality of the final product. Sidebar
3-1 explains the importance of separating the faults—the causes of
problems—from the failures—the effects of the faults.

Fixing Faults

One approach to judging quality in security has been fixing faults. You
might argue that a module in which 100 faults were discovered and fixed is
better than another in which only 20 faults were discovered and fixed,

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec1.html#ch03sb01
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec1.html#ch03sb01

suggesting that more rigorous analysis and testing had led to the finding of
the larger number of faults. Au contraire, challenges your friend: a piece of
software with 100 discovered faults is inherently full of problems and could
clearly have hundreds more waiting to appear. Your friend's opinion is
confirmed by the software testing literature; software that has many faults
early on is likely to have many others still waiting to be found.

Early work in computer security was based on the paradigm of “penetrate
and patch,” in which analysts searched for and repaired faults. Often, a top-
quality “tiger team” would be convened to test a system's security by
attempting to cause it to fail. The test was considered to be a “proof” of
security; if the system withstood the attacks, it was considered secure.
Unfortunately, far too often the proof became a counterexample, in which
not just one but several serious security problems were uncovered. The
problem discovery in turn led to a rapid effort to “patch” the system to
repair or restore the security. (See Schell's analysis in [SCH79].) However,
the patch efforts were largely useless, making the system less secure rather
than more secure because they frequently introduced new faults. There are
three reasons why.

• The pressure to repair a specific problem encouraged a narrow focus on the

fault itself and not on its context. In particular, the analysts paid attention to

the immediate cause of the failure and not to the underlying design or

requirements faults.

• The fault often had nonobvious side effects in places other than the

immediate area of the fault.

• The fault could not be fixed properly because system functionality or

performance would suffer as a consequence.

Unexpected Behavior

The inadequacies of penetrate-and-patch led researchers to seek a better
way to be confident that code meets its security requirements. One way to
do that is to compare the requirements with the behavior. That is, to
understand program security, we can examine programs to see whether
they behave as their designers intended or users expected. We call such
unexpected behavior a program security flaw; it is inappropriate program
behavior caused by a program vulnerability. Unfortunately, the terminology
in the computer security field is not consistent with the IEEE standard
described in Sidebar 3-1; there is no direct mapping of the terms
“vulnerability” and “flaw” into the characterization of faults and failures. A

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry631
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec1.html#ch03sb01

flaw can be either a fault or failure, and a vulnerability usually describes a
class of flaws, such as a buffer overflow. In spite of the inconsistency, it is
important for us to remember that we must view vulnerabilities and flaws
from two perspectives, cause and effect, so that we see what fault caused
the problem and what failure (if any) is visible to the user. For example, a
Trojan horse may have been injected in a piece of code—a flaw exploiting a
vulnerability—but the user may not yet have seen the Trojan horse's
malicious behavior. Thus, we must address program security flaws from
inside and outside, to find causes not only of existing failures but also of
incipient ones. Moreover, it is not enough to identify these problems. We
must also determine how to prevent harm caused by possible flaws.

Program security flaws can derive from any kind of software fault. That is,
they cover everything from a misunderstanding of program requirements to
a one-character error in coding or even typing. The flaws can result from
problems in a single code component or from the failure of several
programs or program pieces to interact compatibly through a shared
interface. The security flaws can reflect code that was intentionally
designed or coded to be malicious, or code that was simply developed in a
sloppy or misguided way. Thus, it makes sense to divide program flaws into
two separate logical categories: inadvertent human errors versus malicious,
intentionally induced flaws.

Sidebar 3-1 IEEE Terminology for
Quality

Frequently, we talk about “bugs” in software, a term that can mean

many different things, depending on context. A “bug” can be a mistake

in interpreting a requirement, a syntax error in a piece of code, or the

(as-yet-unknown) cause of a system crash. The IEEE has suggested a

standard terminology (in IEEE Standard 729) for describing “bugs” in

our software products [IEEE83].

When a human makes a mistake, called an error, in performing some

software activity, the error may lead to a fault, or an incorrect step,

command, process, or data definition in a computer program. For

example, a designer may misunderstand a requirement and create a

design that does not match the actual intent of the requirements analyst

and the user. This design fault is an encoding of the error, and it can

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry347

lead to other faults, such as incorrect code and an incorrect description

in a user manual. Thus, a single error can generate many faults, and a

fault can reside in any development or maintenance product.

A failure is a departure from the system's required behavior. It can be

discovered before or after system delivery, during testing, or during

operation and maintenance. Since the requirements documents can

contain faults, a failure indicates that the system is not performing as

required, even though it may be performing as specified.

Thus, a fault is an inside view of the system, as seen by the eyes of the

developers, whereas a failure is an outside view: a problem that the user

sees. Not every fault corresponds to a failure; for example, if faulty

code is never executed or a particular state is never entered, then the

fault will never cause the code to fail.

These categories help us understand some ways to prevent the inadvertent
and intentional insertion of flaws into future code, but we still have to
address their effects, regardless of intention. That is, in the words of Sancho
Panza in Man of La Mancha, “it doesn't matter whether the stone hits the
pitcher or the pitcher hits the stone, it's going to be bad for the pitcher.” An
inadvertent error can cause just as much harm to users and their
organizations as can an intentionally induced flaw. Furthermore, a system
attack often exploits an unintentional security flaw to perform intentional
damage. From reading the popular press (see Sidebar 3-2), you might
conclude that intentional security incidents (called cyber attacks) are the
biggest security threat today. In fact, plain, unintentional, human errors
cause much more damage.

Regrettably, we do not have techniques to eliminate or address all program
security flaws. There are two reasons for this distressing situation.

1. Program controls apply at the level of the individual program and

programmer. When we test a system, we try to make sure that the

functionality prescribed in the requirements is implemented in the code. That

is, we take a “should do” checklist and verify that the code does what it is

supposed to do. However, security is also about preventing certain actions: a

“shouldn't do” list. It is almost impossible to ensure that a program does

precisely what its designer or user in tended, and nothing more. Regardless

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec1.html#ch03sb02

of designer or programmer intent, in a large and complex system, the

number of pieces that have to fit together properly interact in an

unmanageably large number of ways. We are forced to examine and test the

code for typical or likely cases; we cannot exhaustively test every state and

data combination to verify a system's behavior. So sheer size and complexity

preclude total flaw prevention or mediation. Programmers intending to

implant malicious code can take advantage of this incompleteness and hide

some flaws successfully, despite our best efforts.

Sidebar 3-2 Dramatic Increase in Cyber

Attacks

Carnegie Mellon University's Computer Emergency Response Team

(CERT) tracks the number and kinds of vulnerabilities and cyber

attacks reported worldwide. Part of CERT's mission is to warn users

and developers of new problems and also to provide information on

ways to fix them. According to the CERT coordination center, fewer

than 200 known vulnerabilities were reported in 1995, and that number

ranged between 200 and 400 from 1996 to 1999. But the number

increased dramatically in 2000, with over 1,000 known vulnerabilities

in 2000, almost 2,420 in 2001, and an expectation of at least 3,750 in

2002 (over 1,000 in the first quarter of 2002).

How does that translate into cyber attacks? The CERT reported 3,734

security incidents in 1998, 9,859 in 1999, 21,756 in 2000, and 52,658 in

2001. But in the first quarter of 2002 there were already 26,829

incidents, so it seems as if the exponential growth rate will continue

[HOU02]. Moreover, as of June 2002, Symantec's Norton antivirus

software checked for 61,181 known virus patterns, and McAfee's

product could detect over 50,000 [BER01]. The Computer Security

Institute and the FBI cooperate to take an annual survey of

approximately 500 large institutions: companies, government

organizations, and educational institutions [CSI02]. Of the respondents,

90 percent detected security breaches, 25 percent identified between

two and five events, and 37 percent reported more than ten. By a

different count, the Internet security firm Riptech reported that the

number of successful Internet attacks was 28 percent higher for

January–June 2002 compared with the previous six-month period

[RIP02].

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry330
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry66
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry148
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry598

A survey of 167 network security personnel revealed that more than 75

percent of government respondents experienced attacks to their

networks; more than half said the attacks were frequent. However, 60

percent of respondents admitted that they could do more to make their

systems more secure; the respondents claimed that they simply lacked

time and staff to address the security issues [BUS01]. In the CSI/FBI

survey, 223, or 44 percent of respondents, could and did quantify their

loss from incidents; their losses totaled over $455,000,000.

It is clearly time to take security seriously, both as users and developers.

2. Programming and software engineering techniques change and evolve far

more rapidly than do computer security techniques. So we often find

ourselves trying to secure last year's technology while software developers

are rapidly adopting today's—and next year's—technology.

Still, the situation is far from bleak. Computer security has much to offer to
program security. By understanding what can go wrong and how to protect
against it, we can devise techniques and tools to secure most computer
applications.

Types of Flaws

To aid our understanding of the problems and their prevention or
correction, we can define categories that distinguish one kind of problem
from another. For example, Landwehr et al. [LAN94] present a taxonomy
of program flaws, dividing them first into intentional and inadvertent flaws.
They further divide intentional flaws into malicious and nonmalicious ones.
In the taxonomy, the inadvertent flaws fall into six categories:

• validation error (incomplete or inconsistent)

• domain error

• serialization and aliasing

• inadequate identification and authentication

• boundary condition violation

• other exploitable logic errors

This list gives us a useful overview of the ways programs can fail to meet
their security requirements. We leave our discussion of the pitfalls of
identification and authentication for Chapter 4, in which we also investigate

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry110
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry430
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch04.html#ch04

separation into execution domains. In this chapter, we address the other
categories, each of which has interesting examples.

3.2. NONMALICIOUS PROGRAM ERRORS

Being human, programmers and other developers make many mistakes,
most of which are unintentional and nonmalicious. Many such errors cause
program malfunctions but do not lead to more serious security
vulnerabilities. However, a few classes of errors have plagued programmers
and security professionals for decades, and there is no reason to believe
they will disappear. In this section we consider three classic error types that
have enabled many recent security breaches. We explain each type, why it is
relevant to security, and how it can be prevented or mitigated.

Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour two liters of
water into a one-liter pitcher: Some water is going to spill out and make a
mess. And in computing, what a mess these errors have made!

Definition

A buffer (or array or string) is a space in which data can be held. A buffer
resides in memory. Because memory is finite, a buffer's capacity is finite.
For this reason, in many programming languages the programmer must
declare the buffer's maximum size so that the compiler can set aside that
amount of space.

Let us look at an example to see how buffer overflows can happen. Suppose
a C language program contains the declaration:

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for each of the
ten elements of the array, sample[0] through sample[9]. Now we execute the
statement:

sample[10] = 'A';

The subscript is out of bounds (that is, it does not fall between 0 and 9), so
we have a problem. The nicest outcome (from a security perspective) is for
the compiler to detect the problem and mark the error during compilation.
However, if the statement were

sample[i] = 'A';

we could not identify the problem until i was set during execution to a too-
big subscript. It would be useful if, during execution, the system produced
an error message warning of a subscript out of bounds. Unfortunately, in
some languages, buffer sizes do not have to be predefined, so there is no
way to detect an out-of-bounds error. More importantly, the code needed to
check each subscript against its potential maximum value takes time and
space during execution, and the resources are applied to catch a problem
that occurs relatively infrequently. Even if the compiler were careful in
analyzing the buffer declaration and use, this same problem can be caused
with pointers, for which there is no reasonable way to define a proper limit.
Thus, some compilers do not generate the code to check for exceeding
bounds.

Let us examine this problem more closely. It is important to recognize that
the potential overflow causes a serious problem only in some instances. The
problem's occurrence depends on what is adjacent to the array sample. For
example, suppose each of the ten elements of the array sample is filled with
the letter A and the erroneous reference uses the letter B, as follows:

for (i=0; i<=9; i++)

 sample[i] = 'A';

sample[10] = 'B'

All program and data elements are in memory during execution, sharing
space with the operating system, other code, and resident routines. So there
are four cases to consider in deciding where the 'B' goes, as shown in Figure
3-1. If the extra character overflows into the user's data space, it simply
overwrites an existing variable value (or it may be written into an as-yet
unused location), perhaps affecting the program's result, but affecting no
other program or data.

Figure 3-1. Places Where a Buffer Can Overflow.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec2.html#ch03fig01
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec2.html#ch03fig01

In the second case, the 'B' goes into the user's program area. If it overlays
an already executed instruction (which will not be executed again), the user
should perceive no effect. If it overlays an instruction that is not yet
executed, the machine will try to execute an instruction with operation code
0x42, the internal code for the character 'B'. If there is no instruction with
operation code 0x42, the system will halt on an illegal instruction
exception. Otherwise, the machine will use subsequent bytes as if they were
the rest of the instruction, with success or failure depending on the
meaning of the contents. Again, only the user is likely to experience an
effect.

The most interesting cases occur when the system owns the space
immediately after the array that overflows. Spilling over into system data or
code areas produces similar results to those for the user's space: computing
with a faulty value or trying to execute an improper operation.

Security Implication

Let us suppose that a malicious person understands the damage that can be
done by a buffer overflow; that is, we are dealing with more than simply a
normal, errant programmer. The malicious programmer looks at the four
cases illustrated in Figure 3-1 and thinks deviously about the last two: What
data values could the attacker insert just after the buffer so as to cause
mischief or damage, and what planned instruction codes could the system
be forced to execute? There are many possible answers, some of which are
more malevolent than others. Here, we present two buffer overflow attacks
that are used frequently. (See [ALE96] for more details.)

First, the attacker may replace code in the system space. Remember that
every program is invoked by the operating system and that the operating
system may run with higher privileges than those of a regular program.
Thus, if the attacker can gain control by masquerading as the operating
system, the attacker can execute many commands in a powerful role.
Therefore, by replacing a few instructions right after returning from his or
her own procedure, the attacker can get control back from the operating
system, possibly with raised privileges. If the buffer overflows into system
code space, the attacker merely inserts overflow data that correspond to the
machine code for instructions.

On the other hand, the attacker may make use of the stack pointer or the
return register. Subprocedures calls are handled with a stack, a data

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec2.html#ch03fig01
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry21

structure in which the most recent item inserted is the next one removed
(last arrived, first served). This structure works well because procedure
calls can be nested, with each return causing control to transfer back to the
immediately preceding routine at its point of execution. Each time a
procedure is called, its parameters, the return address (the address
immediately after its call), and other local values are pushed onto a stack.
An old stack pointer is also pushed onto the stack, and a stack pointer
register is reloaded with the address of these new values. Then, control is
transferred to the subprocedure.

As the subprocedure executes, it fetches parameters that it finds by using
the address pointed to by the stack pointer. Typically, the stack pointer is a
register in the processor. Therefore, by causing an overflow into the stack,
the attacker can change either the old stack pointer (changing the context
for the calling procedure) or the return address (causing control to transfer
where the attacker wants when the subprocedure returns). Changing the
context or return address allows the attacker to redirect execution to a
block of code the attacker wants.

In both these cases, a little experimentation is needed to determine where
the overflow is and how to control it. But the work to be done is relatively
small—probably a day or two for a competent analyst. These buffer
overflows are carefully explained in a paper by Mudge [MUD95] of the
famed l0pht computer security group.

An alternative style of buffer overflow occurs when parameter values are
passed into a routine, especially when the parameters are passed to a web
server on the Internet. Parameters are passed in the URL line, with a syntax
similar to

http://www.somesite.com/subpage/userinput&parm1=(808)555-1212&parm2=2004Jan01

In this example, the page userinput receives two parameters, parm1 with
value (808)555-1212 (perhaps a U.S. telephone number) and parm2 with
value 2004Jan01 (perhaps a date). The web browser on the caller's machine
will accept values from a user who probably completes fields on a form. The
browser encodes those values and transmits them back to the server's web
site.

The attacker might question what the server would do with a really long
telephone number, say, one with 500 or 1000 digits. But, you say, no

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry500

telephone in the world has such a telephone number; that is probably
exactly what the developer thought, so the developer may have allocated 15
or 20 bytes for an expected maximum length telephone number. Will the
program crash with 500 digits? And if it crashes, can it be made to crash in
a predictable and usable way? (For the answer to this question, see
Litchfield's investigation of the Microsoft dialer program [LIT99].) Passing
a very long string to a web server is a slight variation on the classic buffer
overflow, but no less effective.

As noted above, buffer overflows have existed almost as long as higher-level
programming languages with arrays. For a long time they were simply a
minor annoyance to programmers and users, a cause of errors and
sometimes even system crashes. Rather recently, attackers have used them
as vehicles to cause first a system crash and then a controlled failure with a
serious security implication. The large number of security vulnerabilities
based on buffer overflows shows that developers must pay more attention
now to what had previously been thought to be just a minor annoyance.

Incomplete Mediation

Incomplete mediation is another security problem that has been with us for
decades. Attackers are exploiting it to cause security problems.

Definition

Consider the example of the previous section:

http://www.somesite.com/subpage/userinput&parm1=(808)555-1212&parm2=2004Jan01

The two parameters look like a telephone number and a date. Probably the
client's (user's) web browser enters those two values in their specified
format for easy processing on the server's side. What would happen
if parm2 were submitted as 1800Jan01? Or 1800Feb30? Or 2048Min32? Or
1Aardvark2Many?

Something would likely fail. As with buffer overflows, one possibility is that
the system would fail catastrophically, with a routine's failing on a data type
error as it tried to handle a month named “Min” or even a year (like 1800)
which was out of range. Another possibility is that the receiving program
would continue to execute but would generate a very wrong result. (For
example, imagine the amount of interest due today on a billing error with a

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry451

start date of 1 Jan 1800.) Then again, the processing server might have a
default condition, deciding to treat 1Aardvark2Many as 3 July 1947. The
possibilities are endless.

One way to address the potential problems is to try to anticipate them. For
instance, the programmer in the examples above may have written code to
check for correctness on the client's side (that is, the user's browser). The
client program can search for and screen out errors. Or, to prevent the use
of nonsense data, the program can restrict choices only to valid ones. For
example, the program supplying the parameters might have solicited them
by using a drop-down box or choice list from which only the twelve
conventional months would have been possible choices. Similarly, the year
could have been tested to ensure that the value was between 1995 and
2005, and date numbers would have to have been appropriate for the
months in which they occur (no 30th of February, for example). Using
these verification techniques, the programmer may have felt well insulated
from the possible problems a careless or malicious user could cause.

However, the program is still vulnerable. By packing the result into the
return URL, the programmer left these data fields in a place accessible to
(and changeable by) the user. In particular, the user could edit the URL
line, change any parameter values, and resend the line. On the server side,
there is no way for the server to tell if the response line came from the
client's browser or as a result of the user's editing the URL directly. We say
in this case that the data values are not completely mediated: The sensitive
data (namely, the parameter values) are in an exposed, uncontrolled
condition.

Security Implication

Incomplete mediation is easy to exploit, but it has been exercised less often
than buffer overflows. Nevertheless, unchecked data values represent a
serious potential vulnerability.

To demonstrate this flaw's security implications, we use a real example;
only the name of the vendor has been changed to protect the guilty. Things,
Inc., was a very large, international vendor of consumer products, called
Objects. The company was ready to sell its Objects through a web site, using
what appeared to be a standard e-commerce application. The management
at Things decided to let some of its in-house developers produce the web
site so that its customers could order Objects directly from the web.

To accompany the web site, Things developed a complete price list of its
Objects, including pictures, descriptions, and drop-down menus for size,
shape, color, scent, and any other properties. For example, a customer on
the web could choose to buy 20 of part number 555A Objects. If the price of
one such part were $10, the web server would correctly compute the price
of the 20 parts to be $200. Then the customer could decide whether to have
the Objects shipped by boat, by ground transportation, or sent
electronically. If the customer were to choose boat delivery, the customer's
web browser would complete a form with parameters like these:

http://www.things.com/order/final&custID=101&part=555A&qy=20&price=10&ship=bo

at&shipcost=5&total=205

So far, so good; everything in the parameter passage looks correct. But this
procedure leaves the parameter statement open for malicious tampering.
Things should not need to pass the price of the items back to itself as an
input parameter; presumably Things knows how much its Objects cost, and
they are unlikely to change dramatically since the time the price was quoted
a few screens earlier.

A malicious attacker may decide to exploit this peculiarity by supplying
instead the following URL, where the price has been reduced from $205 to
$25:

http://www.things.com/order/final&custID=101&part=555A&qy=20&price=1&ship=boa

t&shipcost=5&total=25

Surprise! It worked. The attacker could have ordered Objects from Things
in any quantity at any price. And yes, this code was running on the web site
for a while before the problem was detected. From a security perspective,
the most serious concern about this flaw was the length of time that it could
have run undetected. Had the whole world suddenly made a rush to
Things's web site and bought Objects at a fraction of their price, Things
probably would have noticed. But Things is large enough that it would
never have detected a few customers a day choosing prices that were similar
to (but smaller than) the real price, say 30 percent off. The e-commerce
division would have shown a slightly smaller profit than other divisions, but
the difference probably would not have been enough to raise anyone's
eyebrows; the vulnerability could have gone unnoticed for years.
Fortunately Things hired a consultant to do a routine review of its code, and
the consultant found the error quickly.

This web program design flaw is easy to imagine in other web settings.
Those of us interested in security must ask ourselves how many similar
problems are there in running code today? And how will those
vulnerabilities ever be found?

Time-of-Check to Time-of-Use Errors

The third programming flaw we investigate involves synchronization. To
improve efficiency, modern processors and operating systems usually
change the order in which instructions and procedures are executed. In
particular, instructions that appear to be adjacent may not actually be
executed immediately after each other, either because of intentionally
changed order or because of the effects of other processes in concurrent
execution.

Definition

Access control is a fundamental part of computer security; we want to make
sure that only those who should access an object are allowed that access.
(We explore the access control mechanisms in operating systems in greater
detail in Chapter 4.) Every requested access must be governed by an access
policy stating who is allowed access to what; then the request must be
mediated by an access policy enforcement agent. But an incomplete
mediation problem occurs when access is not checked universally.
The time-of-check to time-of-use (TOCTTOU) flaw concerns mediation that
is performed with a “bait and switch” in the middle. It is also known as a
serialization or synchronization flaw.

To understand the nature of this flaw, consider a person's buying a
sculpture that costs $100. The buyer removes five $20 bills from a wallet,
carefully counts them in front of the seller, and lays them on the table. Then
the seller turns around to write a receipt. While the seller's back is turned,
the buyer takes back one $20 bill. When the seller turns around, the buyer
hands over the stack of bills, takes the receipt, and leaves with the
sculpture. Between the time when the security was checked (counting the
bills) and the access (exchanging the sculpture for the bills), a condition
changed: what was checked is no longer valid when the object (that is, the
sculpture) is accessed.

A similar situation can occur with computing systems. Suppose a request to
access a file were presented as a data structure, with the name of the file

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch04.html#ch04

and the mode of access presented in the structure. An example of such a
structure is shown in Figure 3-2.

Figure 3-2. Data Structure for File Access.

The data structure is essentially a “work ticket,” requiring a stamp of
authorization; once authorized, it will be put on a queue of things to be
done. Normally the access control mediator receives the data structure,
determines whether the access should be allowed, and either rejects the
access and stops or allows the access and forwards the data structure to the
file handler for processing.

To carry out this authorization sequence, the access control mediator would
have to look up the file name (and the user identity and any other relevant
parameters) in tables. The mediator could compare the names in the table
to the file name in the data structure to determine whether access is
appropriate. More likely, the mediator would copy the file name into its
own local storage area and compare from there. Comparing from the copy
leaves the data structure in the user's area, under the user's control.

It is at this point that the incomplete mediation flaw can be exploited.
While the mediator is checking access rights for the file my_file, the user
could change the file name descriptor to your_file, the value shown
in Figure 3-3. Having read the work ticket once, the mediator would not be
expected to reread the ticket before approving it; the mediator would
approve the access and send the now-modified descriptor to the file
handler.

Figure 3-3. Modified Data.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec2.html#ch03fig02
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec2.html#ch03fig03

The problem is called a time-of-check to time-of-use flaw because it
exploits the delay between the two times. That is, between the time the
access was checked and the time the result of the check was used, a change
occurred, invalidating the result of the check.

Security Implication

The security implication here is pretty clear: Checking one action and
performing another is an example of ineffective access control. We must be
wary whenever there is a time lag, making sure that there is no way to
corrupt the check's results during that interval.

Fortunately, there are ways to prevent exploitation of the time lag. One way
to do so is to use digital signatures and certificates. As described in Chapter
2, a digital signature is a sequence of bits applied with public key
cryptography, so that many people—using a public key—can verify the
authenticity of the bits, but only one person—using the corresponding
private key—could have created them. In this case, the time of check is
when the person signs, and the time of use is when anyone verifies the
signature. Suppose the signer's private key is disclosed some time before its
time of use. In that case, we do not know for sure that the signer did indeed
“sign” the digital signature; it might have been a malicious attacker acting
with the private key of the signer. To counter this vulnerability, a public key
cryptographic infrastructure includes a mechanism called a key revocation
list, for reporting a revoked public key—one that had been disclosed, was
feared disclosed or lost, became inoperative, or for any other reason should
no longer be taken as valid. The recipient must check the key revocation list
before accepting a digital signature as valid.

Combinations of Nonmalicious Program Flaws

These three vulnerabilities are bad enough when each is considered on its
own. But perhaps the worst aspect of all three flaws is that they can be used
together, as one step in a multistep attack. An attacker may not be content
with causing a buffer overflow. Instead the attacker may begin a three-
pronged attack by using a buffer overflow to disrupt all execution of
arbitrary code on a machine. At the same time, the attacker may exploit a
time-of-check to time-of-use flaw to add a new user ID to the system. The

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch02.html#ch02
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch02.html#ch02

attacker then logs in as the new user and exploits an incomplete mediation
flaw to obtain privileged status, and so forth. The clever attacker uses flaws
as common building blocks to build a complex attack. For this reason, we
must know about and protect against even simple flaws. (See Sidebar 3-
3 for other examples of the effects of unintentional errors.) Unfortunately,
these kinds of flaws are widespread and dangerous. As we will see in the
next section, innocuous-seeming program flaws can be exploited by
malicious attackers to plant intentionally harmful code.

3.3. VIRUSES AND OTHER MALICIOUS CODE

By themselves, programs are seldom security threats. The programs
operate on data, taking action only when data and state changes trigger it.
Much of the work done by a program is invisible to users, so they are not
likely to be aware of any malicious activity. For instance, when was the last
time you saw a bit? Do you know in what form a document file is stored? If
you know a document resides somewhere on a disk, can you find it? Can
you tell if a game program does anything in addition to its expected
interaction with you? Which files are modified by a word processor when
you create a document? Most users cannot answer these questions.
However, since computer data are not usually seen directly by users,
malicious people can make programs serve as vehicles to access and change
data and other programs. Let us look at the possible effects of malicious
code and then examine in detail several kinds of programs that can be used
for interception or modification of data.

Why Worry About Malicious Code?

None of us likes the unexpected, especially in our programs.
Malicious code behaves in unexpected ways, thanks to a malicious
programmer's intention. We think of the malicious code as lurking inside
our system: all or some of a program that we are running or even a nasty
part of a separate program that somehow attaches itself to another (good)
program.

Sidebar 3-3 Nonmalicious Flaws Cause Failures

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03sb03
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03sb03

In 1989 Crocker and Bernstein [CRO89] studied the root causes of the
known catastrophic failures of what was then called the ARPANET, the
predecessor of today's Internet. From its initial deployment in 1969 to
1989, the authors found 17 flaws that either did cause or could have caused
catastrophic failure of the network. They use “catastrophic failure” to mean
a situation that causes the entire network or a significant portion of it to fail
to deliver network service.
The ARPANET was the first network of its sort, in which data are
communicated as independent blocks (called “packets”) that can be sent
along different network routes and are reassembled at the destination. As
might be expected, faults in the novel algorithms for delivery and
reassembly were the source of several failures. Hardware failures were also
significant. But as the network grew from its initial three nodes to dozens
and hundreds, these problems were identified and fixed.
More than ten years after the network was born, three interesting
nonmalicious flaws appeared. The initial implementation had fixed sizes
and positions of the code and data. In 1986, a piece of code was loaded into
memory in a way that overlapped a piece of security code. Only one critical
node had that code configuration, and so only that one node would fail,
which made it difficult to determine the cause of the failure.
In 1987, new code caused Sun computers connected to the network to fail to
communicate. The first explanation was that the developers of the new Sun
code had written the system to function as other manufacturers' code did,
not necessarily as the specification dictated. It was later found that the
developers had optimized the code incorrectly, leaving out some states the
system could reach. But the first explanation—designing to practice, not to
specification—is a common failing.
The last reported failure occurred in 1988. When the system was designed
in 1969, developers specified that the number of connections to a
subnetwork, and consequently the number of entries in a table of
connections, was limited to 347, based on analysis of the expected topology.
After 20 years, people had forgotten the (undocumented) limit, and a 348th
connection was added, which caused the table to overflow and the system to
fail. But the system derived this table gradually by communicating with
neighboring nodes. So when any node's table reached 348 entries, it
crashed, and when restarted it started building its table anew. Thus, nodes
throughout the system would crash seemingly randomly after running
perfectly well for a while (with unfull tables).
None of these flaws were malicious nor could they have been exploited by a
malicious attacker to cause a failure. But they show the importance of the

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry143

analysis, design, documentation, and maintenance steps in development of
a large, long-lived system.

How can such a situation arise? When you last installed a major software
package, such as a word processor, a statistical package, or a plug-in from
the Internet, you ran one command, typically called INSTALL or SETUP.
From there, the installation program took control, creating some files,
writing in other files, deleting data and files, and perhaps renaming a few
that it would change. A few minutes and a quite a few disk accesses later,
you had plenty of new code and data, all set up for you with a minimum of
human intervention. Other than the general descriptions on the box, in the
documentation files, or on the web pages, you had absolutely no idea
exactly what “gifts” you had received. You hoped all you received was good,
and it probably was. The same uncertainty exists when you unknowingly
download an application, such as a Java applet or an ActiveX control, while
viewing a web site. Thousands or even millions of bytes of programs and
data are transferred, and hundreds of modifications may be made to your
existing files, all occurring without your explicit consent or knowledge.

Malicious Code Can Do Much (Harm)

Malicious code can do anything any other program can, such as writing a
message on a computer screen, stopping a running program, generating a
sound, or erasing a stored file. Or malicious code can do nothing at all right
now; it can be planted to lie dormant, undetected, until some event triggers
the code to act. The trigger can be a time or date, an interval (for example,
after 30 minutes), an event (for example, when a particular program is
executed), a condition (for example, when communication occurs on a
modem), a count (for example, the fifth time something happens), some
combination of these, or a random situation. In fact, malicious code can do
different things each time, or nothing most of the time with something
dramatic on occasion. In general, malicious code can act with all the
predictability of a two-year-old child: We know in general what two-year-
olds do, we may even know what a specific two-year-old often does in
certain situations, but two-year-olds have an amazing capacity to do the
unexpected.

Malicious code runs under the user's authority. Thus, malicious code can
touch everything the user can touch, and in the same ways. Users typically
have complete control over their own program code and data files; they can
read, write, modify, append, and even delete them. And well they should.

But malicious code can do the same, without the user's permission or even
knowledge.

Malicious Code Has Been Around a Long Time

The popular literature and press continue to highlight the effects of
malicious code as if it were a relatively recent phenomenon. It is not. Cohen
[COH84] is sometimes credited with the discovery of viruses, but in fact
Cohen gave a name to a phenomenon known long before. For example,
Thompson, in his 1984 Turing Award lecture, “Reflections on Trusting
Trust” [THO84], described code that can be passed by a compiler. In that
lecture, he refers to an earlier Air Force document, the Multics security
evaluation [KAR74, KAR02]. In fact, references to virus behavior go back at
least to 1970. Ware's 1970 study (publicly released in 1979 [WAR79]) and
Anderson's planning study for the U.S. Air Force [AND72] (to which Schell
also refers) still accurately describe threats, vulnerabilities, and program
security flaws, especially intentional ones. What is new about malicious
code is the number of distinct instances and copies that have appeared.

So malicious code is still around, and its effects are more pervasive. It is
important for us to learn what it looks like and how it works, so that we can
take steps to prevent it from doing damage or at least mediate its effects.
How can malicious code take control of a system? How can it lodge in a
system? How does malicious code spread? How can it be recognized? How
can it be detected? How can it be stopped? How can it be prevented? We
address these questions in the following sections.

Kinds of Malicious Code

Malicious code or a rogue program is the general name for unanticipated or
undesired effects in programs or program parts, caused by an agent intent
on damage. This definition eliminates unintentional errors, although they
can also have a serious negative effect. This definition also excludes
coincidence, in which two benign programs combine for a negative effect.
The agent is the writer of the program or the person who causes its
distribution. By this definition, most faults found in software inspections,
reviews, and testing do not qualify as malicious code, because we think of
them as unintentional. However, keep in mind as you read this chapter that
unintentional faults can in fact invoke the same responses as intentional
malevolence; a benign cause can still lead to a disastrous effect.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry134
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry710
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry379
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry377
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry730
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry27

You are likely to have been affected by a virus at one time or another, either
because your computer was infected by one or because you could not access
an infected system while its administrators were cleaning up the mess one
made. In fact, your virus might actually have been a worm: The terminology
of malicious code is sometimes used imprecisely. A virus is a program that
can pass on malicious code to other nonmalicious programs by modifying
them. The term “virus” was coined because the affected program acts like a
biological virus: It infects other healthy subjects by attaching itself to the
program and either destroying it or coexisting with it. Because viruses are
insidious, we cannot assume that a clean program yesterday is still clean
today. Moreover, a good program can be modified to include a copy of the
virus program, so the infected good program itself begins to act as a virus,
infecting other programs. The infection usually spreads at a geometric rate,
eventually overtaking an entire computing system and spreading to all
other connected systems.

A virus can be either transient or resident. A transient virus has a life that
depends on the life of its host; the virus runs when its attached program
executes and terminates when its attached program ends. (During its
execution, the transient virus may have spread its infection to other
programs.) A resident virus locates itself in memory; then it can remain
active or be activated as a stand-alone program, even after its attached
program ends.

A Trojan horse is malicious code that, in addition to its primary effect, has a
second, nonobvious malicious effect.[1] As an example of a computer Trojan
horse, consider a login script that solicits a user's identification and
password, passes the identification information on to the rest of the system
for login processing, but also retains a copy of the information for later,
malicious use. In this example, the user sees only the login occurring as
expected, so there is no evident reason to suspect that any other action took
place.

[1] The name is a reference to the Greek legends of the Trojan war, which tell how

the Greeks tricked the Trojans into breaking their defense wall to take a wooden

horse, filled with the bravest of Greek soldiers, into their citadel. In the night, the

soldiers descended and signalled their troops that the way in was now clear, and

Troy was captured.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fn01

A logic bomb is a class of malicious code that “detonates” or goes off when a
specified condition occurs. A time bomb is a logic bomb whose trigger is a
time or date.

A trapdoor or backdoor is a feature in a program by which someone can
access the program other than by the obvious, direct call, perhaps with
special privileges. For instance, an automated bank teller program might
allow anyone entering the number 990099 on the keypad to process the log
of everyone's transactions at that machine. In this example, the trapdoor
could be intentional, for maintenance purposes, or it could be an illicit way
for the implementer to wipe out any record of a crime.

A worm is a program that spreads copies of itself through a network. The
primary difference between a worm and a virus is that a worm operates
through networks, and a virus can spread through any medium (but usually
uses copied program or data files). Additionally, the worm spreads copies of
itself as a stand-alone program, whereas the virus spreads copies of itself as
a program that attaches to or embeds in other programs.

White et al. [WHI89] also define a rabbit as a virus or worm that self-
replicates without bound, with the intention of exhausting some computing
resource. A rabbit might create copies of itself and store them on disk, in an
effort to completely fill the disk, for example.

Code Type Characteristics
Virus Attaches itself to program and propagates copies of itself to

other programs

Trojan horse Contains unexpected, additional functionality

Logic bomb Triggers action when condition occurs

Time bomb Triggers action when specified time occurs

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry738

These definitions match current careful usage. The distinctions among
these terms are small, and often the terms are confused, especially in the
popular press. The term “virus” is often used to refer to any piece of
malicious code. Furthermore, two or more forms of malicious code can be
combined to produce a third kind of problem. For instance, a virus can be a
time bomb if the viral code that is spreading will trigger an event after a
period of time has passed. The kinds of malicious code are summarized
in Table 3-1.

Because “virus” is the popular name given to all forms of malicious code
and because fuzzy lines exist between different kinds of malicious code, we
will not be too restrictive in the following discussion. We want to look at
how malicious code spreads, how it is activated, and what effect it can have.
A virus is a convenient term for mobile malicious code, and so in the
following sections we use the term “virus” almost exclusively. The points
made apply also to other forms of malicious code.

How Viruses Attach

A printed copy of a virus does nothing and threatens no one. Even
executable virus code sitting on a disk does nothing. What triggers a virus
to start replicating? For a virus to do its malicious work and spread itself, it
must be activated by being executed. Fortunately for virus writers, but
unfortunately for the rest of us, there are many ways to ensure that
programs will be executed on a running computer.

For example, recall the SETUP program that you initiate on your computer.
It may call dozens or hundreds of other programs, some on the distribution
medium, some already residing on the computer, some in memory. If any
one of these programs contains a virus, the virus code could be activated.
Let us see how. Suppose the virus code were in a program on the
distribution medium, such as a CD; when executed, the virus could install
itself on a permanent storage medium (typically, a hard disk), and also in
any and all executing programs in memory. Human intervention is
necessary to start the process; a human being puts the virus on the
distribution medium, and perhaps another initiates the execution of the

Trapdoor Allows unauthorized access to functionality

Worm Propagates copies of itself through a network

Rabbit Replicates itself without limit to exhaust resource

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03table01

program to which the virus is attached. (It is possible for execution to occur
without human intervention, though, such as when execution is triggered
by a date or the passage of a certain amount of time.) After that, no human
intervention is needed; the virus can spread by itself.

A more common means of virus activation is as an attachment to an e-mail
message. In this attack, the virus writer tries to convince the victim (the
recipient of an e-mail message) to open the attachment. Once the viral
attachment is opened, the activated virus can do its work. Some modern e-
mail handlers, in a drive to “help” the receiver (victim), will automatically
open attachments as soon as the receiver opens the body of the e-mail
message. The virus can be executable code embedded in an executable
attachment, but other types of files are equally dangerous. For example,
objects such as graphics or photo images can contain code to be executed by
an editor, so they can be transmission agents for viruses. In general, it is
safer to force users to open files on their own rather than automatically; it is
a bad idea for programs to perform potentially security-relevant actions
without a user's consent.

Appended Viruses

A program virus attaches itself to a program; then, whenever the program
is run, the virus is activated. This kind of attachment is usually easy to
program.

In the simplest case, a virus inserts a copy of itself into the executable
program file before the first executable instruction. Then, all the virus
instructions execute first; after the last virus instruction, control flows
naturally to what used to be the first program instruction. Such a situation
is shown in Figure 3-4.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig04

This kind of attachment is simple and usually effective. The virus writer
does not need to know anything about the program to which the virus will
attach, and often the attached program simply serves as a carrier for the
virus. The virus performs its task and then transfers to the original
program. Typically, the user is unaware of the effect of the virus if the
original program still does all that it used to. Most viruses attach in this
manner.

Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original program
but has control before and after its execution. For example, a virus writer
might want to prevent the virus from being detected. If the virus is stored
on disk, its presence will be given away by its file name, or its size will affect
the amount of space used on the disk. The virus writer might arrange for
the virus to attach itself to the program that constructs the listing of files on
the disk. If the virus regains control after the listing program has generated
the listing but before the listing is displayed or printed, the virus could
eliminate its entry from the listing and falsify space counts so that it
appears not to exist. A surrounding virus is shown in Figure 3-5.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig05

Figure 3-5. Virus Surrounding a Program.

Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its target,
integrating itself into the original code of the target. Such a situation is
shown in Figure 3-6. Clearly, the virus writer has to know the exact
structure of the original program to know where to insert which pieces of
the virus.

Figure 3-6. Virus Integrated into a Program.

Finally, the virus can replace the entire target, either mimicking the effect
of the target or ignoring the expected effect of the target and performing
only the virus effect. In this case, the user is most likely to perceive the loss
of the original program.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig06

Document Viruses

Currently, the most popular virus type is what we call the document virus,
which is implemented within a formatted document, such as a written
document, a database, a slide presentation, or a spreadsheet. These
documents are highly structured files that contain both data (words or
numbers) and commands (such as formulas, formatting controls, links).
The commands are part of a rich programming language, including macros,
variables and procedures, file accesses, and even system calls. The writer of
a document virus uses any of the features of the programming language to
perform malicious actions.

The ordinary user usually sees only the content of the document (its text or
data), so the virus writer simply includes the virus in the commands part of
the document, as in the integrated program virus.

How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially, the
virus either has to seem to be T, saying effectively “I am T” (like some rock
stars, where the target is the artiste formerly known as T) or the virus has to
push T out of the way and become a substitute for T, saying effectively “Call
me instead of T.” A more blatant virus can simply say “invoke me [you
fool].”

The virus can assume T's name by replacing (or joining to) T's code in a file
structure; this invocation technique is most appropriate for ordinary
programs. The virus can overwrite T in storage (simply replacing the copy
of T in storage, for example). Alternatively, the virus can change the
pointers in the file table so that the virus is located instead of T whenever T
is accessed through the file system. These two cases are shown in Figure 3-
7.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig07
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig07

Figure 3-7. Virus Completely Replacing a Program.

The virus can supplant T by altering the sequence that would have invoked
T to now invoke the virus V; this invocation can be used to replace parts of
the resident operating system by modifying pointers to those resident parts,
such as the table of handlers for different kinds of interrupts.

Homes for Viruses

The virus writer may find these qualities appealing in a virus:

• It is hard to detect.

• It is not easily destroyed or deactivated.

• It spreads infection widely.

• It can reinfect its home program or other programs.

• It is easy to create.

• It is machine independent and operating system independent.

Few viruses meet all these criteria. The virus writer chooses from these
objectives when deciding what the virus will do and where it will reside.

Just a few years ago, the challenge for the virus writer was to write code
that would be executed repeatedly so that the virus could multiply. Now,
however, one execution is enough to ensure widespread distribution. Many
viruses are transmitted by e-mail, using either of two routes. In the first
case, some virus writers generate a new e-mail message to all addresses in
the victim's address book. These new messages contain a copy of the virus
so that it propagates widely. Often the message is a brief, chatty,

nonspecific message that would encourage the new recipient to open the
attachment from a friend (the first recipient). For example, the subject line
or message body may read “I thought you might enjoy this picture from our
vacation.” In the second case, the virus writer can leave the infected file for
the victim to forward unknowingly. If the virus's effect is not immediately
obvious, the victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their infection
and causing their effect in that one execution. A virus often arrives as an e-
mail attachment of a document virus. It is executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular one, is the
so-called boot sector virus. When a computer is started, control begins with
firmware that determines which hardware components are present, tests
them, and transfers control to an operating system. A given hardware
platform can run many different operating systems, so the operating system
is not coded in firmware but is instead invoked dynamically, perhaps even
by a user's choice, after the hardware test.

The operating system is software stored on disk. Code copies the operating
system from disk to memory and transfers control to it; this copying is
called the bootstrap (often boot) load because the operating system
figuratively pulls itself into memory by its bootstraps. The firmware does its
control transfer by reading a fixed number of bytes from a fixed location on
the disk (called the boot sector) to a fixed address in memory and then
jumping to that address (which will turn out to contain the first instruction
of the bootstrap loader). The bootstrap loader then reads into memory the
rest of the operating system from disk. To run a different operating system,
the user just inserts a disk with the new operating system and a bootstrap
loader. When the user reboots from this new disk, the loader there brings in
and runs another operating system. This same scheme is used for personal
computers, workstations, and large mainframes.

To allow for change, expansion, and uncertainty, hardware designers
reserve a large amount of space for the bootstrap load. The boot sector on a

PC is slightly less than 512 bytes, but since the loader will be larger than
that, the hardware designers support “chaining,” in which each block of the
bootstrap is chained to (contains the disk location of) the next block. This
chaining allows big bootstraps but also simplifies the installation of a virus.
The virus writer simply breaks the chain at any point, inserts a pointer to
the virus code to be executed, and reconnects the chain after the virus has
been installed. This situation is shown in Figure 3-8.

Figure 3-8. Boot Sector Virus Relocating Code.

The boot sector is an especially appealing place to house a virus. The virus
gains control very early in the boot process, before most detection tools are
active, so that it can avoid, or at least complicate, detection. The files in the
boot area are crucial parts of the operating system. Consequently, to keep
users from accidentally modifying or deleting them with disastrous results,
the operating system makes them “invisible” by not showing them as part of
a normal listing of stored files, preventing their deletion. Thus, the virus
code is not readily noticed by users.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig08

Memory-Resident Viruses

Some parts of the operating system and most user programs execute,
terminate, and disappear, with their space in memory being available for
anything executed later. For very frequently used parts of the operating
system and for a few specialized user programs, it would take too long to
reload the program each time it was needed. Such code remains in memory
and is called “resident” code. Examples of resident code are the routine that
interprets keys pressed on the keyboard, the code that handles error
conditions that arise during a program's execution, or a program that acts
like an alarm clock, sounding a signal at a time the user determines.
Resident routines are sometimes called TSRs or “terminate and stay
resident” routines.

Virus writers also like to attach viruses to resident code because the
resident code is activated many times while the machine is running. Each
time the resident code runs, the virus does too. Once activated, the virus
can look for and infect uninfected carriers. For example, after activation, a
boot sector virus might attach itself to a piece of resident code. Then, each
time the virus was activated it might check whether any removable disk in a
disk drive was infected and, if not, infect it. In this way the virus could
spread its infection to all removable disks used during the computing
session.

Other Homes for Viruses

A virus that does not take up residence in one of these cozy establishments
has to fend more for itself. But that is not to say that the virus will go
homeless.

One popular home for a virus is an application program. Many
applications, such as word processors and spreadsheets, have a “macro”
feature, by which a user can record a series of commands and repeat them
with one invocation. Such programs also provide a “startup macro” that is
executed every time the application is executed. A virus writer can create a
virus macro that adds itself to the startup directives for the application. It
also then embeds a copy of itself in data files so that the infection spreads to
anyone receiving one or more of those files.

Libraries are also excellent places for malicious code to reside. Because
libraries are used by many programs, the code in them will have a broad

effect. Additionally, libraries are often shared among users and transmitted
from one user to another, a practice that spreads the infection. Finally,
executing code in a library can pass on the viral infection to other
transmission media. Compilers, loaders, linkers, runtime monitors,
runtime debuggers, and even virus control programs are good candidates
for hosting viruses because they are widely shared.

Virus Signatures

A virus cannot be completely invisible. Code must be stored somewhere,
and the code must be in memory to execute. Moreover, the virus executes in
a particular way, using certain methods to spread. Each of these
characteristics yields a telltale pattern, called a signature, that can be found
by a program that knows to look for it. The virus's signature is important
for creating a program, called a virus scanner, that can automatically detect
and, in some cases, remove viruses. The scanner searches memory and
long-term storage, monitoring execution and watching for the telltale
signatures of viruses. For example, a scanner looking for signs of the Code
Red worm can look for a pattern containing the following characters:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

%u9090%u6858%ucbd3

%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858

%ucbd3%u7801%u9090

%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff

%u0078%u0000%u00=a

HTTP/1.0

When the scanner recognizes a known virus's pattern, it can then block the
virus, inform the user, and deactivate or remove the virus. However, a virus
scanner is effective only if it has been kept up-to-date with the latest
information on current viruses. Sidebar 3-4 describes how viruses were the
primary security breach among companies surveyed in 2001.

Sidebar 3-4 The Viral Threat

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03sb04

Information Week magazine reports that viruses, worms, and Trojan horses
represented the primary method for breaching security among the 4,500
security professionals surveyed in 2001 [HUL01c]. Almost 70 percent of the
respondents noted that virus, worm, and Trojan horse attacks occurred in
the 12 months before April 2001. Second were the 15 percent of attacks
using denial of service; telecommunications or unauthorized entry was
responsible for 12 percent of the attacks. (Multiple responses were
allowed.) These figures represent establishments in 42 countries
throughout North America, South America, Europe, and Asia.

Storage Patterns

Most viruses attach to programs that are stored on media such as disks. The
attached virus piece is invariant, so that the start of the virus code becomes
a detectable signature. The attached piece is always located at the same
position relative to its attached file. For example, the virus might always be
at the beginning, 400 bytes from the top, or at the bottom of the infected
file. Most likely, the virus will be at the beginning of the file, because the
virus writer wants to obtain control of execution before the bona fide code
of the infected program is in charge. In the simplest case, the virus code sits
at the top of the program, and the entire virus does its malicious duty
before the normal code is invoked. In other cases, the virus infection
consists of only a handful of instructions that point or jump to other, more
detailed instructions elsewhere. For example, the infected code may consist
of condition testing and a jump or call to a separate virus module. In either
case, the code to which control is transferred will also have a recognizable
pattern. Both of these situations are shown in Figure 3-9.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry340
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig09

Figure 3-9. Recognizable Patterns in Viruses.

A virus may attach itself to a file, in which case the file's size grows. Or the
virus may obliterate all or part of the underlying program, in which case the
program's size does not change but the program's functioning will be
impaired. The virus writer has to choose one of these detectable effects.

The virus scanner can use a code or checksum to detect changes to a file. It
can also look for suspicious patterns, such as a JUMP instruction as the
first instruction of a system program (in case the virus has positioned itself
at the bottom of the file but wants to be executed first, as in Figure 3-9).

Execution Patterns

A virus writer may want a virus to do several things at the same time,
namely, spread infection, avoid detection, and cause harm. These goals are
shown in Table 3-2, along with ways each goal can be addressed.
Unfortunately, many of these behaviors are perfectly normal and might
otherwise go undetected. For instance, one goal is modifying the file

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fig09
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03table02

directory; many normal programs create files, delete files, and write to
storage media. Thus, there are no key signals that point to the presence of a
virus.

Table 3-2. Virus Effects and Causes.

Virus Effect How It Is Caused

Attach to executable
program

• Modify file directory
• Write to executable program file

Attach to data or
control file

• Modify directory
• Rewrite data
• Append to data
• Append data to self

Remain in memory

• Intercept interrupt by modifying
interrupt handler address table

• Load self in nontransient memory area

Infect disks

• Intercept interrupt
• Intercept operating system call (to

format disk, for example)
• Modify system file
• Modify ordinary executable program

Conceal self

• Intercept system calls that would
reveal self and falsify result

• Classify self as “hidden” file

Spread infection

• Infect boot sector
• Infect systems program
• Infect ordinary program
• Infect data ordinary program reads to

control its execution

Prevent deactivation

• Activate before deactivating program
and block deactivation

• Store copy to reinfect after
deactivation

Most virus writers seek to avoid detection for themselves and their creations.

Because a disk's boot sector is not visible to normal operations (for example, the

contents of the boot sector do not show on a directory listing), many virus writers

hide their code there. A resident virus can monitor disk accesses and fake the result

of a disk operation that would show the virus hidden in a boot sector by showing

the data that should have been in the boot sector (which the virus has moved

elsewhere).

There are no limits to the harm a virus can cause. On the modest end, the virus

might do nothing; some writers create viruses just to show they can do it. Or the

virus can be relatively benign, displaying a message on the screen, sounding the

buzzer, or playing music. From there, the problems can escalate. One virus can

erase files, another an entire disk; one virus can prevent a computer from booting,

and another can prevent writing to disk. The damage is bounded only by the

creativity of the virus's author.

Transmission Patterns

A virus is effective only if it has some means of transmission from one location to

another. As we have already seen, viruses can travel during the boot process, by

attaching to an executable file or traveling within data files. The travel itself occurs

during execution of an already infected program. Since a virus can execute any

instructions a program can, virus travel is not confined to any single medium or

execution pattern. For example, a virus can arrive on a diskette or from a network

connection, travel during its host's execution to a hard disk boot sector, reemerge

next time the host computer is booted, and remain in memory to infect other

diskettes as they are accessed.

Polymorphic Viruses

The virus signature may be the most reliable way for a virus scanner to identify a

virus. If a particular virus always begins with the string 47F0F00E08 (in

hexadecimal) and has string 00113FFF located at word 12, it is unlikely that other

programs or data files will have these exact characteristics. For longer signatures,

the probability of a correct match increases.

If the virus scanner will always look for those strings, then the clever virus writer

can cause something other than those strings to be in those positions. For example,

the virus could have two alternative but equivalent beginning words; after being

installed, the virus will choose one of the two words for its initial word. Then, a

virus scanner would have to look for both patterns. A virus that can change its

appearance is called a polymorphic virus. (Poly means “many” and morph means

“form”.)

A two-form polymorphic virus can be handled easily as two independent viruses.

Therefore, the virus writer intent on preventing detection of the virus will want

either a large or an unlimited number of forms so that the number of possible forms

is too large for a virus scanner to search for. Simply embedding a random number

or string at a fixed place in the executable version of a virus is not sufficient,

because the signature of the virus is just the constant code excluding the random

part. A polymorphic virus has to randomly reposition all parts of itself and

randomly change all fixed data. Thus, instead of containing the fixed (and

therefore searchable) string “HA! INFECTED BY A VIRUS,” a polymorphic virus

has to change even that pattern sometimes.

Trivially, assume a virus writer has 100 bytes of code and 50 bytes of data. To

make two virus instances different, the writer might distribute the first version as

100 bytes of code followed by all 50 bytes of data. A second version could be 99

bytes of code, a jump instruction, 50 bytes of data, and the last byte of code. Other

versions are 98 code bytes jumping to the last two, 97 and three, and so forth. Just

by moving pieces around the virus writer can create enough different appearances

to fool simple virus scanners. Once the scanner writers became aware of these

kinds of tricks, however, they refined their signature definitions.

A more sophisticated polymorphic virus randomly intersperses harmless

instructions throughout its code. Examples of harmless instructions include

addition of zero to a number, movement of a data value to its own location, or a

jump to the next instruction. These “extra” instructions make it more difficult to

locate an invariant signature.

A simple variety of polymorphic virus uses encryption under various keys to make

the stored form of the virus different. These are sometimes

called encrypting viruses. This type of virus must contain three distinct parts: a

decryption key, the (encrypted) object code of the virus, and the (unencrypted)

object code of the decryption routine. For these viruses, the decryption routine

itself or a call to a decryption library routine must be in the clear, and so that

becomes the signature.

To avoid detection, not every copy of a polymorphic virus has to differ from every

other copy. If the virus changes occasionally, not every copy will match a signature

of every other copy.

The Source of Viruses

Since a virus can be rather small, its code can be “hidden” inside other larger and

more complicated programs. Two hundred lines of a virus could be separated into

one hundred packets of two lines of code and a jump each; these one hundred

packets could be easily hidden inside a compiler, a database manager, a file

manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if two programs are

equivalent. However, theoretical results in computing are very discouraging when

it comes to the complexity of the equivalence problem. The general question, “are

these two programs equivalent?” is undecidable (although that question can be

answered for many specific pairs of programs). Even ignoring the general

undecidability problem, two modules may produce subtly different results that

may—or may not—be security relevant. One may run faster, or the first may use a

temporary file for work space whereas the second performs all its computations in

memory. These differences could be benign, or they could be a marker of an

infection. Therefore, we are unlikely to develop a screening program that can

separate infected modules from uninfected ones.

Although the general is dismaying, the particular is not. If we know that a

particular virus may infect a computing system, we can check for it and detect it if

it is there. Having found the virus, however, we are left with the task of cleansing

the system of it. Removing the virus in a running system requires being able to

detect and eliminate its instances faster than it can spread.

Prevention of Virus Infection

The only way to prevent the infection of a virus is not to share executable code

with an infected source. This philosophy used to be easy to follow because it was

easy to tell if a file was executable or not. For example, on PCs, a .exe extension

was a clear sign that the file was executable. However, as we have noted, today's

files are more complex, and a seemingly nonexecutable file may have some

executable code buried deep within it. For example, a word processor may have

commands within the document file; as we noted earlier, these commands, called

macros, make it easy for the user to do complex or repetitive things. But they are

really executable code embedded in the context of the document. Similarly,

spreadsheets, presentation slides, and other office- or business-related files can

contain code or scripts that can be executed in various ways—and thereby harbor

viruses. And, as we have seen, the applications that run or use these files may try to

be helpful by automatically invoking the executable code, whether you want it run

or not! Against the principles of good security, e-mail handlers can be set to

automatically open (without performing access control) attachments or embedded

code for the recipient, so your e-mail message can have animated bears dancing

across the top.

Another approach virus writers have used is a little-known feature in the Microsoft

file design. Although a file with a .doc extension is expected to be a Word

document, in fact, the true document type is hidden in a field at the start of the file.

This convenience ostensibly helps a user who inadvertently names a Word

document with a .ppt (PowerPoint) or any other extension. In some cases, the

operating system will try to open the associated application but, if that fails, the

system will switch to the application of the hidden file type. So, the virus writer

creates an executable file, names it with an inappropriate extension, and sends it to

the victim, describing it is as a picture or a necessary code add-in or something else

desirable. The unwitting recipient opens the file and, without intending to, executes

the malicious code.

More recently, executable code has been hidden in files containing large data sets,

such as pictures or read-only documents. These bits of viral code are not easily

detected by virus scanners and certainly not by the human eye. For example, a file

containing a photograph may be highly granular; if every sixteenth bit is part of a

command string that can be executed, then the virus is very difficult to detect.

Since you cannot always know which sources are infected, you should assume that

any outside source is infected. Fortunately, you know when you are receiving code

from an outside source; unfortunately, it is not feasible to cut off all contact with

the outside world.

In their interesting paper comparing computer virus transmission with human

disease transmission, Kephart et al. [KEP93] observe that individuals' efforts to

keep their computers free from viruses lead to communities that are generally free

from viruses because members of the community have little (electronic) contact

with the outside world. In this case, transmission is contained not because of

limited contact but because of limited contact outside the community.

Governments, for military or diplomatic secrets, often run disconnected network

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry394

communities. The trick seems to be in choosing one's community prudently.

However, as use of the Internet and the World Wide Web increases, such

separation is almost impossible to maintain.

Nevertheless, there are several techniques for building a reasonably safe

community for electronic contact, including the following:

• Use only commercial software acquired from reliable, well-established

vendors. There is always a chance that you might receive a virus from a

large manufacturer with a name everyone would recognize. However, such

enterprises have significant reputations that could be seriously damaged by

even one bad incident, so they go to some degree of trouble to keep their

products virus-free and to patch any problem-causing code right away.

Similarly, software distribution companies will be careful about products

they handle.

• Test all new software on an isolated computer. If you must use software

from a questionable source, test the software first on a computer with no

hard disk, not connected to a network, and with the boot disk removed. Run

the software and look for unexpected behavior, even simple behavior such as

unexplained figures on the screen. Test the computer with a copy of an up-

to-date virus scanner, created before running the suspect program. Only if

the program passes these tests should it be installed on a less isolated

machine.

• Open attachments only when you know them to be safe. What constitutes

“safe” is up to you, as you have probably already learned in this chapter.

Certainly, an attachment from an unknown source is of questionable safety.

You might also distrust an attachment from a known source but with a

peculiar message.

• Make a recoverable system image and store it safely. If your system does

become infected, this clean version will let you reboot securely because it

overwrites the corrupted system files with clean copies. For this reason, you

must keep the image write-protected during reboot. Prepare this image now,

before infection; after infection it is too late. For safety, prepare an extra

copy of the safe boot image.

• Make and retain backup copies of executable system files. This way, in the

event of a virus infection, you can remove infected files and reinstall from

the clean backup copies (stored in a secure, offline location, of course).

• Use virus detectors (often called virus scanners) regularly and update them

daily. Many of the virus detectors available can both detect and eliminate

infection from viruses. Several scanners are better than one, because one

may detect the viruses that others miss. Because scanners search for virus

signatures, they are constantly being revised as new viruses are discovered.

New virus signature files, or new versions of scanners, are distributed

frequently; often, you can request automatic downloads from the vendor's

web site. Keep your detector's signature file up-to-date.

Truths and Misconceptions About Viruses

Because viruses often have a dramatic impact on the computer-using community,

they are often highlighted in the press, particularly in the business section.

However, there is much misinformation in circulation about viruses. Let us

examine some of the popular claims about them.

• Viruses can infect only Microsoft Windows systems. False. Among students

and office workers, PCs are popular computers, and there may be more

people writing software (and viruses) for them than for any other kind of

processor. Thus, the PC is most frequently the target when someone decides

to write a virus. However, the principles of virus attachment and infection

apply equally to other processors, including Macintosh computers, Unix

workstations, and mainframe computers. In fact, no writeable stored-

program computer is immune to possible virus attack. As we noted

in Chapter 1, this situation means that all devices containing computer code,

including automobiles, airplanes, microwave ovens, radios, televisions, and

radiation therapy machines have the potential for being infected by a virus.

• Viruses can modify “hidden” or “read only” files. True. We may try to

protect files by using two operating system mechanisms. First, we can make

a file a hidden file so that a user or program listing all files on a storage

device will not see the file's name. Second, we can apply a read-only

protection to the file so that the user cannot change the file's contents.

However, each of these protections is applied by software, and virus

software can override the native software's protection. Moreover, software

protection is layered, with the operating system providing the most

elementary protection. If a secure operating system obtains control before a

virus contaminator has executed, the operating system can prevent

contamination as long as it blocks the attacks the virus will make.

• Viruses can appear only in data files, or only in Word documents, or only in

programs. False. What are data? What is an executable file? The distinction

between these two concepts is not always clear, because a data file can

control how a program executes and even cause a program to execute.

Sometimes a data file lists steps to be taken by the program that reads the

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01

data, and these steps can include executing a program. For example, some

applications contain a configuration file whose data are exactly such steps.

Similarly, word processing document files may contain startup commands to

execute when the document is opened; these startup commands can contain

malicious code. Although, strictly speaking, a virus can activate and spread

only when a program executes, in fact, data files are acted upon by

programs. Clever virus writers have been able to make data control files that

cause programs to do many things, including pass along copies of the virus

to other data files.

• Viruses spread only on disks or only in e-mail. False. File-sharing is often

done as one user provides a copy of a file to another user by writing the file

on a transportable disk. However, any means of electronic file transfer will

work. A file can be placed in a network's library or posted on a bulletin

board. It can be attached to an electronic mail message or made available for

download from a web site. Any mechanism for sharing files—of programs,

data, documents, and so forth—can be used to transfer a virus.

• Viruses cannot remain in memory after a complete power off/power on

reboot. True. If a virus is resident in memory, the virus is lost when the

memory loses power. That is, computer memory (RAM) is volatile, so that

all contents are deleted when power is lost.[2] However, viruses written to

disk certainly can remain through a reboot cycle and reappear after the

reboot. Thus, you can receive a virus infection, the virus can be written to

disk (or to network storage), you can turn the machine off and back on, and

the virus can be reactivated during the reboot. Boot sector viruses gain

control when a machine reboots (whether it is a hardware or software

reboot), so a boot sector virus may remain through a reboot cycle because it

activates immediately when a reboot has completed.

[2] Some very low level hardware settings (for example, the size of disk

installed) are retained in memory called “nonvolatile RAM,” but these

locations are not directly accessible by programs and are written only by

programs run from read-only memory (ROM) during hardware initialization.

Thus, they are highly immune to virus attack.

• Viruses cannot infect hardware. True. Viruses can infect only things they

can modify; memory, executable files, and data are the primary targets. If

hardware contains writeable storage (so-called firmware) that can be

accessed under program control, that storage is subject to virus attack. There

have been a few instances of firmware viruses. Because a virus can control

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fn02

hardware that is subject to program control, it may seem as if a hardware

device has been infected by a virus, but it is really the software driving the

hardware that has been infected. Viruses can also exercise hardware in any

way a program can. Thus, for example, a virus could cause a disk to loop

incessantly, moving to the innermost track then the outermost and back

again to the innermost.

• Viruses can be malevolent, benign, or benevolent. True. Not all viruses are

bad. For example, a virus might locate uninfected programs, compress them

so that they occupy less memory, and insert a copy of a routine that

decompresses the program when its execution begins. At the same time, the

virus is spreading the compression function to other programs. This virus

could substantially reduce the amount of storage required for stored

programs, possibly by up to 50 percent. However, the compression would be

done at the request of the virus, not at the request, or even knowledge, of the

program owner.

To see how viruses and other types of malicious code operate, we examine four

types of malicious code that affected many users worldwide: the Brain, the Internet

worm, the Code Red worm, and web bugs.

First Example of Malicious Code: The Brain Virus

One of the earliest viruses is also one of the most intensively studied. The so-called

Brain virus was given its name because it changes the label of any disk it attacks to

the word “BRAIN.” This particular virus, believed to have originated in Pakistan,

attacks PCs running a Microsoft operating system. Numerous variants have been

produced; because of the number of variants, people believe that the source code of

the virus was released to the underground virus community.

What It Does

The Brain, like all viruses, seeks to pass on its infection. This virus first locates

itself in upper memory and then executes a system call to reset the upper memory

bound below itself, so that it is not disturbed as it works. It traps interrupt number

19 (disk read) by resetting the interrupt address table to point to it and then sets the

address for interrupt number 6 (unused) to the former address of the interrupt 19.

In this way, the virus screens disk read calls, handling any that would read the boot

sector (passing back the original boot contents that were moved to one of the bad

sectors); other disk calls go to the normal disk read handler, through interrupt 6.

The Brain virus appears to have no effect other than passing its infection, as if it

were an experiment or a proof of concept. However, variants of the virus erase

disks or destroy the file allocation table (the table that shows which files are where

on a storage medium).

How It Spreads

The Brain virus positions itself in the boot sector and in six other sectors of the

disk. One of the six sectors will contain the original boot code, moved there from

the original boot sector, while two others contain the remaining code of the virus.

The remaining three sectors contain a duplicate of the others. The virus marks

these six sectors “faulty” so that the operating system will not try to use them.

(With low-level calls, you can force the disk drive to read from what the operating

system has marked as bad sectors.) The virus allows the boot process to continue.

Once established in memory, the virus intercepts disk read requests for the disk

drive under attack. With each read, the virus reads the disk boot sector and inspects

the fifth and sixth bytes for the hexadecimal value 1234 (its signature). If it finds

that value, it concludes the disk is infected; if not, it infects the disk as described in

the previous paragraph.

What Was Learned

This virus uses some of the standard tricks of viruses, such as hiding in the boot

sector, and intercepting and screening interrupts. The virus is almost a prototype

for later efforts. In fact, many other virus writers seem to have patterned their work

on this basic virus. Thus, one could say it was a useful learning tool for the virus

writer community.

Sadly, its infection did not raise public consciousness of viruses, other than a

certain amount of fear and misunderstanding. Subsequent viruses, such as the

Lehigh virus that swept through the computers of Lehigh University, the nVIR

viruses that sprang from prototype code posted on bulletin boards, and the Scores

virus that was first found at NASA in Washington D.C. circulated more widely and

with greater effect. Fortunately, most viruses seen to date have a modest effect,

such as displaying a message or emitting a sound. That is, however, a matter of

luck, since the writers who could put together the simpler viruses obviously had all

the talent and knowledge to make much more malevolent viruses.

There is no general cure for viruses. Virus scanners are effective against today's

known viruses and general patterns of infection, but they cannot counter

tomorrow's variant. The only sure prevention is complete isolation from outside

contamination, which is not feasible; in fact, you may even get a virus from the

software applications you buy from reputable vendors.

Another Example: The Internet Worm

On the evening of 2 November 1988, a worm was released to the

Internet,[3] causing serious damage to the network. Not only were many systems

infected, but when word of the problem spread, many more uninfected systems

severed their network connections to prevent themselves from getting infected.

Gene Spafford and his team at Purdue University [SPA89] and Mark Eichen and

Jon Rochlis at M.I.T [EIC89] studied the worm extensively.

[3] Note: this incident is normally called a “worm,” although it shares most of the

characteristics of viruses.

The perpetrator was Robert T. Morris, Jr., a graduate student at Cornell University

who created and released the worm. He was convicted in 1990 of violating the

1986 Computer Fraud and Abuse Act, section 1030 of U.S. Code Title 18. He

received a fine of $10,000, a three-year suspended jail sentence, and was required

to perform 400 hours of community service.

What It Did

Judging from its code, Morris programmed the Internet worm to accomplish three

main objectives:

1. determine to where it could spread

2. spread its infection

3. remain undiscovered and undiscoverable

What Effect It Had

The worm's primary effect was resource exhaustion. Its source code indicated that

the worm was supposed to check whether a target host was already infected; if so,

the worm would negotiate so that either the existing infection or the new infector

would terminate. However, because of a supposed flaw in the code, many new

copies did not terminate. As a result, an infected machine soon became burdened

with many copies of the worm, all busily attempting to spread the infection. Thus,

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03fn03
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry682
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry222

the primary observable effect was serious degradation in performance of affected

machines.

A second-order effect was the disconnection of many systems from the Internet.

System administrators tried to sever their connection with the Internet, either

because their machines were already infected and the system administrators

wanted to keep the worm's processes from looking for sites to which to spread or

because their machines were not yet infected and the staff wanted to avoid having

them become so.

The disconnection led to a third-order effect: isolation and inability to perform

necessary work. Disconnected systems could not communicate with other systems

to carry on the normal research, collaboration, business, or information exchange

users expected. System administrators on disconnected systems could not use the

network to exchange information with their counterparts at other installations, so

status and containment or recovery information was unavailable.

The worm caused an estimated 6,000 installations to shut down or disconnect from

the Internet. In total, several thousand systems were disconnected for several days,

and several hundred of these systems were closed to users for a day or more while

they were disconnected. Estimates of the cost of damage range from $100,000 to

$97 million.

How It Worked

The worm exploited several known flaws and configuration failures of Berkeley

version 4 of the Unix operating system. It accomplished—or had code that

appeared to try to accomplish—its three objectives.

Where to spread. The worm had three techniques for locating potential machines to

victimize. It first tried to find user accounts to invade on the target machine. In

parallel, the worm tried to exploit a bug in the finger program and then to use a

trapdoor in the sendmail mail handler. All three of these security flaws were well

known in the general Unix community.

The first security flaw was a joint user and system error, in which the worm tried

guessing passwords and succeeded when it found one. The Unix password file is

stored in encrypted form, but the ciphertext in the file is readable by anyone. (This

visibility is the system error.) The worm encrypted various popular passwords and

compared their ciphertext against the ciphertext of the stored password file. The

worm tried the account name, the owner's name, and a short list of 432 common

passwords (such as “guest,” “password,” “help,” “coffee,” “coke,” “aaa”). If none

of these succeeded, the worm used the dictionary file stored on the system for use

by application spelling checkers. (Choosing a recognizable password is the user

error.) When it got a match, the worm could log in to the corresponding account by

presenting the plaintext password. Then, as a user, the worm could look for other

machines to which the user could obtain access. (See the article by Robert T.

Morris, Sr. and Ken Thompson [MOR79] on selection of good passwords,

published a decade before the worm.)

The second flaw concerned fingerd, the program that runs continuously to respond

to other computers' requests for information about system users. The security flaw

involved causing the input buffer to overflow, spilling into the return address stack.

Thus, when the finger call terminated, fingerd executed instructions that had been

pushed there as another part of the buffer overflow, causing the worm to be

connected to a remote shell.

The third flaw involved a trapdoor in the sendmail program. Ordinarily, this

program runs in the background, awaiting signals from others wanting to send mail

to the system. When it receives such a signal, sendmail gets a destination address,

which it verifies, and then begins a dialog to receive the message. However, when

running in debugging mode, the worm caused sendmail to receive and execute a

command string instead of the destination address.

Spread infection. Having found a suitable target machine, the worm would use one

of these three methods to send a bootstrap loader to the target machine. This loader

consisted of 99 lines of C code to be compiled and executed on the target machine.

The bootstrap loader would then fetch the rest of the worm from the sending host

machine. There was an element of good computer security—or stealth—built into

the exchange between the host and the target. When the target's bootstrap requested

the rest of the worm, the worm supplied a one-time password back to the host.

Without this password, the host would immediately break the connection to the

target, presumably in an effort to ensure against “rogue” bootstraps (ones that a

real administrator might develop to try to obtain a copy of the rest of the worm for

subsequent analysis).

Remain undiscovered and undiscoverable. The worm went to considerable lengths

to prevent its discovery once established on a host. For instance, if a transmission

error occurred while the rest of the worm was being fetched, the loader zeroed and

then deleted all code already transferred and exited.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry498

As soon as the worm received its full code, it brought the code into memory,

encrypted it, and deleted the original copies from disk. Thus, no traces were left on

disk, and even a memory dump would not readily expose the worm's code. The

worm periodically changed its name and process identifier so that no single name

would run up a large amount of computing time.

What Was Learned

The Internet worm sent a shock wave through the Internet community, which at

that time was largely populated by academics and researchers. The affected sites

closed some of the loopholes exploited by the worm and generally tightened

security. Some users changed passwords. COPS, an automated security-checking

program, was developed to check for some of the same flaws the worm exploited.

However, as time passes and many new installations continue to join the Internet,

security analysts checking for site vulnerabilities find that many of the same

security flaws still exist. A new attack on the Internet would not succeed on the

same scale as the Internet worm, but it could still cause significant inconvenience

to many.

The Internet worm was benign in that it only spread to other systems but did not

destroy any part of them. It collected sensitive data, such as account passwords, but

it did not retain them. While acting as a user, the worm could have deleted or

overwritten files, distributed them elsewhere, or encrypted them and held them for

ransom. The next worm may not be so benign.

The worm's effects stirred several people to action. One positive outcome from this

experience was development in the United States of an infrastructure for reporting

and correcting malicious and nonmalicious code flaws. The Internet worm

occurred at about the same time that Cliff Stoll [STO89] reported his problems in

tracking an electronic intruder (and his subsequent difficulty in finding anyone to

deal with the case). The computer community realized it needed to organize. The

resulting Computer Emergency Response Team (CERT) at Carnegie Mellon

University was formed; it and similar response centers around the world have done

an excellent job of collecting and disseminating information on malicious code

attacks and their countermeasures. System administrators now exchange

information on problems and solutions. Security comes from informed protection

and action, not from ignorance and inaction.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry700

More Malicious Code: Code Red

Code Red appeared in the middle of 2001, to devastating effect. On July 29, the

U.S. Federal Bureau of Investigation proclaimed in a news release that “on July 19,

the Code Red worm infected more than 250,000 systems in just nine hours ... This

spread has the potential to disrupt business and personal use of the Internet for

applications such as e-commerce, e-mail and entertainment.” [BER01] Indeed, “the

Code Red worm struck faster than any other worm in Internet history,” according

to a research director for a security software and services vendor. The first attack

occurred on July 12; overall, 750,000 servers were affected, including 400,000 just

in the period from August 1 to 10. [HUL01] Thus, of the 6 million web servers

running code subject to infection by Code Red, about one in eight were infected.

Michael Erbschloe, vice president of Computer Economics, Inc., estimates that

Code Red's damage will exceed $2 billion. [ERB01]

Code Red was more than a worm; it included several kinds of malicious code, and

it mutated from one version to another. Let us take a closer look at how Code Red

worked.

What It Did

There are several versions of Code Red, malicious software that propagates itself

on web servers running Microsoft's Internet Information Server (IIS) software.

Code Red takes two steps: infection and propagation. To infect a server, the worm

takes advantage of a vulnerability in Microsoft's IIS. It overflows the buffer in the

dynamic link library idq.dll to reside in the server's memory. Then, to propagate,

Code Red checks IP addresses on port 80 of the PC to see if that web server is

vulnerable.

What Effect It Had

The first version of Code Red was easy to spot, because it defaced web sites with

the following text:

HELLO!

Welcome to

http://www.worm.com !

Hacked by Chinese!

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry66
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry337
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry227

The rest of the original Code Red's activities were determined by the date.

From day 1 to 19 of the month, the worm spawned 99 threads that scanned for

other vulnerable computers, starting at the same IP address. Then, on days 20 to

27, the worm launched a distributed denial-of-service attack at the U.S. web

site, www.whitehouse.gov. A denial-of-service attack floods the site with large

numbers of messages in an attempt to slow down or stop the site because the site is

overwhelmed and cannot handle the messages. Finally, from day 28 to the end of

the month, the worm did nothing.

However, there were several variants. The second variant was discovered near the

end of July 2001. It did not deface the web site, but its propagation was

randomized and optimized to infect servers more quickly. A third variant,

discovered in early August, seemed to be a substantial rewrite of the second. This

version injected a Trojan horse in the target and modified software to ensure that a

remote attacker could execute any command on the server. The worm also checked

the year and month, so that it would automatically stop propagating in October

2002. Finally, the worm rebooted the server after 24 or 48 hours, wiping itself from

memory but leaving the Trojan horse in place.

How It Worked

The Code Red worm looked for vulnerable personal computers running Microsoft

IIS software. Exploiting the unchecked buffer overflow, the worm crashed

Windows NT-based servers but executed code on Windows 2000 systems. The

later versions of the worm created a trapdoor on an infected server; then, the

system was open to attack by other programs or malicious users. To create the

trapdoor, Code Red copied %windir%\cmd.exe to four locations:

c:\inetpub\scripts\root.ext

c:\progra~1\common~1\system\MSADC\root.exe

d:\inetpub\scripts\root.ext

d:\progra~1\common~1\system\MSADC\root.exe

Code Red also included its own copy of the file explorer.exe, placing it on the c:

and d: drives so that Windows would run the malicious copy, not the original copy.

This Trojan horse first ran the original, untainted version of explorer.exe, but it

modified the system registry to disable certain kinds of file protection and to

ensure that some directories have read, write, and execute permission. As a result,

the Trojan horse had a virtual path that could be followed even

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01

when explorer.exe was not running. The Trojan horse continues to run in

background, resetting the registry every 10 minutes; thus, even if a system

administrator notices the changes and undoes them, the changes are applied again

by the malicious code.

To propagate, the worm created 300 or 600 threads (depending on the variant) and

tried for 24 or 48 hours to spread to other machines. After that, the system was

forcibly rebooted, flushing the worm in memory but leaving the backdoor and

Trojan horse in place.

To find a target to infect, the worm's threads worked in parallel. Although the early

version of Code Red targeted www.whitehouse.gov, later versions chose a random

IP address close to the host computer's own address. To speed its performance, the

worm used a nonblocking socket so that a slow connection would not slow down

the rest of the threads as they scanned for a connection.

What Was Learned

As of this writing, more than 6 million servers use Microsoft's IIS software. The

Code Red variant that allowed unlimited root access made Code Red a virulent and

dangerous piece of malicious code. Microsoft offered a patch to fix the overflow

problem and prevent infection by Code Red, but many administrators neglected to

apply the patch. (See Sidebar 3-5.)

Some security analysts suggested that Code Red might be “a beta test for

information warfare,” meaning that its powerful combination of attacks could be a

prelude to a large-scale, intentional effort targeted at particular countries or groups.

[HUL01a] For this reason, users and developers should pay more and careful

attention to the security of their systems. Forno [FOR01] warns that such security

threats as Code Red stem from our general willingness to buy and install code that

does not meet minimal quality standards and from our reluctance to devote

resources to the large and continuing stream of patches and corrections that flows

from the vendors. As we will see in Chapter 9, this problem is coupled with a lack

of legal standing for users who experience seriously faulty code.

Malicious Code on the Web: Web Bugs

With the web pervading the lives of average citizens everywhere, malicious code

in web pages has become a very serious problem. But sometimes the malice is not

always clear; code can be used to good or bad ends, depending on your

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec3.html#ch03sb05
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry338
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry246
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch09.html#ch09

perspective. In this section, we look at a generic type of code called a web bug, to

see how it can affect the code in which it is embedded.

What They Do

A web bug, sometimes called a pixel tag, clear gif, one-by-one gif, invisible

gif, or beacon gif, is a hidden image on any document that can display HTML tags,

such as a web page, an HTML e-mail message, or even a spreadsheet. Its creator

intends the bug to be invisible, unseen by users but very useful nevertheless

because it can track the activities of a web user.

Sidebar 3-5 Is the Cure Worse Than the

Disease?

These days, a typical application program such as a word processor or

spreadsheet package is sold to its user with no guarantee of quality. As

problems are discovered by users or developers, patches are made

available to be downloaded from the web and applied to the faulty

system. This style of “quality control” relies on the users and system

administrators to keep up with the history of releases and patches and to

apply the patches in a timely manner. Moreover, each patch usually

assumes that earlier patches can be applied; ignore a patch at your peril.

For example, Forno [FOR01] points out that an organization hoping to

secure a web server running Windows NT 4.0's IIS had to apply over 47

patches as part of a service pack or available as a download from

Microsoft. Such stories suggest that it may cost more to maintain an

application or system than it cost to buy the application or system in the

first place! Many organizations, especially small businesses, lack the

resources for such an effort. As a consequence, they neglect to fix

known system problems, which can then be exploited by hackers

writing malicious code.

Blair [BLA01] describes a situation shortly after the end of the Cold

War when the United States discovered that Russia was tracking its

nuclear weapons materials by using a paper-based system. That is, the

materials tracking system consisted of boxes of paper filled with paper

receipts. In a gesture of friendship, the Los Alamos National Lab

donated to Russia the Microsoft software it uses to track its own nuclear

weapons materials. However, experts at the renowned Kurchatov

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry246
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry77

Institute soon discovered that over time some files become invisible and

inaccessible! In early 2000, they warned the United States. To solve the

problem, the United States told Russia to upgrade to the next version of

the Microsoft software. But the upgrade had the same problem, plus a

security flaw that would allow easy access to the database by hackers or

unauthorized parties.

Sometimes patches themselves create new problems as they are fixing

old ones. It is well known in the software reliability community that

testing and fixing sometimes reduce reliability, rather than improve it.

And with the complex interactions between software packages, many

computer system managers prefer to follow the adage “if it ain't broke,

don't fix it,” meaning that if there is no apparent failure, they would

rather not risk causing one from what seems like an unnecessary patch.

So there are several ways that the continual bug-patching approach to

security may actually lead to a less secure product than you started with.

For example, if you visit the Blue Nile home page, www.bluenile.com, the

following web bug code is automatically downloaded as a one-by-one pixel image

from Avenue A, a marketing agency:

<img height=1 width=1

src="http://switch.avenuea.com/action/bluenile_homepage/v2/a/AD7029

944">

What Effect They Have

Suppose you are surfing the web and load the home page for Commercial.com, a

commercial establishment selling all kinds of housewares on the web. If this site

contains a web bug for Market.com, a marketing and advertising firm, then the bug

places a file called a cookie on your system's hard drive. This cookie, usually

containing a numeric identifier unique to you, can be used to track your surfing

habits and build a demographic profile. In turn, that profile can be used to direct

you to retailers in whom you may be interested. For example, Commercial.com

may create a link to other sites, display a banner advertisement to attract you to its

partner sites, or offer you content customized for your needs.

http://www.bluenile.com/

How They Work

On the surface, web bugs do not seem to be malicious. They plant numeric data but

do not track personal information, such as your name and address. However, if you

purchase an item at Commercial.com, you may be asked to supply such

information. Thus, the web server can capture such things as

• your computer's IP address

• the kind of web browser you use

• your monitor's resolution

• other browser settings, such as whether you have enabled Java technology

• connection time

• previous cookie values

and more.

This information can be used to track where and when you read a document, what

your buying habits are, or what your personal information may be. More

maliciously, the web bug can be cleverly used to review the web server's log files

and determine your IP address—opening your system to hacking via the target IP

address.

What Was Learned

Web bugs raise questions about privacy, and some countries are considering

legislation to protect specifically from probes by web bugs. In the meantime, the

Privacy Foundation has made available a tool called Bugnosis to locate web bugs

and bring them to a user's attention.

In addition, users can invoke commands from their web browsers to block cookies

or at least make the users aware that a cookie is about to be placed on a system.

Each option offers some inconvenience. Cookies can be useful in recording

information that is used repeatedly, such as name and address. Requesting a

warning message can mean almost continual interruption as web bugs attempt to

place cookies on your system. Another alternative is to allow cookies but to clean

them off your system periodically, either by hand or by using a commercial

product.

3.4 TARGETED MALICIOUS CODE

So far, we have looked at anonymous code written to affect users and machines

indiscriminately. Another class of malicious code is written for a particular system,

for a particular application, and for a particular purpose. Many of the virus writers'

techniques apply, but there are also some new ones.

Trapdoors

A trapdoor is an undocumented entry point to a module. The trapdoor is inserted

during code development, perhaps to test the module, to provide “hooks” by which

to connect future modifications or enhancements or to allow access if the module

should fail in the future. In addition to these legitimate uses, trapdoors can allow a

programmer access to a program once it is placed in production.

Examples of Trapdoors

Because computing systems are complex structures, programmers usually develop

and test systems in a methodical, organized, modular manner, taking advantage of

the way the system is composed of modules or components. Often, each small

component of the system is tested first, separate from the other components, in a

step called unit testing, to ensure that the component works correctly by itself.

Then, components are tested together during integration testing, to see how they

function as they send messages and data from one to the other. Rather than paste

all the components together in a “big bang” approach, the testers group logical

clusters of a few components, and each cluster is tested in a way that allows testers

to control and understand what might make a component or its interface fail. (For a

more detailed look at testing, see Pfleeger [PFL01].)

To test a component on its own, the developer or tester cannot use the surrounding

routines that prepare input or work with output. Instead, it is usually necessary to

write “stubs” and “drivers,” simple routines to inject data in and extract results

from the component being tested. As testing continues, these stubs and drivers are

discarded because they are replaced by the actual components whose functions

they mimic. For example, the two modules MODA and MODB in Figure 3-10 are

being tested with the driver MAIN and the stubs SORT, OUTPUT, and

NEWLINE.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry570
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig10

Figure 3-10. Stubs and Drivers.

During both unit and integration testing, faults are usually discovered in

components. Sometimes, when the source of a problem is not obvious, the

developers insert debugging code in suspicious modules; the debugging code

makes visible what is going on as the components execute and interact. Thus, the

extra code may force components to display the intermediate results of a

computation, to print out the number of each step as it is executed, or to perform

extra computations to check the validity of previous components.

To control stubs or invoke debugging code, the programmer embeds special

control sequences in the component's design, specifically to support testing. For

example, a component in a text formatting system might be designed to recognize

commands such as .PAGE, .TITLE, and .SKIP. During testing, the programmer

may have invoked the debugging code, using a command with a series of

parameters of the form var = value. This command allows the programmer to

modify the values of internal program variables during execution, either to test

corrections to this component or to supply values passed to components this one

calls.

Command insertion is a recognized testing practice. However, if left in place after

testing, the extra commands can become a problem. They are undocumented

control sequences that produce side effects and can be used as trapdoors. In fact,

the Internet worm spread its infection using just such a debugging trapdoor in an

electronic mail program.

Poor error checking is another source of trapdoors. A good developer will design a

system so that any data value is checked before it is used; the checking involves

making sure the data type is correct as well as ensuring that the value is within

acceptable bounds. But in some poorly designed systems, unacceptable input may

not be caught and can be passed on for use in unanticipated ways. For example, a

component's code may check for one of three expected sequences; finding none of

the three, it should recognize an error. Suppose the developer uses a CASE

statement to look for each of the three possibilities. A careless programmer may

allow a failure simply to fall through the CASE without being flagged as an error.

The fingerd flaw exploited by the Morris worm occurs exactly that way: A C

library I/O routine fails to check whether characters are left in the input buffer

before returning a pointer to a supposed next character.

Hardware processor design provides another common example of this kind of

security flaw. Here, it often happens that not all possible binary opcode values

have matching machine instructions. The undefined opcodes sometimes implement

peculiar instructions, either because of an intent to test the processor design or

because of an oversight by the processor designer. Undefined opcodes are the

hardware counterpart of poor error checking for software.

As with viruses, trapdoors are not always bad. They can be very useful in finding

security flaws. Auditors sometimes request trapdoors in production programs to

insert fictitious but identifiable transactions into the system. Then, the auditors

trace the flow of these transactions through the system. However, trapdoors must

be documented, access to them should be strongly controlled, and they must be

designed and used with full understanding of the potential consequences.

Causes of Trapdoors

Developers usually remove trapdoors during program development, once their

intended usefulness is spent. However, trapdoors can persist in production

programs because the developers

• forget to remove them

• intentionally leave them in the program for testing

• intentionally leave them in the program for maintenance of the finished

program, or

• intentionally leave them in the program as a covert means of access to the

component after it becomes an accepted part of a production system

The first case is an unintentional security blunder, the next two are serious

exposures of the system's security, and the fourth is the first step of an outright

attack. It is important to remember that the fault is not with the trapdoor itself,

which can be a very useful technique for program testing, correction, and

maintenance. Rather, the fault is with the system development process, which does

not ensure that the trapdoor is “closed” when it is no longer needed. That is, the

trapdoor becomes a vulnerability if no one notices it or acts to prevent or control its

use in vulnerable situations.

In general, trapdoors are a vulnerability when they expose the system to

modification during execution. They can be exploited by the original developers or

used by anyone who discovers the trapdoor by accident or through exhaustive

trials. A system is not secure when someone believes that no one else would find

the hole.

Salami Attack

We noted in Chapter 1 an attack known as a salami attack. This approach gets its

name from the way odd bits of meat and fat are fused together in a sausage or

salami. In the same way, a salami attack merges bits of seemingly inconsequential

data to yield powerful results. For example, programs often disregard small

amounts of money in their computations, as when there are fractional pennies as

interest or tax is calculated. Such programs may be subject to a salami attack,

because the small amounts are shaved from each computation and accumulated

elsewhere—such as the programmer's bank account! The shaved amount is so

small that an individual case is unlikely to be noticed, and the accumulation can be

done so that the books still balance overall. However, accumulated amounts can

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01

add up to a tidy sum, supporting a programmer's early retirement or new car. It is

often the resulting expenditure, not the shaved amounts, that gets the attention of

the authorities.

Examples of Salami Attacks

The classic tale of a salami attack involves interest computation. Suppose your

bank pays 6.5 percent interest on your account. The interest is declared on an

annual basis but is calculated monthly. If, after the first month, your bank balance

is $102.87, the bank can calculate the interest in the following way. For a month

with 31 days, we divide the interest rate by 365 to get the daily rate, and then

multiply it by 31 to get the interest for the month. Thus, the total interest for 31

days is 31/365*0.065*102.87 = $0.5495726. Since banks deal only in full cents, a

typical practice is to round down if a residue is less than half a cent, and round up

if a residue is half a cent or more. However, few people check their interest

computation closely, and fewer still would complain about having the amount

$0.5495 rounded down to $0.54, instead of up to $0.55. Most programs that

perform computations on currency recognize that because of rounding, a sum of

individual computations may be a few cents different from the computation applied

to the sum of the balances.

What happens to these fractional cents? The computer security folk legend is told

of a programmer who collected the fractional cents and credited them to a single

account: hers! The interest program merely had to balance total interest paid to

interest due on the total of the balances of the individual accounts. Auditors will

probably not notice the activity in one specific account. In a situation with many

accounts, the roundoff error can be substantial, and the programmer's account

pockets this roundoff.

But salami attacks can net more and be far more interesting. For example, instead

of shaving fractional cents, the programmer may take a few cents from each

account, again assuming that no individual has the desire or understanding to

recompute the amount the bank reports. Most people finding a result a few cents

different from that of the bank would accept the bank's figure, attributing the

difference to an error in arithmetic or a misunderstanding of the conditions under

which interest is credited. Or a program might record a $20 fee for a particular

service, while the company standard is $15. If unchecked, the extra $5 could be

credited to an account of the programmer's choice. One attacker was able to make

withdrawals of $10,000 or more against accounts that had shown little recent

activity; presumably the attacker hoped the owners were ignoring their accounts.

Why Salami Attacks Persist

Computer computations are notoriously subject to small errors involving rounding

and truncation, especially when large numbers are to be combined with small ones.

Rather than document the exact errors, it is easier for programmers and users to

accept a small amount of error as natural and unavoidable. To reconcile accounts,

the programmer includes an error correction in computations. Inadequate auditing

of these corrections is one reason why the salami attack may be overlooked.

Usually the source code of a system is too large or complex to be audited for

salami attacks, unless there is reason to suspect one. Size and time are definitely on

the side of the malicious programmer.

Covert Channels: Programs That Leak Information

So far, we have looked at malicious code that performs unwelcome actions. Next,

we turn to programs that communicate information to people who should not

receive it. The communication travels unnoticed, accompanying other, perfectly

proper, communications. The general name for these extraordinary paths of

communication is covert channels. The concept of a covert channel comes from a

paper by Lampson [LAM73]; Millen [MIL88] presents a good taxonomy of covert

channels.

Suppose a group of students is preparing for an exam for which each question has

four choices (a, b, c, d); one student in the group, Sophie, understands the material

perfectly and she agrees to help the others. She says she will reveal the answers to

the questions, in order, by coughing once for answer “a,” sighing for answer “b,”

and so forth. Sophie uses a communications channel that outsiders may not notice;

her communications are hidden in an open channel. This communication is a

human example of a covert channel.

We begin by describing how a programmer can create covert channels. The attack

is more complex than one by a lone programmer accessing a data source. A

programmer who has direct access to data can usually just read the data and write it

to another file or print it out. If, however, the programmer is one step removed

from the data—for example, outside the organization owning the data—the

programmer must figure how to get at the data. One way is to supply a bona fide

program with a built-in Trojan horse; once the horse is enabled, it finds and

transmits the data. However, it would be too bold to generate a report labeled

“Send this report to Jane Smith in Camden, Maine”; the programmer has to arrange

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry417
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry491

to extract the data more surreptitiously. Covert channels are a means of extracting

data clandestinely.

Figure 3-11 shows a “service program” containing a Trojan horse that tries to copy

information from a legitimate user (who is allowed access to the information) to a

“spy” (who ought not be allowed to access the information). The user may not

know that a Trojan horse is running and may not be in collusion to leak

information to the spy.

Figure 3-11. Covert Channel Leaking Information.

Covert Channel Overview

A programmer should not have access to sensitive data that a program processes

after the program has been put into operation. For example, a programmer for a

bank has no need to access the names or balances in depositors' accounts.

Programmers for a securities firm have no need to know what buy and sell orders

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig11

exist for the clients. During program testing, access to the real data may be

justifiable, but not after the program has been accepted for regular use.

Still, a programmer might be able to profit from knowledge that a customer is

about to sell a large amount of a particular stock or that a large new account has

just been opened. Sometimes a programmer may want to develop a program that

secretly communicates some of the data on which it operates. In this case, the

programmer is the “spy,” and the “user” is whoever ultimately runs the program

written by the programmer.

How to Create Covert Channels

A programmer can always find ways to communicate data values covertly.

Running a program that produces a specific output report or displays a value may

be too obvious. For example, in some installations, a printed report might

occasionally be scanned by security staff before it is delivered to its intended

recipient.

If printing the data values themselves is too obvious, the programmer can encode

the data values in another innocuous report by varying the format of the output,

changing the lengths of lines, or printing or not printing certain values. For

example, changing the word “TOTAL” to “TOTALS” in a heading would not be

noticed, but this creates a 1-bit covert channel. The absence or presence of the S

conveys one bit of information. Numeric values can be inserted in insignificant

positions of output fields, and the number of lines per page can be changed.

Examples of these subtle channels are shown in Figure 3-12.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig12

Figure 3-12. Covert Channels.

Storage Channels

Some covert channels are called storage channels because they pass information by

using the presence or absence of objects in storage.

A simple example of a covert channel is the file lock channel. In multiuser

systems, files can be “locked” to prevent two people from writing to the same file

at the same time (which could corrupt the file, if one person writes over some of

what the other wrote). The operating system or database management system

allows only one program to write to a file at a time, by blocking, delaying, or

rejecting write requests from other programs. A covert channel can signal one bit

of information by whether or not a file is locked.

Remember that the service program contains a Trojan horse written by the spy but

run by the unsuspecting user. As shown in Figure 3-13, the service program reads

confidential data (to which the spy should not have access) and signals the data one

bit at a time by locking or not locking some file (any file, the contents of which are

arbitrary and not even modified). The service program and the spy need a common

timing source, broken into intervals. To signal a 1, the service program locks the

file for the interval; for a 0, it does not lock. Later in the interval the spy tries to

lock the file itself. If the spy program cannot lock the file, it knows the service

program must have, and thus it concludes the service program is signaling a 1; if

the spy program can lock the file, it knows the service program is signaling a 0.

Figure 3-13. File Lock Covert Channel.

This same approach can be used with disk storage quotas or other resources. With

disk storage, the service program signals a 1 by creating an enormous file, so large

that it consumes most of the available disk space. The spy program later tries to

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig13

create a large file. If it succeeds, the spy program infers that the service program

did not create a large file, and so the service program is signaling a 0; otherwise,

the spy program infers a 1. Similarly the existence of a file or other resource of a

particular name can be used to signal. Notice that the spy does not need access to a

file itself; the mere existence of the file is adequate to signal. The spy can

determine the existence of a file it cannot read by trying to create a file of the same

name; if the request to create is rejected, the spy determines that the service

program has such a file.

To signal more than one bit, the service program and the spy program signal one

bit in each time interval. Figure 3-14 shows a service program signaling the string

100 by toggling the existence of a file.

Figure 3-14. File Existence Channel Used to Signal 100.

In our final example, a storage channel uses a server of unique identifiers. Recall

that some bakeries, banks, and other commercial establishments have a machine to

distribute numbered tickets so that customers can be served in the order in which

they arrived. Some computing systems provide a similar server of unique

identifiers, usually numbers, used to name temporary files, to tag and track

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig14

messages, or to record auditable events. Different processes can request the next

unique identifier from the server. But two cooperating processes can use the server

to send a signal: The spy process observes whether the numbers it receives are

sequential or whether a number is missing. A missing number implies that the

service program also requested a number, thereby signaling 1.

In all of these examples, the service program and the spy need access to a shared

resource (such as a file, or even knowledge of the existence of a file) and a shared

sense of time. As shown, shared resources are common in multiuser environments,

where the resource may be as seemingly innocuous as whether a file exists, a

device is free, or space remains on disk. A source of shared time is also typically

available, since many programs need access to the current system time to set

timers, to record the time at which events occur, or to synchronize activities.

Transferring data one bit at a time must seem awfully slow. But computers operate

at such speeds that even the minuscule rate of 1 bit per millisecond (1/1000

second) would never be noticed but could easily be handled by two processes. At

that rate of 1000 bits per second (which is unrealistically conservative), this entire

book could be leaked in about two days. Increasing the rate by an order of

magnitude or two, which is still quite conservative, reduces the transfer time to

minutes.

Timing Channels

Other covert channels, called timing channels, pass information by using the speed

at which things happen. Actually, timing channels are shared resource channels in

which the shared resource is time.

A service program uses a timing channel to communicate by using or not using an

assigned amount of computing time. In the simple case, a multiprogrammed

system with two user processes divides time into blocks and allocates blocks of

processing alternately to one process and the other. A process is offered processing

time, but if the process is waiting for another event to occur and has no processing

to do, it rejects the offer. The service process either uses its block (to signal a 1) or

rejects its block (to signal a 0). Such a situation is shown in Figure 3-15, first with

the service process and the spy's process alternating, and then with the service

process communicating the string 101 to the spy's process. In the second part of the

example, the service program wants to signal 0 in the third time block. It will do

this by using just enough time to determine that it wants to send a 0 and then

pause. The spy process then receives control for the remainder of the time block.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fig15

Figure 3-15. Covert Timing Channel.

So far, all examples have involved just the service process and the spy's process.

But in fact, multiuser computing systems typically have more than just two active

processes. The only complications added by more processes are that the two

cooperating processes must adjust their timings and deal with the possible

interference from others. For example, with the unique identifier channel, other

processes will also request identifiers. If on average n other processes will

request m identifiers each, then the service program will request more

than n*m identifiers for a 1 and no identifiers for a 0. The gap dominates the effect

of all other processes. Also, the service process and the spy's process can use

sophisticated coding techniques to compress their communication and detect and

correct transmission errors caused by the effects of other unrelated processes.

Identifying Potential Covert Channels

In this description of covert channels, ordinary things, such as the existence of a

file or time used for a computation, have been the medium through which a covert

channel communicates. Covert channels are not easy to find because these media

are so numerous and frequently used. Two relatively old techniques remain the

standards for locating potential covert channels. One works by analyzing the

resources of a system, and the other works at the source code level.

Shared Resource Matrix

Since the basis of a covert channel is a shared resource, the search for potential

covert channels involves finding all shared resources and determining which

processes can write to and read from the resources. The technique was introduced

by Kemmerer [KEM83]. Although laborious, the technique can be automated.

To use this technique, you construct a matrix of resources (rows) and processes

that can access them (columns). The matrix entries are R for “can read (or observe)

the resource” and M for “can set (or modify, create, delete) the resource.” For

example, the file lock channel has the matrix shown in Table 3-3.

Table 3-3. Shared Resource Matrix.

 Service Process Spy's Process

Locked R, M R, M

Confidential data R

You then look for two columns and two rows having the following pattern:

This pattern identifies two resources and two processes such that the second

process is not allowed to read from the second resource. However, the first process

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry388
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03table03

can pass the information to the second by reading from the second resource and

signaling the data through the first resource. Thus, this pattern implies the potential

information flow as shown here.

Next, you complete the shared resource matrix by adding these implied

information flows, and analyze it for undesirable flows. Thus, you can tell that the

spy's process can read the confidential data by using a covert channel through the

file lock, as shown in Table 3-4.

Table 3-4. Complete Information Flow Matrix.

 Service Process Spy's Process

Locked R, M R, M

Confidential data R R

Information Flow Method

Denning [DEN76a] derived a technique for flow analysis from a program's syntax.

Conveniently, this analysis can be automated within a compiler so that information

flow potentials can be detected as a program is under development.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03table04
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry177

Using this method, we can recognize that there are nonobvious flows of

information between statements in a program. For example, we know that the

statement B:=A, which assigns the value of A to the variable B, obviously supports

an information flow from A to B. This type of flow is called an “explicit flow.”

Similarly, the pair of statements B:=A; C:=B indicates an information flow from A

to C (by way of B). The conditional statement IF D=1 THEN B:=A has two flows:

from A to B because of the assignment, but also from D to B, because the value of

B can change if and only if the value of D is 1. This second flow is called an

“implicit flow.”

The statement B:=fcn(args) supports an information flow from the function fcn to

B. At a superficial level, we can say that there is a potential flow from the

arguments args to B. However, we could more closely analyze the function to

determine whether the function's value depended on all of its arguments and

whether any global values, not part of the argument list, affected the function's

value. These information flows can be traced from the bottom up: At the bottom

there must be functions that call no other functions, and we can analyze them and

then use those results to analyze the functions that call them. By looking at the

elementary functions first, we could say definitively whether there is a potential

information flow from each argument to the function's result and whether there are

any flows from global variables. Table 3-5 lists several examples of syntactic

information flows.

Table 3-5. Syntactic Information Flows.

Statement Flow

B:=A from A to B

IF C=1 THEN B:=A from A to B; from C to B

FOR K:=1 to N DO stmts END from K to stmts

WHILE K>0 DO stmts END from K to stmts

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03table05

Table 3-5. Syntactic Information Flows.

Statement Flow

CASE (exp) val1: stmts from exp to stmts

B:=fcn(args) from fcn to B

OPEN FILE f none

READ (f, X) from file f to X

WRITE (f, X) from X to file f

Finally, we put all the pieces together to show which outputs are affected by which

inputs. Although this analysis sounds frightfully complicated, it can be automated

during the syntax analysis portion of compilation. This analysis can also be

performed on the higher-level design specification.

Covert Channel Conclusions

Covert channels represent a real threat to secrecy in information systems. A covert

channel attack is fairly sophisticated, but the basic concept is not beyond the

capabilities of even an average programmer. Since the subverted program can be

practically any user service, such as a printer utility, planting the compromise can

be as easy as planting a virus or any other kind of Trojan horse. And recent

experience has shown how readily viruses can be planted.

Capacity and speed are not problems; our estimate of 1000 bits per second is

unrealistically low, but even at that rate much information leaks swiftly. With

modern hardware architectures, certain covert channels inherent in the hardware

design have capacities of millions of bits per second. And the attack does not

require significant finance. Thus, the attack could be very effective in certain

situations involving highly sensitive data.

For these reasons, security researchers have worked diligently to develop

techniques for closing covert channels. The closure results have been bothersome;

in ordinarily open environments, there is essentially no control over the subversion

of a service program, nor is there an effective way of screening such programs for

covert channels. And other than in a few very high security systems, operating

systems cannot control the flow of information from a covert channel. The

hardware-based channels cannot be closed, given the underlying hardware

architecture.

For variety (or sobriety), Kurak and McHugh [KUR92] present a very interesting

analysis of covert signaling through graphic images.[4] In their work they

demonstrate that two different images can be combined by some rather simple

arithmetic on the bit patterns of digitized pictures. The second image in a printed

copy is undetectable to the human eye, but it can easily be separated and

reconstructed by the spy receiving the digital version of the image.

[4] This form of data communication is called steganography, which means the art

of concealing data in clear sight.

Although covert channel demonstrations are highly speculative—reports of actual

covert channel attacks just do not exist—the analysis is sound. The mere

possibility of their existence calls for more rigorous attention to other aspects of

security, such as program development analysis, system architecture analysis, and

review of output.

3.5. CONTROLS AGAINST PROGRAM THREATS

The picture we have just described is not pretty. There are many ways a program
can fail and many ways to turn the underlying faults into security failures. It is of
course better to focus on prevention than cure; how do we use controls
during software development—the specifying, designing, writing, and testing of
the program—to find and eliminate the sorts of exposures we have discussed?
The discipline of software engineering addresses this question more globally,
devising approaches to ensure the quality of software. In this book, we provide an
overview of several techniques that can prove useful in finding and fixing security

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry412
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec4.html#ch03fn04

flaws. For more depth, we refer you to texts such as Pfleeger's [PFL01] and
[PFL01a].

In this section we look at three types of controls: developmental, operating
system, and administrative. We discuss each in turn.

Developmental Controls

Many controls can be applied during software development to ferret out and fix
problems. So let us begin by looking at the nature of development itself, to see
what tasks are involved in specifying, designing, building, and testing software.

The Nature of Software Development

Software development is often considered a solitary effort; a programmer sits
with a specification or design and grinds out line after line of code. But in fact,
software development is a collaborative effort, involving people with different
skill sets who combine their expertise to produce a working product.
Development requires people who can

• specify the system, by capturing the requirements and building a model of
how the system should work from the users' point of view

• design the system, by proposing a solution to the problem described by the
requirements and building a model of the solution

• implement the system, by using the design as a blueprint for building a
working solution

• test the system, to ensure that it meets the requirements and implements
the solution as called for in the design

• review the system at various stages, to make sure that the end products are
consistent with the specification and design models

• document the system, so that users can be trained and supported

• manage the system, to estimate what resources will be needed for
development and to track when the system will be done

• maintain the system, tracking problems found, changes needed, and
changes made, and evaluating their effects on overall quality and

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry570
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry571

functionality

One person could do all these things. But more often than not, a team of
developers works together to perform these tasks. Sometimes a team member
does more than one activity; a tester can take part in a requirements review, for
example, or an implementer can write documentation. Each team is different,
and team dynamics play a large role in the team's success.

We can examine both product and process to see how each contributes to quality
and in particular to security as an aspect of quality. Let us begin with the product,
to get a sense of how we recognize high-quality secure software.

Modularity, Encapsulation, and Information Hiding

Code usually has a long shelf-life, and it is enhanced over time as needs change
and faults are found and fixed. For this reason, a key principle of software
engineering is to create a design or code in small, self-contained units,
called components or modules; when a system is written this way, we say that it
is modular. Modularity offers advantages for program development in general
and security in particular.

If a component is isolated from the effects of other components, then it is easier
to trace a problem to the fault that caused it and to limit the damage the fault
causes. It is also easier to maintain the system, since changes to an isolated
component do not affect other components. And it is easier to see where
vulnerabilities may lie if the component is isolated. We call this
isolation encapsulation.

Information hiding is another characteristic of modular software. When
information is hidden, each component hides its precise implementation or some
other design decision from the others. Thus, when a change is needed, the overall
design can remain intact while only the necessary changes are made to particular
components.

Let us look at these characteristics in more detail.

Modularity

Modularization is the process of dividing a task into subtasks. This division is
done on a logical or functional basis. Each component performs a separate,
independent part of the task. Modularity is depicted in Figure 3-16. The goal is to
have each component meet four conditions:

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03fig16

• single-purpose: performs one function

• small: consists of an amount of information for which a human can readily grasp
both structure and content

• simple: is of a low degree of complexity so that a human can readily understand

the purpose and structure of the module

• independent: performs a task isolated from other modules

Figure 3-16. Modularity.

Often, other characteristics, such as having a single input and single output or
using a limited set of programming constructs, help a component be modular.
From a security standpoint, modularity should improve the likelihood that an
implementation is correct.

In particular, smallness is an important quality that can help security analysts
understand what each component does. That is, in good software, design and
program units should be only as large as needed to perform their required
functions. There are several advantages to having small, independent
components.

• Maintenance. If a component implements a single function, it can be replaced

easily with a revised one if necessary. The new component may be needed because
of a change in requirements, hardware, or environment. Sometimes the

replacement is an enhancement, using a smaller, faster, more correct, or otherwise

better module. The interfaces between this component and the remainder of the

design or code are few and well described, so the effects of the replacement are

evident.
• Understandability. A system composed of many small components is usually

easier to comprehend than one large, unstructured block of code.

• Reuse. Components developed for one purpose can often be reused in other

systems. Reuse of correct, existing design or code components can significantly

reduce the difficulty of implementation and testing.
• Correctness. A failure can be quickly traced to its cause if the components perform

only one task each.

• Testing. A single component with well-defined inputs, output, and function can be

tested exhaustively by itself, without concern for its effects on other modules

(other than the expected function and output, of course).

Security analysts must be able to understand each component as an independent
unit and be assured of its limited effect on other components.

A modular component usually has high cohesion and low coupling. By cohesion,
we mean that all the elements of a component have a logical and functional
reason for being there; every aspect of the component is tied to the component's
single purpose. A highly cohesive component has a high degree of focus on the
purpose; a low degree of cohesion means that the component's contents are an
unrelated jumble of actions, often put together because of time-dependencies or
convenience.

Coupling refers to the degree with which a component depends on other
components in the system. Thus, low or loose coupling is better than high or tight
coupling, because the loosely coupled components are free from unwitting
interference from other components. This difference in coupling is shown
in Figure 3-17.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03fig17

Figure 3-17. Coupling.

Encapsulation

Encapsulation hides a component's implementation details, but it does not
necessarily mean complete isolation. Many components must share information
with other components, usually with good reason. However, this sharing is
carefully documented so that a component is affected only in known ways by
others in the system. Sharing is minimized so that the fewest interfaces possible
are used. Limited interfaces reduce the number of covert channels that can be
constructed.

An encapsulated component's protective boundary can be translucent or
transparent, as needed. Berard [BER00] notes that encapsulation is the
“technique for packaging the information [inside a component] in such a way as
to hide what should be hidden and make visible what is intended to be visible.”

Information Hiding

Developers who work where modularization is stressed can be sure that other
components will have limited effect on the ones they write. Thus, we can think of
a component as a kind of black box, with certain well-defined inputs and outputs
and a well-defined function. Other components' designers do not need to
know how the module completes its function; it is enough to be assured that the
component performs its task in some correct manner.

This concealment is the information hiding, depicted in Figure 3-18. Information
hiding is desirable, because developers cannot easily and maliciously alter the
components of others if they do not know how the components work.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry65
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03fig18

Figure 3-18. Information Hiding.

These three characteristics—modularity, encapsulation, and information hiding—
are fundamental principles of software engineering. They are also good security
practices because they lead to modules that can be understood, analyzed, and
trusted.

Peer Reviews

We turn next to the process of developing software. Certain practices and
techniques can assist us in finding real and potential security flaws (as well as
other faults) and fixing them before the system is turned over to the users. Of the
many practices available for building what they call “solid software,” Pfleeger et
al. recommend several key techniques: [PFL01a]

• peer reviews

• hazard analysis
• testing

• good design

• prediction

• static analysis
• configuration management

• analysis of mistakes

Here, we look at each practice briefly, and we describe its relevance to security
controls. We begin with peer reviews.

You have probably been doing some form of review for as many years as you have
been writing code: desk-checking your work or asking a colleague to look over a
routine to ferret out any problems. Today, a software review is associated with
several formal process steps to make it more effective, and we review any artifact

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry571

of the development process, not just code. But the essence of a review remains
the same: sharing a product with colleagues able to comment about its
correctness. There are careful distinctions among three types of peer reviews:

• Review: The artifact is presented informally to a team of reviewers; the goal is

consensus and buy-in before development proceeds further.

• Walk-through: The artifact is presented to the team by its creator, who leads and
controls the discussion. Here, education is the goal, and the focus is on learning

about a single document.

• Inspection: This more formal process is a detailed analysis in which the artifact is

checked against a prepared list of concerns. The creator does not lead the

discussion, and the fault identification and correction are often controlled by
statistical measurements.

A wise engineer who finds a fault can deal with it in at least three ways:

1. by learning how, when and why errors occur,

2. by taking action to prevent mistakes, and

3. by scrutinizing products to find the instances and effects of errors that were

missed.

Peer reviews address this problem directly. Unfortunately, many organizations
give only lip service to peer review, and reviews are still not part of mainstream
software engineering activities.

But there are compelling reasons to do reviews. An overwhelming amount of
evidence suggests that various types of peer review in software engineering can
be extraordinarily effective. For example, early studies at Hewlett-Packard in the
1980s revealed that those developers performing peer review on their projects
enjoyed a very significant advantage over those relying only on traditional
dynamic testing techniques, whether black-box or white-box. Figure 3-
19 compares the fault discovery rate (that is, faults discovered per hour) among
white-box testing, black-box testing, inspections, and software execution. It is
clear that inspections discovered far more faults in the same period of time than
other alternatives. [GRA87] This result is particularly compelling for large, secure
systems, where live running for fault discovery may not be an option.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03fig19
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03fig19
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry294

Figure 3-19. Fault Discovery Rate Reported at Hewlett-Packard.

The effectiveness of reviews is reported repeatedly by researchers and
practitioners. For instance, Jones [JON91] summarized the data in his large
repository of project information to paint a picture of how reviews and
inspections find faults relative to other discovery activities. Because products
vary so wildly by size, Table 3-6 presents the fault discovery rates relative to the
number of thousands of lines of code in the delivered product.

Table 3-6. Faults Found During Discovery Activities.

Discovery Activity Faults Found (Per Thousand Lines of Code)

Requirements review 2.5

Design review 5.0

Code inspection 10.0

Integration test 3.0

Acceptance test 2.0

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry367
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03table06

The inspection process involves several important steps: planning, individual
preparation, a logging meeting, rework, and reinspection. Details about how to
perform reviews and inspections can be found in software engineering books
such as [PFL01] and [PFL01a].

During the review process, it is important to keep careful track of what each
reviewer discovers and how quickly he or she discovers it. This log suggests not
only whether particular reviewers need training but also whether certain kinds of
faults are harder to find than others. Additionally, a root cause analysis for each
fault found may reveal that the fault could have been discovered earlier in the
process. For example, a requirements fault that surfaces during a code review
should probably have been found during a requirements review. If there are no
requirements reviews, you can start performing them. If there are requirements
reviews, you can examine why this fault was missed and then improve the
requirements review process.

The fault log can also be used to build a checklist of items to be sought in future
reviews. The review team can use the checklist as a basis for questioning what can
go wrong and where. In particular, the checklist can remind the team of security
breaches, such as unchecked buffer overflows, that should be caught and fixed
before the system is placed in the field. A rigorous design or code review can
locate trapdoors, Trojan horses, salami attacks, worms, viruses, and other
program flaws. A crafty programmer can conceal some of these flaws, but the
chance of discovery rises when competent programmers review the design and
code, especially when the components are small and encapsulated. Management
should use demanding reviews throughout development to ensure the ultimate
security of the programs.

Hazard Analysis

Hazard analysis is a set of systematic techniques intended to expose potentially
hazardous system states. In particular, it can help us expose security concerns
and then identify prevention or mitigation strategies to address them. That is,
hazard analysis ferrets out likely causes of problems so that we can then apply an
appropriate technique for preventing the problem or softening its likely
consequences. Thus, it usually involves developing hazard lists, as well as
procedures for exploring “what if” scenarios to trigger consideration of
nonobvious hazards. The sources of problems can be lurking in any artifacts of
the development or maintenance process, not just in the code, so a hazard
analysis must be broad in its domain of investigation; in other words, hazard

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry570
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry571

analysis is a system issue, not just a code issue. Similarly, there are many kinds of
problems, ranging from incorrect code to unclear consequences of a particular
action. A good hazard analysis takes all of them into account.

Although hazard analysis is generally good practice on any project, it is required
in some regulated and critical application domains, and it can be invaluable for
finding security flaws. It is never too early to be thinking about the sources of
hazards; the analysis should begin when you first start thinking about building a
new system or when someone proposes a significant upgrade to an existing
system. Hazard analysis should continue throughout the system life cycle; you
must identify potential hazards that can be introduced during system design,
installation, operation, and maintenance.

A variety of techniques support the identification and management of potential
hazards. Among the most effective are hazard and operability
studies (HAZOP), failure modes and effects analysis (FMEA), and fault tree
analysis (FTA). HAZOP is a structured analysis technique originally developed for
the process control and chemical plant industries. Over the last few years it has
been adapted to discover potential hazards in safety-critical software systems.
FMEA is a bottom-up technique applied at the system component level. A team
identifies each component's possible faults or fault modes; then, it determines
what could trigger the fault and what systemwide effects each fault might have.
By keeping system consequences in mind, the team often finds possible system
failures that are not made visible by other analytical means. FTA complements
FMEA. It is a top-down technique that begins with a postulated hazardous
system malfunction. Then, the FTA team works backwards to identify the
possible pre cursors to the mishap. By tracing back from a specific hazardous
malfunction, we can locate unexpected contributors to mishaps, and we then look
for opportunities to mitigate the risks.

Each of these techniques is clearly useful for finding and preventing security
breaches. We decide which technique is most appropriate by understanding how
much we know about causes and effects. For example, Table 3-7 suggests that
when we know the cause and effect of a given problem, we can strengthen the
description of how the system should behave. This clearer picture will help
requirements analysts understand how a potential problem is linked to other
requirements. It also helps designers understand exactly what the system should
do and helps testers know how to test to verify that the system is behaving
properly. If we can describe a known effect with unknown cause, we use
deductive techniques such as fault tree analysis to help us understand the likely
causes of the unwelcome behavior. Conversely, we may know the cause of a
problem but not understand all the effects; here, we use inductive techniques
such as failure modes and effects analysis to help us trace from cause to all
possible effects. For example, suppose we know that a subsystem is unprotected

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03table07

and might lead to a security failure, but we do not know how that failure will
affect the rest of the system. We can use FMEA to generate a list of possible
effects and then evaluate the trade-offs between extra protection and possible
problems. Finally, to find problems about which we may not yet be aware, we can
perform an exploratory analysis such as a hazard and operability study.

Table 3-7. Perspectives for Hazard Analysis (adapted from [PFL01]).

 Known Cause Unknown Cause

Known

effect

Description of system behavior Deductive analysis, including

fault tree analysis

Unknown

effect

Inductive analysis, including

failure modes and effects

analysis

Exploratory analysis,

including hazard and

operability studies

We see in Chapter 8 that hazard analysis is also useful for determining
vulnerabilities and mapping them to suitable controls.

Testing

Testing is a process activity that homes in on product quality: making the product
failure free or failure tolerant. Each software problem (especially when it relates
to security) has the potential not only for making software fail but also for
adversely affecting a business or a life. Thomas Young, head of NASA's
investigation of the Mars lander failure, noted that “One of the things we kept in
mind during the course of our review is that in the conduct of space missions, you
get only one strike, not three. Even if thousands of functions are carried out
flawlessly, just one mistake can be catastrophic to a mission.” [NAS00] This same
sentiment is true for security: The failure of one control exposes a vulnerability
that is not ameliorated by any number of functioning controls. Testers improve
software quality by finding as many faults as possible and by writing up their
findings carefully so that developers can locate the causes and repair the
problems if possible.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry570
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch08.html#ch08
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry508

Testing usually involves several stages. First, each program component is tested
on its own, isolated from the other components in the system. Such testing,
known as module testing, component testing, or unit testing, verifies that the
component functions properly with the types of input expected from a study of
the component's design. Unit testing is done in a controlled environment
whenever possible so that the test team can feed a predetermined set of data to
the component being tested and observe what output actions and data are
produced. In addition, the test team checks the internal data structures, logic,
and boundary conditions for the input and output data.

When collections of components have been subjected to unit testing, the next
step is ensuring that the interfaces among the components are defined and
handled properly. Indeed, interface mismatch can be a significant security
vulnerability. Integration testing is the process of verifying that the system
components work together as described in the system and program design
specifications.

Once we are sure that information is passed among components in accordance
with the design, we test the system to ensure that it has the desired functionality.
A function test evaluates the system to determine whether the functions
described by the requirements specification are actually performed by the
integrated system. The result is a functioning system.

The function test compares the system being built with the functions described in
the developers' requirements specification. Then, a performance test compares
the system with the remainder of these software and hardware requirements. It is
during the function and performance tests that security requirements are
examined, and the testers confirm that the system is as secure as it is required to
be.

When the performance test is complete, developers are certain that the system
functions according to their understanding of the system description. The next
step is conferring with the customer to make certain that the system works
according to customer expectations. Developers join the customer to perform
an acceptance test, in which the system is checked against the customer's
requirements description. Upon completion of acceptance testing, the accepted
system is installed in the environment in which it will be used. A final installation
test is run to make sure that the system still functions as it should. However,
security requirements often state that a system should not do something.
As Sidebar 3-6 demonstrates, it is difficult to demonstrate absence rather than
presence.

The objective of unit and integration testing is to ensure that the code
implemented the design properly; that is, that the programmers have written

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03sb06

code to do what the designers intended. System testing has a very different
objective: to ensure that the system does what the customer wants it to do.
Regression testing, an aspect of system testing, is particularly important for
security purposes. After a change is made to enhance the system or fix a
problem, regression testing ensures that all remaining functions are still working
and performance has not been degraded by the change.

Each of the types of tests listed here can be performed from two perspectives:
black box and clear box (sometimes called white box). Black-box testing treats a
system or its components as black boxes; testers cannot “see inside” the system,
so they apply particular inputs and verify that they get the expected
output. Clear-box testing allows visibility. Here, testers can examine the design
and code directly, generating test cases based on the code's actual construction.
Thus, clear-box testing knows that component X uses CASE statements and can
look for instances in which the input causes control to drop through to an
unexpected line. Black-box testing must rely more on the required inputs and
outputs because the actual code is not available for scrutiny.

Sidebar 3-6 Absence vs. Presence

Pfleeger [PFL97] points out that security requirements resemble those for any
other computing task, with one seemingly insignificant difference. Whereas

most requirements say “the system will do this,” security requirements add

the phrase “and nothing more.” As we pointed out in Chapter 1, security

awareness calls for more than a little caution when a creative developer takes
liberties with the system's specification. Ordinarily, we do not worry if a

programmer or designer adds a little something extra. For instance, if the

requirement calls for generating a file list on a disk, the “something more”

might be sorting the list into alphabetical order or displaying the date it was

created. But we would never expect someone to meet the requirement by
displaying the list and then erasing all the files on the disk!

If we could determine easily whether an addition was harmful, we could just

disallow harmful additions. But unfortunately we cannot. For security

reasons, we must state explicitly the phrase “and nothing more” and leave

room for negotiation in requirements definition on any proposed extensions.
It is natural for programmers to want to exercise their creativity in extending

and expanding the requirements. But apparently benign choices, such as

storing a value in a global variable or writing to a temporary file, can have

serious security implications. And sometimes the best design approach for

security is counterintuitive. For example, one cryptosystem attack depends on
measuring the time to perform an encryption. That is, an efficient

implementation can undermine the system's security. The solution, oddly

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry580
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01

enough, is to artificially pad the encryption process with unnecessary

computation so that short computations complete as slowly as long ones.

In another instance, an enthusiastic programmer added parity checking to a
cryptographic procedure. Because the keys were generated randomly, the

result was that 255 of the 256 encryptions failed the parity check, leading to

the substitution of a fixed key—so that 255 of every 256 encryptions were

being performed under the same key!

No technology can automatically distinguish between malicious and benign

code. For this reason, we have to rely on a combination of approaches,

including human-intensive ones, to help us detect when we are going beyond

the scope of the requirements and threatening the system's security.

The mix of techniques appropriate for testing a given system depends on the
system's size, application domain, amount of risk, and many other factors. But
understanding the effectiveness of each technique helps us know what is right for
each particular system. For example, Olsen [OLS93] describes the development
at Contel IPC of a system containing 184,000 lines of code. He tracked faults
discovered during various activities, and found differences:

• 17.3 percent of the faults were found during inspections of the system design

• 19.1 percent during component design inspection

• 15.1 percent during code inspection

• 29.4 percent during integration testing

• 16.6 percent during system and regression testing

Only 0.1 percent of the faults were revealed after the system was placed in the
field. Thus, Olsen's work shows the importance of using different techniques to
uncover different kinds of faults during development; it is not enough to rely on a
single method for catching all problems.

Who does the testing? From a security standpoint, independent testing is highly
desirable; it may prevent a developer from attempting to hide something in a
routine, or keep a subsystem from controlling the tests that will be applied to it.
Thus, independent testing increases the likelihood that a test will expose the
effect of a hidden feature.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry551

Good Design

We saw earlier in this chapter that modularity, information hiding, and
encapsulation are characteristics of good design. Several design-related process
activities are particularly helpful in building secure software:

• using a philosophy of fault tolerance

• having a consistent policy for handling failures

• capturing the design rationale and history
• using design patterns

We describe each of these activities in turn.

Designs should try to anticipate faults and handle them in ways that minimize
disruption and maximize safety and security. Ideally, we want our system to be
fault free. But in reality, we must assume that the system will fail, and we make
sure that unexpected failure does not bring the system down, destroy data, or
destroy life. For example, rather than waiting for the system to fail (called passive
fault detection), we might construct the system so that it reacts in an acceptable
way to a failure's occurrence. Active fault detection could be practiced by, for
instance, adopting a philosophy of mutual suspicion. Instead of assuming that
data passed from other systems or components are correct, we can always check
that the data are within bounds and of the right type or format. We can also
use redundancy, comparing the results of two or more processes to see that they
agree before using their result in a task.

If correcting a fault is too risky, inconvenient, or expensive, we can choose
instead to practice fault tolerance: isolating the damage caused by the fault and
minimizing disruption to users. Although fault tolerance is not always thought of
as a security technique, it supports the idea, discussed in Chapter 8, that our
security policy allows us to choose to mitigate the effects of a security problem
instead of preventing it. For example, rather than install expensive security
controls, we may choose to accept the risk that important data may be corrupted.
If in fact a security fault destroys important data, we may decide to isolate the
damaged data set and automatically revert to a backup data set so that users can
continue to perform system functions.

More generally, we can design or code defensively, just as we drive defensively, by
constructing a consistent policy for handling failures. Typically, failures include

• failing to provide a service

• providing the wrong service or data

• corrupting data

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch08.html#ch08

We can build into the design a particular way of handling each problem, selecting
from one of three ways:

1. Retrying: restoring the system to its previous state and performing the service

again, using a different strategy

2. Correcting: restoring the system to its previous state, correcting some system
characteristic, and performing the service again, using the same strategy

3. Reporting: restoring the system to its previous state, reporting the problem to an

error-handling component, and not providing the service again

This consistency of design helps us check for security vulnerabilities; we look for
instances that are different from the standard approach.

Design rationales and history tell us the reasons the system is built one way
instead of another. Such information helps us as the system evolves, so we can
integrate the design of our security functions without compromising the integrity
of the system's overall design.

Moreover, the design history enables us to look for patterns, noting what designs
work best in which situations. For example, we can reuse patterns that have been
successful in preventing buffer overflows, in ensuring data integrity, or in
implementing user password checks.

Prediction

Among the many kinds of prediction we do during software development, we try
to predict the risks involved in building and using the system. As we see in depth
in Chapter 8, we must postulate which unwelcome events might occur and then
make plans to avoid them or at least mitigate their effects. Risk prediction and
management are especially important for security, where we are always dealing
with unwanted events that have negative consequences. Our predictions help us
decide which controls to use and how many. For example, if we think the risk of a
particular security breach is small, we may not want to invest a large amount of
money, time, or effort in installing sophisticated controls. Or we may use the
likely risk impact to justify using several controls at once, a technique called
“defense in depth.”

Static Analysis

Before a system is up and running, we can examine its design and code to locate
and repair security flaws. We noted earlier that the peer review process involves
this kind of scrutiny. But static analysis is more than peer review, and it is usually
performed before peer review. We can use tools and techniques to examine the
characteristics of design and code to see if the characteristics warn us of possible

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch08.html#ch08

faults lurking within. For example, a large number of levels of nesting may
indicate that the design or code is hard to read and understand, making it easy
for a malicious developer to bury dangerous code deep within the system.

To this end, we can examine several aspects of the design and code:

• control flow structure

• data flow structure

• data structure

The control flow is the sequence in which instructions are executed, including
iterations and loops. This aspect of design or code can also tell us how often a
particular instruction or routine is executed.

Data flow follows the trail of a data item as it is accessed and modified by the
system. Many times, transactions applied to data are complex, and we use data
flow measures to show us how and when each data item is written, read, and
changed.

The data structure is the way in which the data are organized, independent of the
system itself. For instance, if the data are arranged as lists, stacks, or queues, the
algorithms for manipulating them are likely to be well understood and well
defined.

There are many approaches to static analysis, especially because there are so
many ways to create and document a design or program. Automated tools are
available to generate not only numbers (such as depth of nesting or cyclomatic
number) but also graphical depictions of control flow, data relationships, and the
number of paths from one line of code to another. These aids can help us see how
a flaw in one part of a system can affect other parts.

Configuration Management

When we develop software, it is important to know who is making which changes
to what and when:

• corrective changes: maintaining control of the system's day-to-day functions

• adaptive changes: maintaining control over system modifications

• perfective changes: perfecting existing acceptable functions

• preventive changes: preventing system performance from degrading to
unacceptable levels

We want some degree of control over the software changes so that one change
does not inadvertently undo the effect of a previous change. And we want to

control what is often a proliferation of different versions and releases. For
instance, a product might run on several different platforms or in several
different environments, necessitating different code to support the same
functionality. Configuration management is the process by which we control
changes during development and maintenance, and it offers several advantages
in security. In particular, configuration management scrutinizes new and
changed code to ensure, among other things, that security flaws have not been
inserted, intentionally or accidentally.

Four activities are involved in configuration management:

1. configuration identification
2. configuration control and change management

3. configuration auditing

4. status accounting

Configuration identification sets up baselines to which all other code will be
compared after changes are made. That is, we build and document an inventory
of all components that comprise the system. The inventory includes not only the
code you and your colleagues may have created, but also database management
systems, third-party software, libraries, test cases, documents, and more. Then,
we “freeze” the baseline and carefully control what happens to it. When a change
is proposed and made, it is described in terms of how the baseline changes.

Configuration control and configuration management ensure we can coordinate
separate, related versions. For example, there may be closely related versions of a
system to execute on 16-bit and 32-bit processors. Three ways to control the
changes are separate files, deltas, and conditional compilation. If we use separate
files, we have different files for each release or version. For example, we might
build an encryption system in two configurations: one that uses a short key
length, to comply with the law in certain countries, and another that uses a long
key. Then, version 1 may be composed of components A1 through Ak and B1, while
version 2 is A1 through Ak and B2, where B1 and B2 do key length. That is, the
versions are the same except for the separate key processing files.

Alternatively, we can designate a particular version as the main version of a
system, and then define other versions in terms of what is different. The
difference file, called a delta, contains editing commands to describe the ways to
transform the main version into the variation.

Finally, we can do conditional compilation, whereby a single code component
addresses all versions, relying on the compiler to determine which statements to
apply to which versions. This approach seems appealing for security applications

because all the code appears in one place. However, if the variations are very
complex, the code may be very difficult to read and understand.

Once a configuration management technique is chosen and applied, the system
should be audited regularly. A configuration audit confirms that the baseline is
complete and accurate, that changes are recorded, that recorded changes are
made, and that the actual software (that is, the software as used in the field) is
reflected accurately in the documents. Audits are usually done by independent
parties taking one of two approaches: reviewing every entry in the baseline and
comparing it with the software in use or sampling from a larger set just to
confirm compliance. For systems with strict security constraints, the first
approach is preferable, but the second approach may be more practical.

Finally, status accounting records information about the components: where they
came from (for instance, purchased, reused, or written from scratch), the current
version, the change history, and pending change requests.

All four sets of activities are performed by a configuration and change control
board, or CCB. The CCB contains representatives from all organizations with a
vested interest in the system, perhaps including customers, users, and
developers. The board reviews all proposed changes and approves changes based
on need, design integrity, future plans for the software, cost, and more. The
developers implementing and testing the change work with a program librarian
to control and update relevant documents and components; they also write
detailed documentation about the changes and test results.

Configuration management offers two advantages to those of us with security
concerns: protecting against unintentional threats and guarding against
malicious ones. Both goals are addressed when the configuration management
processes protect the integrity of programs and documentation. Because changes
occur only after explicit approval from a configuration management authority, all
changes are also carefully evaluated for side effects. With configuration
management, previous versions of programs are archived, so a developer can
retract a faulty change when necessary.

Malicious modification is made quite difficult with a strong review and
configuration management process in place. In fact, as presented in Sidebar 3-7,
poor configuration control has resulted in at least one system failure; that sidebar
also confirms the principle of easiest penetration from Chapter 1. Once a
reviewed program is accepted for inclusion in a system, the developer cannot
sneak in to make small, subtle changes, such as inserting trapdoors. The
developer has access to the running production program only through the CCB,
whose members are alert to such security breaches.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03sb07
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch01.html#ch01

Sidebar 3-7 There's More Than One Way to
Crack a System

In the 1970s the primary security assurance strategy was “penetration” or

“tiger team” testing. A team of computer security experts would be hired to

test the security of a system prior to its being pronounced ready to use. Often

these teams worked for months to plan their tests.

The U.S. Department of Defense was testing the Multics system, which had
been designed and built under extremely high security quality standards.

Multics was being studied as a base operating system for the WWMCCS

command and control system. The developers from M.I.T. were justifiably

proud of the strength of the security of their system, and the sponsoring
agency invoked the penetration team with a note of haughtiness. But the

developers underestimated the security testing team.

Led by Roger Schell and Paul Karger, the team analyzed the code and

performed their tests without finding major flaws. Then one team member

thought like an attacker. He wrote a slight modification to the code to embed
a trapdoor by which he could perform privileged operations as an

unprivileged user. He then made a tape of this modified system, wrote a cover

letter saying that a new release of the system was enclosed, and mailed the

tape and letter to the site where the system was installed.

When it came time to demonstrate their work, the penetration team
congratulated the Multics developers on generally solid security, but said they

had found this one apparent failure, which the team member went on to show.

The developers were aghast because they knew they had scrutinized the

affected code carefully. Even when told the nature of the trapdoor that had

been added, the developers could not find it. [KAR74, KAR02]

Lessons from Mistakes

One of the easiest things we can do to enhance security is learn from our
mistakes. As we design and build systems, we can document our decisions—not
only what we decided to do and why, but also what we decided not to do and why.
Then, after the system is up and running, we can use information about the
failures (and how we found and fixed the underlying faults) to give us a better
understanding of what leads to vulnerabilities and their exploitation.

From this information, we can build checklists and codify guidelines to help
ourselves and others. That is, we do not have to make the same mistake twice,

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry379
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry377

and we can assist other developers in staying away from the mistakes we made.
The checklists and guidelines can be invaluable, especially during reviews and
inspections, in helping reviewers look for typical or common mistakes that can
lead to security flaws. For instance, a checklist can remind a designer or
programmer to make sure that the system checks for buffer overflows. Similarly,
the guidelines can tell a developer when data require password protection or
some other type of restricted access.

Proofs of Program Correctness

A security specialist wants to be certain that a given program computes a
particular result, computes it correctly, and does nothing beyond what it is
supposed to do. Unfortunately, results in computer science theory (see [PFL85]
for a description) indicate that we cannot know with certainty that two programs
do exactly the same thing. That is, there can be no general decision procedure
which, given any two programs, determines if the two are equivalent. This
difficulty results from the “halting problem,” which states that there is no general
technique to determine whether an arbitrary program will halt when processing
an arbitrary input.

In spite of this disappointing general result, a technique called program
verification can demonstrate formally the “correctness” of certain specific
programs. Program verification involves making initial assertions about the
inputs and then checking to see if the desired output is generated. Each program
statement is translated into a logical description about its contribution to the
logical flow of the program. Finally, the terminal statement of the program is
associated with the desired output. By applying a logic analyzer, we can prove
that the initial assumptions, through the implications of the program statements,
produce the terminal condition. In this way, we can show that a particular
program achieves its goal. Sidebar 3-8 presents the case for appropriate use of
formal proof techniques. We study an example of program verification in Chapter
5.

Proving program correctness, although desirable and useful, is hindered by
several factors.

• Correctness proofs depend on a programmer or logician to translate a program's

statements into logical implications. Just as programming is prone to errors, so

also is this translation.

• Deriving the correctness proof from the initial assertions and the implications of

statements is difficult, and the logical engine to generate proofs runs slowly. The
speed of the engine degrades as the size of the program increases, so proofs of

correctness are even less appropriate for large programs.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry572
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch03lev1sec5.html#ch03sb08
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch05.html#ch05
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch05.html#ch05

Sidebar 3-8 Formal Methods Can Catch

Difficult-to-See Problems

Formal methods are sometimes used to check various aspects of secure
systems. The notion “formal methods” means many things to many people,

and many types of formal methods are proffered for use in software

development. Each formal technique involves the use of mathematically

precise specification and design notations. In its purest form, formal

development is based on refinement and proof of correctness at each stage in
the life cycle. But all formal methods are not created equal.

Pfleeger and Hatton [PFL97a] point out that, for some organizations, the

changes in software development practices needed to support such techniques

can be revolutionary. That is, there is not always a simple migration path

from current practice to inclusion of formal methods, because the effective
use of formal methods can require a radical change right at the beginning of

the traditional software life cycle: how we capture and record customer

requirements. Thus, the stakes in this area can be particularly high. For this

reason, compelling evidence of the effectiveness of formal methods is highly

desirable.
Gerhart, Craigen and Ralston [GER94] point out that

“There is no simple answer to the question: do formal methods pay off? Our

cases provide a wealth of data but only scratch the surface of information

available to address these questions. All cases involve so many interwoven
factors that it is impossible to allocate payoff from formal methods versus

other factors, such as quality of people or effects of other methodologies.

Even where data was collected, it was difficult to interpret the results across

the background of the organization and the various factors surrounding the

application.”
Naur [NAU93] reports that the use of formal notations does not lead

inevitably to improving the quality of specifications, even when used by the

most mathematically sophisticated minds. In his experiment, the use of a

formal notation often led to a greater number of defects, rather than fewer.

Thus, we need careful analyses of the effects of formal methods to understand

what contextual and methodological characteristics affect the end results.

However, anecdotal support for formal methods has grown, and practitioners

have been more willing to use formal methods on projects where the software

is safety-critical. For example, McDermid [MCD93] asserts that “these

mathematical approaches provide us with the best available approach to the
development of high-integrity safety-critical systems.” Formal methods are

becoming used routinely to evaluate communication protocols and proposed

security policies. Evidence from Heitmeyer's work [HEI01] at the U.S. Naval

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry581
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry269
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry511
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry477
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry309

Research Laboratory suggests that formal methods are becoming easier to use

and more effective. Dill and Rushby [DIL96] report that use of formal

methods to analyze correctness of hardware design “has become attractive
because it has focused on reducing the cost and time required for validation . .

. [T]here are some lessons and principles from hardware verification that can

be transferred to the software world.” And Pfleeger and Hatton report that an

air traffic control system built with several types of formal methods resulted

in software of very high quality. For these reasons, formal methods are being

incorporated into standards and imposed on developers. For instance, the

interim UK defense standard for such systems, DefStd 00-55, makes

mandatory the use of formal methods.

However, more evaluation must be done. We must understand how formal

methods contribute to quality. And we must decide how to choose among the
many competing formal methods, which may not be equally effective in a

given situation.

•
• The current state of program verification is less well developed than code

production. As a result, correctness proofs have not been consistently and

successfully applied to large production systems.

Program verification systems are being improved constantly. Larger programs
are being verified in less time than before. As program verification continues to
mature, it may become a more important control to ensure the security of
programs.

Programming Practice Conclusions

None of the development controls described here can guarantee the security or
quality of a system. As Brooks often points out [BRO87], the software
development community seeks, but is not likely to find, a “silver bullet”: a tool,
technique, or method that will dramatically improve the quality of software
developed. “There is no single development in either technology or management
technique that by itself promises even one order-of-magnitude improvement in
productivity, in reliability, in simplicity.” He bases this conjecture on the fact that
software is complex, it must conform to the infinite variety of human
requirements, and it is abstract or invisible, leading to its being hard to draw or
envision. While software development technologies—design tools, process
improvement models, development methodologies—help the process, software
development is inherently complicated and, therefore, prone to errors. This
uncertainty does not mean that we should not seek ways to improve; we should.
However, we should be realistic and accept that no technique is sure to prevent

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry209
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry106

erroneous software. We should incorporate in our development practices those
techniques that reduce uncertainty and reduce risk. At the same time, we should
be skeptical of new technology, making sure each one can be shown to be reliable
and effective.

In the early 1970s Paul Karger and Roger Schell led a team to evaluate the
security of the Multics system for the U.S. Air Force. They republished their
original report [KAR74] thirty years later with a thoughtful analysis of how the
security of Multics compares to the security of current systems [KAR02]. Among
their observations were that buffer overflows were almost impossible in Multics
because of support from the programming language, and security was easier to
ensure because of the simplicity and structure of the Multics design. Karger and
Schell argue that we can and have designed and implemented systems with both
functionality and security.

Operating System Controls on Use of Programs

Development controls are usually applied to large development projects in a
variety of software production environments. However, not every system is
developed in the ways we described above; sometimes projects are too small or
too resource constrained to justify the extra resources needed for reviews and
configuration control boards, for example. Although not the most desirable
situation, the lack of proper controls is often a reality of development life. Even
when development controls are incorporated in an organization's standard
development process, it is difficult to ensure that each developer or user has
followed official guidelines or standards. For these reasons, some of the software
security enforcement is implemented by the operating system.

We examine operating systems in some detail in Chapters 4 and 5, in which we
see what security features they provide for their users. In this chapter, we outline
how an operating system can protect against some of the design and
implementation flaws we have discussed here.

Trusted Software

We say that software is trusted software if we know that the code has been
rigorously developed and analyzed, giving us reason to trust that the code does
what it is expected to do and nothing more. Typically, trusted code can be a
foundation on which other, untrusted, code runs. That is, the untrusted system's
quality depends, in part, on the trusted code; the trusted code establishes the
baseline for security of the overall system. In particular, an operating system can
be trusted software when there is a basis for trusting that it correctly controls the
accesses of components or systems run from it. For example, the operating

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry379
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_biblio.html#biblio01entry377
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch04.html#ch04
https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch05.html#ch05

system might be expected to limit users' accesses to certain files. We look at
trusted operating systems in more detail in Chapter 5.

To trust any program, we base our trust on rigorous analysis and testing, looking
for certain key characteristics:

• Functional correctness: The program does what it is supposed to, and it works

correctly.

• Enforcement of integrity: Even if presented erroneous commands or commands

from unauthorized users, the program maintains the correctness of the data with
which it has contact.

• Limited privilege: The program is allowed to access secure data, but the access is

minimized and neither the access rights nor the data are passed along to other

untrusted programs or back to an untrusted caller.

• Appropriate confidence level: The program has been examined and rated at a

degree of trust appropriate for the kind of data and environment in which it is to be

used.

Trusted software is often used as a safe way for general users to access sensitive
data. Trusted programs are used to perform limited (safe) operations for users
without allowing the users to have direct access to sensitive data.

Mutual Suspicion

Programs are not always trustworthy. Even with an operating system to enforce
access limitations, it may be impossible or infeasible to bound the access
privileges of an untested program effectively. In this case, the user U is
legitimately suspicious of a new program P. However, program P may be invoked
by another program, Q. There is no way for Q to know that P is correct or proper,
any more than a user knows that of P.

Therefore, we use the concept of mutual suspicion to describe the relationship
between two programs. Mutually suspicious programs operate as if other
routines in the system were malicious or incorrect. A calling program cannot
trust its called subprocedures to be correct, and a called subprocedure cannot
trust its calling program to be correct. Each protects its interface data so that the
other has only limited access. For example, a procedure to sort the entries in a list
cannot be trusted not to modify those elements, while that procedure cannot
trust its caller to provide any list at all or to supply the number of elements
predicted.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch05.html#ch05

Confinement

Confinement is a technique used by an operating system on a suspected program.
A confined program is strictly limited in what system resources it can access. If a
program is not trustworthy, the data it can access are strictly limited. Strong
confinement would be helpful in limiting the spread of viruses. Since a virus
spreads by means of transitivity and shared data, all the data and programs
within a single compartment of a confined program can affect only the data and
programs in the same compartment. Therefore, the virus can spread only to
things in that compartment; it cannot get outside the compartment.

Access Log

An access or audit log is a listing of who accessed which computer objects, when,
and for what amount of time. Commonly applied to files and programs, this
technique is less a means of protection than an after-the-fact means of tracking
down what has been done.

Typically, an access log is a protected file or a dedicated output device (such as a
printer) to which a log of activities is written. The logged activities can be such
things as logins and logouts, accesses or attempted accesses to files or directories,
execution of programs, and uses of other devices.

Failures are also logged. It may be less important to record that a particular user
listed the contents of a permitted directory than that the same user tried to but
was prevented from listing the contents of a protected directory. One failed login
may result from a typing error, but a series of failures in a short time from the
same device may result from the attempt of an intruder to break into the system.

Unusual events in the audit log should be scrutinized. For example, a new
program might be tested in a dedicated, controlled environment. After the
program has been tested, an audit log of all files accessed should be scanned to
determine if there are any unexpected file accesses, the presence of which could
point to a Trojan horse in the new program. We examine these two important
aspects of operating system control in more detail in the next two chapters.

Administrative Controls

Not all controls can be imposed automatically by the computing system.
Sometimes controls are applied instead by the declaration that certain practices
will be followed. These controls, encouraged by managers and administrators, are
called administrative controls. We look at them briefly here and in more depth
in Chapter 8.

https://learning.oreilly.com/library/view/security-in-computing/0130355488/0130355488_ch08.html#ch08

Standards of Program Development

No software development organization worth its salt allows its developers to
produce code at any time in any manner. The good software development
practices described earlier in this chapter have all been validated by many years
of practice. Although none is Brooks's mythical “silver bullet” that guarantees
program correctness, quality, or security, they all add demonstrably to the
strength of programs. Thus, organizations prudently establish standards on how
programs are developed. Even advocates of agile methods, which give developers
an unusual degree of flexibility and autonomy, encourage goal-directed behavior
based on past experience and past success. Standards and guidelines can capture
wisdom from previous projects and increase the likelihood that the resulting
system will be correct. In addition, we want to ensure that the systems we build
are reasonably easy to maintain and are compatible with the systems with which
they interact.

We can exercise some degree of administrative control over software
development by considering several kinds of standards or guidelines.

• standards of design, including using specified design tools, languages, or

methodologies, using design diversity, and devising strategies for error handling

and fault tolerance
• standards of documentation, language, and coding style, including layout of code

on the page, choices of names of variables, and use of recognized program

structures

• standards of programming, including mandatory peer reviews, periodic code

audits for correctness, and compliance with standards
• standards of testing, such as using program verification techniques, archiving test

results for future reference, using independent testers, evaluating test

thoroughness, and encouraging test diversity

• standards of configuration management, to control access to and changes of stable

or completed program units

Standardization improves the conditions under which all developers work by
establishing a common framework so that no one developer is indispensable. It
also allows carryover from one project to another; lessons learned on previous
projects become available for use by all on the next project. Standards also assist
in maintenance, since the maintenance team can find required information in a
well-organized program. However, we must take care so that the standards do
not unnecessarily constrain the developers.

Firms concerned about security and committed to following software
development standards often perform security audits. In a security audit, an

independent security evaluation team arrives unannounced to check each
project's compliance with standards and guidelines. The team reviews
requirements, designs, documentation, test data and plans, and code. Knowing
that documents are routinely scrutinized, a developer is unlikely to put suspicious
code in a component in the first place.

Separation of Duties

Banks often break tasks into two or more pieces to be performed by separate
employees. Employees are less tempted to do wrong if they need the cooperation
of another employee to do so. We can use the same approach during software
development. Modular design and implementation force developers to cooperate
in order to achieve illicit results. Independent test teams test a component or
subsystem more rigorously if they are not the authors or designers. These forms
of separation lead to a higher degree of security in programs.

Program Controls in General

This section has explored how to control for faults during the program
development process. Some controls apply to how a program is developed, and
others establish restrictions on the program's use. The best is a combination, the
classic layered defense.

Is one control essential? Can one control be skipped if another is used? Although
these are valid questions, the security community does not have answers.
Software development is both an art and science. As a creative activity, it is
subject to the variety of human minds, but also to the fallibility of humans. We
cannot rigidly control the process and get the same results time after time, as we
can with a machine.

But creative humans can learn from their mistakes and shape their creations to
account for fundamental principles. Just as a great painter will achieve harmony
and balance in a painting, a good software developer who truly understands
security will incorporate security into all phases of development. Thus, even if
you never become a security professional, this exposure to the needs and
shortcomings of security will influence many of your future actions.
Unfortunately, many developers do not have the opportunity to become sensitive
to security issues, which probably accounts for many of the unintentional security
faults in today's programs.

UNIT-IV

DATABASESECURITY:

Databasesecurityrefersto thevariousmeasuresorganizationstaketo

ensuretheirdatabasesareprotectedfrom internalandexternalthreats.Database

securityincludesprotecting thedatabaseitself,thedataitcontains,itsdatabase

managementsystem,andthevariousapplicationsthataccessit.Organizationsmust

securedatabasesfrom deliberateattackssuchascybersecuritythreats,aswellasthe

misuseofdataanddatabasesfrom thosewhocanaccessthem.

Inthelastseveralyears,thenumberofdatabreacheshasrisenconsiderably.In

additiontotheconsiderabledamagethesethreatsposetoacompany’sreputationand

customerbase,thereareanincreasingnumberofregulationsandpenaltiesfordata

breaches thatorganizations mustdealwith,such as those in the GeneralData

ProtectionRegulation(GDPR)—someofwhichareextremelycostly.Effectivedatabase

securityiskeyforremaining compliant,protecting organizations’reputations,and

keepingtheircustomers.

WhataretheChallengesofDatabaseSecurity?

Security concerns forinternet-based attacks are some ofthe mostpersistent

challengestodatabasesecurity.Hackersdevisenew waystoinfiltratedatabasesand

stealdataalmostdaily.Organizationsmustensuretheirdatabasesecuritymeasures

arestrongenoughtowithstandtheseattacks.

Someofthesecybersecuritythreatscanbedifficulttodetect,likephishingscamsin

which usercredentials are compromised and used withoutpermission.Malware

and ransomware arealsocommoncybersecuritythreats.

Anothercriticalchallengefordatabasesecurityismakingsureemployees,partners,and

contractorswith databaseaccessdon’tabusetheircredentials.Theseexfiltration

vulnerabilitiesaredifficulttoguardagainstbecauseuserswithlegitimateaccesscan

takedatafortheirownpurposes. EdwardSnowden’scompromiseoftheNSA isthe

bestexample ofthis challenge.Organizations mustalso make sure users with

legitimate access to database systems and applications are only privy to the

information theyneed forwork.Otherwise,there’s greaterpotentialforthem to

compromisedatabasesecurity.

HowCanIDeployDatabaseSecurity?

Therearethreelayersofdatabasesecurity:thedatabaselevel,theaccesslevel,andthe

perimeterlevel.Securityatthedatabaseleveloccurswithinthedatabaseitself,where

thedatalive.Accesslayersecurityfocusesoncontrollingwhoisallowedtoaccess

certain data orsystems containing it.Database security atthe perimeterlevel

determineswhocanandcannotgetintodatabases.Eachlevelrequiresuniquesecurity

solutions.

SecurityLevel DatabaseSecuritySolutions

DatabaseLevel Masking

 Tokenization

 Encryption

AccessLevel AccessControlLists

 Permissions

PerimeterLevel Firewalls

 VirtualPrivateNetworks

DatabaseSecurityBestPractices

Althoughthereareseveraldifferentapproachestodatabasesecurity,therearesome

bestpractices thatcan help every organization keep its databases safe.These

databasesecuritybestpracticesenableorganizationstominimizetheirvulnerabilities

while maximizing theirdatabase protection.Although these approaches can be

deployed individually,they work besttogetherto protectagainsta variety of

circumstancesimpactingdatabasesecurity.

 Physicaldatabasesecurity:It’scriticaltonotoverlookthephysicalhardwareon

which the data is stored,maintained,and manipulated.Physicaldatabase

security includes locking the rooms thatdatabases and theirservers are

in—whethertheyareon-premiseassetsoraccessedthroughthecloud.Italso

involveshavingsecurityteamsmonitorphysicalaccesstothatequipment.A

crucialaspectofthisdatabasesecuritybestpracticeistohavebackupsand

disasterrecoverymeasuresinplaceincaseofaphysicalcatastrophe.It’salso

importantnottohostwebserversandapplicationsonthesameserverasthe

databasetheorganizationwantstosecure.

 Webapplicationsandfirewalls:Theuseofwebapplicationsandfirewallsisa

databasesecuritybestpracticeattheperimeterlayer.Firewallspreventintruders

from accessinganorganization’sITnetworkviatheinternet;they’reacrucial

prerequisiteforcybersecurityconcerns.Webapplicationsthatinteractwith

databasescanbeprotectedbyapplicationaccessmanagementsoftware.This

databasesecuritymeasureissimilartoaccesscontrollistsanddetermineswho

canaccesswebapplicationsandhowtheycandoso.Therearealsofirewallsfor

individualwebapplicationsthatdeliverthesamebenefitsastraditionalfirewalls.

 Databaseencryption:Encryptionisoneofthemosteffectivedatabasesecurity

practicesbecauseit’simplementedwherethedataareinthedatabase.However,

organizationscanencryptdatainmotionaswellasatrest,sothatit’sprotected

asitflowsbetweenITsystemsinanorganization.Encrypteddataistransfigured

soitappearsasgibberishunlessit’sdecryptedwiththeproperkeys.Therefore,

evenifsomeoneisabletoaccessencrypteddata,itwillbemeaninglesstothem.

Database encryption is also keyformaintaining data privacy,and can be

effectivefor IoTsecurity.

 Managepasswordsandpermissions:Managingpasswordsandpermissionsis

criticalformaintaining database security.This taskis usuallyoverseen by

dedicatedsecurityemployeesorITteams.Insomeinstances,thisdatabase

securitybestpracticeinvolvesaccesscontrollists.Organizationscantakemany

differentstepstomanagepasswords,suchasusingdualormultiplefactor

authentication measures,orgiving users a finite amountoftime to input

credentials.However,thispracticerequiresconstantupdatingofaccessand

permissionslists.Itcanbetimeconsuming,buttheresultsareworthit.

 Isolatesensitivedatabases:It’sverydifficulttopenetratedatabasesecurityif

sensitivedatabasesareisolated.Dependingonhowtheisolationtechniquesare

deployed,unauthorizedusersmightnotevenknow sensitivedatabasesexist.

Softwaredefinedperimetersareusefulmeansofisolatingsensitivedatabases

sothattheydon’tappeartobeonaparticularuser’snetwork.Thisapproach

makesitdifficulttotakeoverdatabaseswith lateralmovement attacks;it’salso

effectiveagainst zero-dayattacks.Isolationstrategiesareoneofthebestways

tosolidifydatabasesecurityattheaccesslevel.Competitiveisolationsolutions

combine this approach with database layersecurity like public keys and

encryption.

 Change management: Change management requires outlining—ideally in

advance—whatprocedureshavetotakeplacetosafeguarddatabasesduring

change.Examplesofchangesincludemergers,acquisitions,orsimplydifferent

usersgainingaccesstovariousITresources.It’snecessarytodocumentwhat

changeswilltakeplaceforsecureaccessofdatabasesandtheirapplications.

It’salsoimportanttoidentifyalltheapplicationsandITsystemsthat’llusethat

database,inadditiontotheirdataflows.

 Databaseauditing:Databaseauditingusuallyrequiresregularly readingthelog

files fordatabasesandtheirapplications.Thisinformationrevealswhoaccessed

whichrepositoryorapp,whentheyaccessedit,andwhattheydidthere.Ifthere

isunauthorizedaccesstodata,timelyauditscanhelpreducetheoverallimpact

ofbreachesbyalertingdatabaseadministrators.Thequickerorganizationscan

reacttodatabreaches,themoretimetheyhavetonotifyanycustomersinvolved

andlimitthedamagedone.Databaseauditingprovidescentralizedoversightfor

databasesecurityasafinalstepforprotection.

INTRODUCTIONTODATABASE:

A collected information which is in an organized form foreasier

access,management,andvariousupdatingisknownasadatabase.

Beforegoingintoafurtherdiscussionofdatabases,wemusthaveapriorknowledgeof

exactlywhatisaDATA?Datacanbedefinedasacollectionoffactsandrecordson

whichwecanapplyreasoningorcan-dodiscussionorsomecalculation.Thedatais

alwayseasilyavailableandisinplenty.Itcanbeusedforprocessingsomeuseful

informationfrom it.Also,itcanbeinredundant,canbeirrelevant.Datacanexistinform

ofgraphics,reports,tables,text,etc.thatrepresentseverykindofinformation,that

allowseasyretrieval,updating,analysis,andoutputofdatabysystematicallyorganized

orstructuredrepositoryofindexedinformation.

Containershavingahugeamountofdataareknownasdatabases, forexample,a

publiclibrarystoresbooks.Databasesarecomputerstructuresthatsave,organize,

protect,anddeliverdata.

Anysystem thatmanagesdatabasesiscalleda databasemanagementsystem,or

DBM.Thetypicaldiagram representationforadatabaseisacylinder.

Insideadatabase,thedataisrecordedinatablewhichisacollectionofrows,columns,

anditisindexedsothattofindrelevantinformationbecomesaneasiertask.Asnew

informationisadded,datagetsupdated,expandedanddeleted.Thevariousprocesses

ofdatabasescreateandupdatethemselves,queryingthedatatheycontainandrunning

applicationsagainstit.

Theareseveraldifferenttypesofdatabasemodelshavebeendevelopedsofar,for

example, flat, hierarchical, network and relational. These models describe the

operationsthatcanbeperformedonthem aswellasthestructureoftheconforming

databases.Normallythereisadatabaseschemawhichdescribestheexactmodel,

entitytypes,andrelationshipsamongthoseentities.

 FlatDatabases havethefollowingcharacteristics−

 simple

 longanddominant

 usefulforverysmallscaleandsimpleapplications.

A RelationalDatabase hasthefollowingcharacteristics−

 organizesdatasuchthatitappearstotheusertobestoredinaseriesof

interrelatedtables

 usedforhigh-performanceapplications

 efficient

 easeofuse

 abilitytoperform avarietyofusefultasks

SECURITYREQUIREMENTS:

DataSecurityRequirements

We should use technology to ensure a secure computing environmentforthe

organization.Althoughitisnotpossibletofindatechnologicalsolutionforallproblems,

mostofthesecurityissuescouldberesolvedusingappropriatetechnology.Thebas~c

security standards which technology can ensure are confidentiality,integrity and

availability.

Confidentiality

A secure system ensures the confidentiality ofdata.This means thatitallows

individualstoseeonlythedatatheyaresupposedtosee.Confidentialityhasseveral

aspectslikeprivacyofcommunications,securestorageofsensitivedata,authenticated

usersandauthorizationofusers.

PrivacyofCommunications

The DBMS should be capable ofcontrolling the spread ofconfidentialpersonal

informationsuchashealth,employment,andcreditrecords.Itshouldalsokeepthe

corporatedatasuch astradesecrets,proprietaryinformation aboutproductsand

processes,competitiveanalyses,aswellasmarketingandsalesplanssecureandaway

from theunauthorizedpeople.

SecureStorageofSensitiveData

Onceconfidentialdatahasbeenentered,itsintegrityandprivacymustbeprotectedon

thedatabasesandserverswhereinitResides.

Authentication

Oneofthemostbasicconceptsindatabasesecurityisauthentication,whichisquite

simplytheprocessbywhichitsystem verifiesauser'sidentity,Ausercanrespondtoa

requesttoauthenticatebyprovidingaproofofidentity,oranauthenticationtoken

You'reprobablyalreadyfamiliarwithconcept.Ifyouhaveeverbeenaskedtoshow a

photoID(forexample,whenopeningabankaccount),youhavebeenpresentedwith

a requestforauthentication.Youprovedyouridentitybyshowingyourdriver'slicense

(orother photoID).Inthiscase,yourdriver'slicenseservedasyourauthenticationtoken.

Despitewhatyouseeinthemovies,mostsoftwareprogramscannotusefuturistic

systemssuch asface recognition forauthentication.Instead mostauthentication

requestsaskyoutoprovideauserIDandapassword.YouruserIDrepresentsyour

claim tobeingapersonauthorizedtoaccesstheenvironment,andthepasswordis

protectedandyouaretheonlypersonwhoknowsit.

Authorization

An authenticated usergoes through the second layerofsecurity,authorization.

Authorization istheprocessthroughwhich system obtainsinformationaboutthe

authenticateduser,includingwhichdatabaseoperationsthatusermayperform and

whichdataobjectsthatusermayaccess.

Yourdriver'slicenseisaperfectexampleofanauthorizationdocument.Thoughitcan

beusedforauthenticationpurposes,italsoauthorizesyoutodriveacertainclassofcar.

Furthermore,thetypeofauthorizationyouhavegivesyoumoreorfewerprivilegesas

farasdrivingavehiclegoes.

Ausermayhaveseveralformsofauthorizationonpartsofthedatabase.Therearethe

followingauthorizationrights.

•Readauthorizationallowsreading,butnotmodification,ofdata.

•Insertauthorizationallowsinsertionofnewdata,butnotmodificationofexistingdata.

•Updateauthorizationallowsmodification,butnotdeletionofdata.

•Deleteauthorizationallowsdeletionofdata.

Ausermaybeassignedall,none,'oracombinationofthesetypesofauthorization.In

additiontotheseformsofauthorizationforaccesstodata,ausermaybegranted

authorizationtomodifythedatabaseschema:

•Indexauthorizationallowsthecreationanddeletionofindexes.

•Resourceauthorizationallowsthecreationofnewrelations.

•Alterationauthorizationallowstheadditionordeletionofattributesinarelation.

•Dropauthorizationallowsthedeletionofrelations.

Thedropanddeleteauthorizationdifferinthatdeleteauthorizationallowsdeletionof

tuplesonly.Ifauserdeletesalltuplesofarelation,therelationstillexists,butitis

empty.Ifarelationisdroppeditnolongerexists.Theabilitytocreatenewrelationsis

regulated through resource authorization.A userwith resource authorization who

createsarelationisgivenaprivilegeonthatrelationautomatically.Indexauthorization

isgiventousertogetthefastaccessofdataonthebasesofsomekeyfield.

Integrity

Asecuresystem ensumsthatthedataitcontainsisvalid.Dataintegratemeansthat

dataisprotectedfrom deletionandcorruption,bothwhileitresideswithinthedata-case,

andwhileitisbeingtransmittedoverthenetwork.ThedetaileddiscussiononIntegrity

isunnextsection.

Availability

Asecuresystem makesdataavailabletoauthorizedusers,withoutdelay.Denialof

serviceattacksareattemptstoblockauthorizedusers'abilitytoaccessandusethe

system whenneeded.

RELIABILITYANDINTEGIRITY:

Databasesamalgamatedatafrom manysources,andusersexpect

aDBMStoprovideaccesstothedatainareliableway.Whensoftwareengineerssay

thatsoftwarehas reliability,theymeanthatthesoftwarerunsforverylongperiodsof

timewithoutfailing.UserscertainlyexpectaDBMStobereliable,sincethedatausually

arekeytobusinessororganizationalneeds.Moreover,usersentrusttheirdatatoa

DBMSandrightlyexpectittoprotectthedatafrom lossordamage.Concernsfor

reliabilityandintegrityaregeneralsecurityissues,buttheyaremoreapparentwith

databases.

ADBMSguardsagainstlossordamageinseveralwaysthatwestudythem inthis

section.However,thecontrolsweconsiderarenotabsolute:Nocontrolcanpreventan

authorizeduserfrom inadvertentlyenteringanacceptablebutincorrectvalue.

Databaseconcernsaboutreliabilityandintegritycanbeviewedfrom threedimensions:

o Databaseintegrity: concernthatthedatabaseasawholeisprotectedagainst

damage,asfrom thefailureofadiskdriveorthecorruptionofthemaster

databaseindex.Theseconcernsareaddressedbyoperatingsystem integrity

controlsandrecoveryprocedures.

o Elementintegrity: concernthatthevalueofaspecificdataelementiswrittenor

changedonlybyauthorizedusers.Properaccesscontrolsprotectadatabase

from corruptionbyunauthorizedusers.

o Elementaccuracy: concernthatonlycorrectvaluesarewrittenintotheelements

ofadatabase.Checksonthevaluesofelementscanhelppreventinsertionof

impropervalues.Also,constraintconditionscandetectincorrectvalues.

ProtectionFeaturesfrom theOperatingSystem

InChapter4wediscussedtheprotectionanoperatingsystem providesforitsusers.A

responsiblesystem administratorbacksupthefilesofadatabaseperiodicallyalong

withotheruserfiles.Thefilesareprotectedduringnormalexecutionagainstoutside

access by the operating system's standard access controlfacilities.Finally,the

operatingsystem performscertainintegritychecksforalldataasapartofnormalread

and write operations forI/O devices.These controls provide basic security for

databases,butthedatabasemanagermustenhancethem.

Two-PhaseUpdate

Aseriousproblem foradatabasemanageristhefailureofthecomputingsystem inthe

middleofmodifyingdata.Ifthedataitem tobemodifiedwasalongfield,halfofthe

fieldmightshowthenewvalue,whiletheotherhalfwouldcontaintheold.Eveniferrors

ofthistypewerespottedeasily(whichtheyarenot),amoresubtleproblem occurs

whenseveralfieldsareupdatedandnosinglefieldappearstobeinobviouserror.The

solutiontothisproblem,proposedfirstbyLampsonandSturgis[LAM76]andadopted

bymostDBMSs,usesatwo-phaseupdate.

UpdateTechnique

Duringthefirstphase,calledthe intent phase,theDBMSgatherstheresourcesitneeds

toperform theupdate.Itmaygatherdata,createdummyrecords,openfiles,lockout

otherusers,andcalculatefinalanswers;inshort,itdoeseverythingtoprepareforthe

update,butitmakesnochangestothedatabase.Thefirstphaseisrepeatablean

unlimitednumberoftimesbecauseittakesnopermanentaction.Ifthesystem fails

duringexecutionofthefirstphase,noharm isdonebecauseallthesestepscanbe

restartedandrepeatedafterthesystem resumesprocessing.

Thelasteventofthefirstphase,called committing, involvesthewritingofa commit

flag tothedatabase.ThecommitflagmeansthattheDBMShaspassedthepointofno

return:Aftercommitting,theDBMSbeginsmakingpermanentchanges.

Thesecondphasemakesthepermanentchanges.Duringthesecondphase,noactions

from beforethecommitcanberepeated,buttheupdateactivitiesofphasetwocan

alsoberepeatedasoftenasneeded.Ifthesystem failsduringthesecondphase,the

databasemaycontain incompletedata,butthesystem can repairthesedata by

performing allactivities ofthe second phase.Afterthe second phase has been

completed,thedatabaseisagaincomplete.

Two-PhaseUpdateExample

Suppose a database contains an inventoryofa company's office supplies.The

company'scentralstockroom storespaper,pens,paperclips,andthelike,andthe

differentdepartmentsrequisitionitemsastheyneedthem.Thecompanybuysinbulkto

obtainthebestprices.Eachdepartmenthasabudgetforofficesupplies,sothereisa

chargingmechanism bywhichthecostofsuppliesisrecoveredfrom thedepartment.

Also,thecentralstockroom monitorsquantitiesofsuppliesonhandsoastoordernew

supplieswhenthestockbecomeslow.

Supposetheprocessbeginswitharequisitionfrom theaccountingdepartmentfor50

boxesofpaperclips.Assumethatthereare107boxesinstockandanew orderis

placedifthequantityinstockeverfallsbelow100.Herearethestepsfollowedafterthe

stockroom receivestherequisition.

1.Thestockroom checksthedatabasetodeterminethat50boxesofpaperclipsare

onhand.Ifnot,therequisitionisrejectedandthetransactionisfinished.

2.Ifenoughpaperclipsareinstock,thestockroom deducts50from theinventory

figureinthedatabase(107-50=57).

3.Thestockroom chargesaccounting'ssuppliesbudget(alsointhedatabase)for50

boxesofpaperclips.

4.Thestockroom checksitsremainingquantityonhand(57)todeterminewhetherthe

remainingquantityisbelowthereorderpoint.Becauseitis,anoticetoordermore

paperclipsisgenerated,andtheitem isflaggedas"onorder"inthedatabase.

5.A deliveryorderis prepared,enabling 50 boxes ofpaperclips to be sentto

accounting.

Allfiveofthesestepsmustbecompletedintheorderlistedforthedatabasetobe

accurateandforthetransactiontobeprocessedcorrectly.

Supposeafailureoccurswhilethesestepsarebeingprocessed.Ifthefailureoccurs

beforestep1iscomplete,thereisnoharm becausetheentiretransactioncanbe

restarted.However,duringsteps2,3,and4,changesaremadetoelementsinthe

database.Ifafailureoccursthen,thevaluesinthedatabaseareinconsistent.Worse,

thetransactioncannotbereprocessedbecausearequisitionwouldbedeductedtwice,

oradepartmentwouldbechargedtwice,ortwodeliveryorderswouldbeprepared.

Whenatwo-phasecommitisused, shadowvalues aremaintainedforkeydatapoints.A

shadow datavalueiscomputedandstoredlocallyduringtheintentphase,anditis

copied to the actualdatabase during the commitphase.The operations on the

databasewouldbeperformedasfollowsforatwo-phasecommit.

Intent:

1.CheckthevalueofCOMMIT-FLAGinthedatabase.Ifitisset,thisphasecannotbe

performed.Haltorloop,checkingCOMMIT-FLAGuntilitisnotset.

2.Comparenumberofboxesofpaperclipsonhandtonumberrequisitioned;ifmore

arerequisitionedthanareonhand,halt.

3.ComputeTCLIPS=ONHAND-REQUISITION.

4.ObtainBUDGET,thecurrentsuppliesbudgetremainingforaccountingdepartment.

ComputeTBUDGET=BUDGET-COST,whereCOSTisthecostof50boxesofclips.

5.CheckwhetherTCLIPSisbelowreorderpoint;ifso,setTREORDER=TRUE;elseset

TREORDER=FALSE.

Commit:

1.SetCOMMIT-FLAGindatabase.

2.CopyTCLIPStoCLIPSindatabase.

3.CopyTBUDGETtoBUDGETindatabase.

4.CopyTREORDERtoREORDERindatabase.

5.Preparenoticetodeliverpaperclipstoaccountingdepartment.Indicatetransaction

completedinlog.

6.UnsetCOMMIT-FLAG.

Withthisexample,eachstepoftheintentphasedependsonlyonunmodifiedvalues

from thedatabaseandthepreviousresultsoftheintentphase.Eachvariablebeginning

withTisashadowvariableusedonlyinthistransaction.Thestepsoftheintentphase

canberepeatedanunlimitednumberoftimeswithoutaffectingtheintegrityofthe

database.

OncetheDBMSbeginsthecommitphase,itwritesacommitflag.Whenthisflagisset,

theDBMS willnotperform anystepsoftheintentphase.Intentstepscannotbe

performedaftercommittingbecausedatabasevaluesaremodifiedinthecommitphase.

Notice,however,thatthestepsofthecommitphasecanberepeatedanunlimited

numberoftimes,againwithnonegativeeffectonthecorrectnessofthevaluesinthe

database.

The one remaining flaw in thislogicoccursifthe system failsafterwriting the

"transactioncomplete"messageinthelogbutbeforeclearingthecommitflaginthe

database.Itisasimplemattertoworkbackwardthroughthetransactionlogtofind

completedtransactionsforwhichthecommitflagisstillsetandtoclearthoseflags.

Redundancy/InternalConsistency

ManyDBMSsmaintainadditionalinformationtodetectinternalinconsistenciesindata.

Theadditionalinformationrangesfrom afewcheckbitstoduplicateorshadowfields,

dependingontheimportanceofthedata.

ErrorDetectionandCorrectionCodes

Oneform ofredundancyiserrordetectionandcorrectioncodes,suchasparitybits,

Hammingcodes,andcyclicredundancychecks.Thesecodescanbeappliedtosingle

fields,records,ortheentiredatabase.Eachtimeadataitem isplacedinthedatabase,

theappropriatecheckcodesarecomputed and stored;eachtimeadataitem is

retrieved,asimilarcheckcodeiscomputedandcomparedtothestoredvalue.Ifthe

valuesareunequal,theysignifytotheDBMSthatanerrorhasoccurredinthedatabase.

Someofthesecodespointouttheplaceoftheerror;othersshow preciselywhatthe

correctvalueshouldbe.Themoreinformationprovided,themorespacerequiredto

storethecodes.

ShadowFields

Entireattributesorentirerecordscanbeduplicatedinadatabase.Ifthedataare

irreproducible,thissecondcopycanprovideanimmediatereplacementifanerroris

detected.Obviously,redundantfieldsrequiresubstantialstoragespace.

Recovery

Inadditiontotheseerrorcorrectionprocesses,aDBMScanmaintainalogofuser

accesses,particularlychanges.Intheeventofafailure,thedatabaseisreloadedfrom a

backupcopyandalllaterchangesarethenappliedfrom theauditlog.

Concurrency/Consistency

Databasesystemsareoftenmultiusersystems.Accessesbytwouserssharingthe

samedatabasemustbeconstrainedsothatneitherinterfereswiththeother.Simple

lockingisdonebytheDBMS.Iftwousersattempttoreadthesamedataitem,thereis

noconflictbecausebothobtainthesamevalue.

Ifbothuserstrytomodifythesamedataitems,weoftenassumethatthereisno

conflictbecauseeachknowswhattowrite;thevaluetobewrittendoesnotdependon

thepreviousvalueofthedataitem.However,thissuppositionisnotquiteaccurate.

Toseehowconcurrentmodificationcangetusintotrouble,supposethatthedatabase

consistsofseatreservationsforaparticularairlineflight.AgentA,bookingaseatfor

passengerMock,submitsaquerytofindwhichseatsarestillavailable.Theagent

knowsthatMockprefersarightaisleseat,andtheagentfindsthatseats5D,11D,and

14Dareopen.Atthesametime,AgentBistryingtobookseatsforafamilyofthree

travelingtogether.Inresponsetoaquery,thedatabaseindicatesthat8ABCand11DEF

arethetworemaininggroupsofthreeadjacentunassignedseats.AgentAsubmitsthe

updatecommand

SELECT(SEAT-NO='11D')ASSIGN'MOCK,E'TOPASSENGER-NAME

whileAgentBsubmitstheupdatesequence

SELECT(SEAT-NO='11D')ASSIGN'EHLERS,P'TOPASSENGER-NAME

aswellascommandsforseats11Eand11F.Thentwopassengershavebeenbooked

intothesameseat(whichwouldbeuncomfortable,tosaytheleast).

Bothagentshaveactedproperly:Eachsoughtalistofemptyseats,choseoneseat

from thelist,andupdatedthedatabasetoshowtowhom theseatwasassigned.The

difficultyinthissituationisthetimedelaybetweenreadingavaluefrom thedatabase

and writing amodificationofthatvalue.During thedelaytime,anotheruserhas

accessedthesamedata.

Toresolvethisproblem,aDBMStreatstheentirequeryupdatecycleasasingleatomic

operation.Thecommandfrom theagentmustnowresemble"readthecurrentvalueof

seatPASSENGER-NAMEforseat11D;ifitis'UNASSIGNED',modifyitto'MOCK,E'(or

'EHLERS,P')."Thereadmodifycyclemustbecompletedasanuninterrupteditem without

allowinganyotherusersaccesstothePASSENGER-NAMEfieldforseat11D.The

secondagent'srequesttobookwouldnotbeconsidereduntilafterthefirstagent'shad

beencompleted;atthattime,thevalueofPASSENGERNAMEwouldnolongerbe

'UNASSIGNED'.

Afinalproblem inconcurrentaccessisreadwrite.Supposeoneuserisupdatingavalue

whenaseconduserwishestoreadit.Ifthereadisdonewhilethewriteisinprogress,

thereadermayreceivedatathatareonlypartiallyupdated.Consequently,theDBMS

locksanyreadrequestsuntilawritehasbeencompleted.

Monitors

The monitor is the unitofa DBMS responsible forthe structuralintegrityofthe

database.Amonitorcancheckvaluesbeingenteredtoensuretheirconsistencywith

therestofthedatabaseorwithcharacteristicsoftheparticularfield.Forexample,a

monitormightrejectalphabeticcharactersforanumericfield.Wediscussseveral

formsofmonitors.

RangeComparisons

Arangecomparisonmonitortestseachnewvaluetoensurethatthevalueiswithinan

acceptablerange.Ifthedatavalueisoutsidetherange,itisrejectedandnotentered

intothedatabase.Forexample,therangeofdatesmightbe131,"/,"112,"/,"19002099.

Anevenmoresophisticatedrangecheckmightlimitthedayportionto130formonths

with30days,oritmighttakeintoaccountleapyearforFebruary.

Rangecomparisonsarealsoconvenientfornumericquantities.Forexample,asalary

fieldmightbelimitedto$200,000,orthesizeofahousemightbeconstrainedtobe

between500and5,000squarefeet.Rangeconstraintscanalsoapplytootherdata

havingapredictableform.

Rangecomparisonscanbeusedtoensuretheinternalconsistencyofadatabase.

Whenusedinthismanner,comparisonsaremadebetweentwodatabaseelements.For

example,agradelevelfrom K8wouldbeacceptableiftherecorddescribedastudentat

anelementaryschool,whereasonly912wouldbeacceptableforarecordofastudent

inhighschool.Similarly,apersoncouldbeassignedajobqualificationscoreof75100

onlyiftheperson had completed collegeorhad had atleastten yearsofwork

experience. Filters or patterns aremoregeneraltypesofdataform checks.Thesecan

beusedtoverifythatanautomobileplateistwolettersfollowedbyfourdigits,orthe

sum ofalldigitsofacreditcardnumberisamultipleof9.

Checksofthesetypescancontrolthedataallowedinthedatabase.Theycanalsobe

usedtotestexistingvaluesforreasonableness.Ifyoususpectthatthedataina

databasehavebeencorrupted,arangecheckofallrecordscouldidentifythosehaving

suspiciousvalues.

StateConstraints

Stateconstraints describetheconditionoftheentiredatabase.Atnotimeshouldthe

databasevaluesviolatetheseconstraints.Phraseddifferently,iftheseconstraintsare

notmet,somevalueofthedatabaseisinerror.

Inthesectionontwo-phaseupdates,wesawhowtouseacommitflag,whichissetat

thestartofthecommitphaseandclearedatthecompletionofthecommitphase.The

commitflagcanbeconsideredastateconstraintbecauseitisusedattheendofevery

transactionforwhichthecommitflagisnotset.Earlierinthischapter,wedescribeda

processtoresetthecommitflagsintheeventofafailureafteracommitphase.Inthis

way,thestatusofthecommitflagisanintegrityconstraintonthedatabase.

Foranotherexample ofa state constraint,considera database ofemployees'

classifications.Atany time,atmostone employee is classified as "president."

Furthermore,eachemployeehasanemployeenumberdifferentfrom thatofeveryother

employee.Ifamechanicalorsoftwarefailurecausesportionsofthedatabasefiletobe

duplicated,oneoftheseuniquenessconstraintsmightbeviolated.Bytestingthestate

ofthedatabase,theDBMScouldidentifyrecordswithduplicateemployeenumbersor

tworecordsclassifiedas"president."

TransitionConstraints

State constraints describe the state of a correct database. Transition

constraints describeconditionsnecessarybeforechangescanbeappliedtoadatabase.

Forexample,beforeanew employeecanbeaddedtothedatabase,theremustbea

positionnumberinthedatabasewithstatus"vacant."(Thatis,anemptyslotmustexist.)

Furthermore,aftertheemployeeisadded,exactlyoneslotmustbechangedfrom

"vacant"tothenumberofthenewemployee.

Simple range checks and filters can be implemented within most database

management systems. However,the more sophisticated state and transition

constraintscanrequirespecialproceduresfortesting.Suchuser-writtenproceduresare

invokedbytheDBMSeachtimeanactionmustbechecked.

SummaryofDataReliability

Reliability,correctness,andintegrityarethreecloselyrelatedconceptsindatabases.

UserstrusttheDBMStomaintaintheirdatacorrectly,sointegrityissuesarevery

importanttodatabasesecurity.

SENSITIVEDATA:

Sensitive data can be exposed through systems failure,human erroror

maliciousactivity....Metricoranalysis data canbeusedtouncovercredentials,user

accesspermissions,performancevulnerabilities,orauthenticationpractices.

Companiesofallsizesfeeltheincreasingpressureto protectsensitivecustomer

information to meetPCI-DSS Standards. Herearefivewaysto help ensureyour

databasemeetsPCIrequirements:

1)Usecertifiedencryptionsolutionstoprotectcardholderdata

Astandards-basedencryptionsolutionsafeguardsinformationstoredondatabases.

EncryptionmethodsapprovedbytheNationalInstituteofStandardsandTechnology

(NIST)provideassurancethatyourdataissecuredtothehigheststandards.

2) Encryptcardholderdatathatissentacrossopen,publicnetworks

Transmitsensitivefilesovertheinternetusingtrustedencryptiontechnologies.(AES,

SSH,SSL,andPGP).

3) Store encryption keysfrom yourencrypted data on a certified encryption key

managementappliance

Themostimportantpartofadataencryptionstrategyistheprotectionoftheencryption

keysyouuse.Encryptionkeyssafeguardyourencrypteddataandrepresentthekeysto

thekingdom.Ifsomeonehasaccesstoyourkeys,theyhaveaccesstoyourencrypted

data.

4) Enforcedualcontrolsandseparationofdutiesforencrypteddataandencryption

keys

Make sure people who have access to yourencrypted data are restricted from

accessingtheencryptionkeysandviceversa.Ifsomeonecanaccessyourencrypted

dataandaccessthekeys,yourdataiscompromised. Youshouldn’tlockyourdoorand

leavethekeyunderthematforeasyaccesstoyourhome,thesameprecautionsshould

betakenwithyoursensitivedata.

5) Usetokenizationtotakeserversoutofthescopeofcompliance

Tokenizationreplacessensitivedatawithatoken.Thetokenmaintainstheoriginaldata

characteristicsbutholdsnovalue,reducingtheriskassociatedsensitivedataloss.

Whenyoustoretokensonaseparatetokenserveriteliminatestheneedtostorethe

originaldata in an encrypted format,and maytake the serveroutofscope for

compliance.

INTERFERENCE:

Definition:

Inferenceisadatabasesystem techniqueusedtoattackdatabaseswheremalicious

usersinfersensitiveinformationfrom complexdatabasesatahighlevel.Inbasicterms,

inferenceisadataminingtechniqueusedtofindinformationhiddenfrom normalusers.

An inferenceattackmayendangerthe integrityofan entire database.The more

complexthedatabaseis,thegreaterthesecurityimplementedinassociationwithit

shouldbe.Ifinferenceproblemsarenotsolvedefficiently,sensitiveinformationmaybe

leakedtooutsiders.

 Explains Inference:

Twoinferencevulnerabilitiesthatappearindatabasesaredataassociationanddata

aggregation.Whentwovaluestakentogetherareclassifiedatahigherlevelthanoneof

everyvalueinvolved,thisbecomesadataassociation.Whenasetofinformationis

classifiedatahigherlevelthantheindividuallevelofdata,itisaclearcaseofdata

aggregation.Thesensitivedataleakedthroughinferenceinvolvesbounddata,wherean

attackerfindsoutarangeofdataholdingexpecteddataornegativedata,whichis

obtained asaresultofcertaininnocentqueries.Anattackermighttryto access

sensitiveinformationthroughadirectattack,indirectattackortracking.

Awidevarietyofinferencechannelshavebeendiscoveredindatabases.Onewayof

inferenceisqueryingthedatabasebasedonsensitiveinformation.Inthismethod,the

userqueriesthedatabasesequentiallyandfrom theseriesofoutputsreceived,infers

patternsinthedatabaseandinformationlurkingbehindtheusualdisplayeddata.A

seriesofqueriesbyanormalusermayrevealsomeinformationthatcaneasilybe

guessed.Statisticaldatamayalsofallpreytoinference.Inastatisticaldatabase,

aggregatestatisticsonagroupofpeoplearemadepublic,whileindividualinformation

ishidden.Thethreatagainststatisticaldatabasesecurityisthatqueriescanbeshelled

outonaggregatestatisticsoveraperiodoftimeandarithmeticoperationsmaybe

performedthatenabletheattackerstohackindividualmemberinformation.

Inferencedetectioncanbeachievedthroughthesemanticinferencemodel,security

violationdetectionandknowledgeacquisition.Thesemanticinferencemodelcombines

dependency,dataschemaandsemanticknowledge.Itrepresentsallpossiblerelations

betweenattributesofdatasources.Securityviolationdetectioncombinesarequestlog

withanewqueryrequestandchecksiftherequestisallowedaspertheprespecified

setofinstructions.Basedontheanalysis,itdecideswhetherthequeryhastobe

answered.

MULTILEVELDATABASE:

A multileveldatabase asfarasIunderstanditisaColumnbasedtablewith

differentsecurityandviewlayers....ThethirdlayercorrespondstoamodelforaMulti

View database,thatis,a database thatprovidesateachsecuritylevelaconsistentview

ofthe multileveldatabase.

MULTILEVELSECURITY:

Multilevelsecurity or multiplelevelsofsecurity (MLS)istheapplicationof

acomputersystem toprocessinformationwithincompatible classifications (i.e.,at

different security levels), permit access by users with different security

clearances and needs-to-know,andpreventusersfrom obtainingaccesstoinformation

forwhichtheylackauthorization.Therearetwocontextsfortheuseofmultilevel

security.Oneistorefertoasystem thatisadequatetoprotectitselffrom subversion

andhasrobustmechanismstoseparateinformationdomains,thatis,trustworthy.

Anothercontextistorefertoanapplicationofacomputerthatwillrequirethecomputer

to be strong enough to protectitselffrom subversion and possess adequate

mechanismstoseparateinformationdomains,thatis,asystem wemusttrust.This

distinctionisimportantbecausesystemsthatneedtobetrustedarenotnecessarily

trustworthy.

 MLS operatingenvironment oftenrequiresahighlytrustworthyinformationprocessing

system oftenbuiltonanMLSoperatingsystem (OS),butnotnecessarily.MostMLS

functionality can be supported by a system composed entirely from untrusted

computers,althoughitrequiresmultipleindependentcomputerslinkedbyhardware

security-compliant channels (see section B.6.2 of the Trusted Network

Interpretation, NCSC-TG-005).AnexampleofhardwareenforcedMLSis asymmetric

isolation.[1] IfonecomputerisbeingusedinMLSmode,thenthatcomputermustusea

trustedoperatingsystem (OS).BecauseallinformationinanMLS environmentis

physicallyaccessiblebytheOS,stronglogicalcontrolsmustexisttoensurethataccess

to information is strictly controlled. Typically this involves mandatory access

control thatusessecuritylabels,likethe Bell–LaPadulamodel.

Customersthatdeploytrustedoperatingsystemstypicallyrequirethattheproduct

completeaformalcomputersecurityevaluation.Theevaluationisstricterforabroader

securityrange,whicharethelowestandhighestclassificationlevelsthesystem can

process.The Trusted ComputerSystem Evaluation Criteria (TCSEC)was the first

evaluationcriteriadevelopedtoassessMLSincomputersystems.Underthatcriteria

therewasaclearuniform mapping[2] betweenthesecurityrequirementsandthebreadth

oftheMLSsecurityrange.Historicallyfewimplementationshavebeencertifiedcapable

ofMLSprocessingwithasecurityrangeofUnclassifiedthroughTopSecret.Among

them were Honeywell'sSCOMP, USAF SACDIN, NSA's Blacker,and Boeing'sMLSLAN,

allunderTCSEC,1980svintageand Intel80386-based.Currently,MLSproductsare

evaluatedunderthe CommonCriteria.Inlate2008,thefirstoperatingsystem (more

below)was certified to a high evaluated assurance level: Evaluation Assurance

Level (EAL)-EAL6+/HighRobustness,undertheauspicesofaU.S.government

program requiringmultilevelsecurityinahighthreatenvironment.Whilethisassurance

levelhasmanysimilaritiestothatoftheoldOrangeBookA1(suchasformalmethods),

the functionalrequirements focus on fundamentalisolation and information flow

policiesratherthanhigherlevelpoliciessuchasBell-LaPadula.BecausetheCommon

CriteriadecoupledTCSEC'spairingofassurance(EAL)andfunctionality(Protection

Profile),theclearuniform mappingbetweensecurityrequirementsandMLSsecurity

range capabilitydocumented in CSC-STD-004-85 has largelybeen lostwhen the

CommonCriteriasupersededthe RainbowSeries.

FreelyavailableoperatingsystemswithsomefeaturesthatsupportMLSincludeLinux

with the Security-Enhanced Linux featureenabled and FreeBSD.[3] Securityevaluation

wasoncethoughttobeaproblem forthesefreeMLS implementationsforthree

reasons:

1.Itisalwaysverydifficulttoimplementkernelself-protectionstrategywiththe

precisionneededforMLStrust,andtheseexampleswerenotdesignedtoor

certifiedtoanMLSprotectionprofilesotheymaynotoffertheself-protection

neededtosupportMLS.

2.Asidefrom EALlevels,theCommonCriterialacksaninventoryofappropriate

highassuranceprotectionprofilesthatspecifytherobustnessneededtooperate

inMLSmode.

3.Evenif(1)and(2)weremet,theevaluationprocessisverycostlyandimposes

specialrestrictionsonconfigurationcontroloftheevaluatedsoftware.

Notwithstandingsuchsuppositions,RedHatEnterpriseLinux5wascertifiedagainst

LSPP,RBACPP,andCAPPatEAL4+inJune2007.[4] ItusesSecurity-EnhancedLinuxto

implementMLSandwasthefirstCommonCriteriacertificationtoenforceTOEsecurity

propertieswithSecurity-EnhancedLinux.

Vendorcertificationstrategiescanbemisleadingtolaypersons.Acommonstrategy

exploitsthelayperson'soveremphasisofEALlevelwithover-certification,suchas

certifyinganEAL3protectionprofile(likeCAPP)[5] toelevatedlevels,likeEAL4orEAL5.

AnotherisaddingandcertifyingMLS supportfeatures(suchas role-basedaccess

control protectionprofile(RBACPP)andlabeledsecurityprotectionprofile(LSPP))toa

kernelthatisnotevaluated to anMLS-capableprotectionprofile.Thosetypesof

featuresareservicesrunonthekernelanddependonthekerneltoprotectthem from

corruptionandsubversion.IfthekernelisnotevaluatedtoanMLS-capableprotection

profile, MLS features cannot be trusted regardless of how impressive the

demonstrationlooks.ItisparticularlynoteworthythatCAPPisspecifically not anMLS-

capableprofileasitspecificallyexcludesself-protectioncapabilitiescriticalforMLS.

GeneralDynamics offers PitBull,atrusted,MLSoperatingsystem.PitBulliscurrently

offeredonlyasanenhancedversionof RedHatEnterpriseLinux,butearlierversions

existedforSunMicrosystemsSolaris,IBM AIX,andSVR4Unix.PitBullprovidesa Bell

LaPadula security mechanism,a Biba integrity mechanism,a privilege replacement

for superuser,and manyotherfeatures.PitBullhasthesecuritybaseforGeneral

Dynamics'Trusted Network Environment (TNE) productsince 2009.TNE enables

MultilevelinformationsharingandaccessforusersintheDepartmentofDefenseand

Intelligence communities operating a varying classification levels.It's also the

foundationfortheMultilevelcoalitionsharingenvironment,theBattlefieldInformation

CollectionandExploitationSystemsExtended[6] (BICES-X).

SunMicrosystems,now OracleCorporation,offers SolarisTrustedExtensions asan

integratedfeatureofthecommercialOSs Solaris and OpenSolaris.Inadditiontothe

controlled access protection profile (CAPP),and role-based access control (RBAC)

protectionprofiles,TrustedExtensionshavealsobeencertifiedatEAL4tothelabeled

securityprotection profile(LSPP).[7] Thesecuritytargetincludesboth desktop and

networkfunctionality.LSPPmandatesthatusersarenotauthorizedtooverridethe

labeling policies enforced bythe kerneland X Window System (X11 server).The

evaluationdoesnotincludea covertchannel analysis.Becausethesecertifications

dependonCAPP,noCommonCriteriacertificationssuggestthisproductistrustworthy

forMLS.

BAESystems offers XTS-400,acommercialsystem thatsupportsMLSatwhatthe

vendorclaimsis"highassurance".Predecessorproducts(includingtheXTS-300)were

evaluated atthe TCSEC B3 level,which is MLS-capable.The XTS-400 has been

evaluatedundertheCommonCriteriaatEAL5+againsttheCAPPandLSPPprotection

profiles.CAPPandLSPParebothEAL3protectionprofilesthatarenotinherentlyMLS-

capable,butthesecuritytarget[8] fortheCommonCriteriaevaluationofthisproduct

containsanenrichedsetofsecurityfunctionsthatprovideMLScapability.

Problem areas[edit]

Sanitization is a problem area forMLS systems.Systems thatimplementMLS

restrictions,likethosedefinedby Bell–LaPadulamodel,onlyallowsharingwhenitdoes

notobviouslyviolatesecurityrestrictions.Userswithlowerclearancescaneasilyshare

theirworkwithusersholdinghigherclearances,butnotviceversa.Thereisnoefficient,

reliablemechanism bywhichaTopSecretusercaneditaTopSecretfile,removeall

TopSecretinformation,andthendeliverittouserswithSecretorlowerclearances.In

practice,MLSsystemscircumventthisproblem viaprivilegedfunctionsthatallow a

trustworthy userto bypass the MLS mechanism and change a file's security

classification.However,thetechniqueis notreliable.

Covertchannels poseanotherproblem forMLSsystems.ForanMLSsystem tokeep

secretsperfectly,theremustbe nopossibleway foraTopSecretprocesstotransmit

signalsofanykindtoaSecretorlowerprocess.Thisincludessideeffectssuchas

changesinavailablememoryordiskspace,orchangesinprocesstiming.Whena

processexploitssuchasideeffecttotransmitdata,itisexploitingacovertchannel.It

isextremelydifficulttocloseallcovertchannelsinapracticalcomputingsystem,andit

maybeimpossibleinpractice.Theprocessofidentifyingallcovertchannelsisa

challengingonebyitself.MostcommerciallyavailableMLSsystemsdonotattemptto

closeallcovertchannels,eventhoughthismakesitimpracticaltousethem inhigh

securityapplications.

Bypass isproblematicwhenintroducedasameanstotreatasystem highobjectasifit

wereMLStrusted.Acommonexampleistoextractdatafrom asecretsystem high

objecttobesenttoanunclassifieddestination,citingsomepropertyofthedataas

trustedevidencethatitis'really'unclassified(e.g.'strict'format).Asystem highsystem

cannotbetrustedtopreserveanytrustedevidence,andtheresultisthatanovertdata

pathisopenedwithnologicalwaytosecurelymediateit.Bypasscanberiskybecause,

unlikenarrowbandwidthcovertchannelsthataredifficulttoexploit,bypasscanpresent

alarge,easilyexploitableovertleakinthesystem.Bypassoftenarisesoutoffailureto

usetrusted operating environmentsto maintain continuousseparation ofsecurity

domainsallthewaybacktotheirorigin.Whenthatoriginliesoutsidethesystem

boundary,itmaynotbepossibletovalidatethetrustedseparationtotheorigin.Inthat

case,theriskofbypasscanbeunavoidableiftheflowtrulyisessential.

A commonexampleofunavoidablebypassisasubjectsystem thatisrequiredto

acceptsecretIPpacketsfrom anuntrustedsource,encryptthesecretuserdataandnot

theheaderanddeposittheresulttoanuntrustednetwork.Thesourceliesoutsidethe

sphereofinfluenceofthesubjectsystem.Althoughthesourceisuntrusted(e.g.

system high)itisbeingtrustedasifitwereMLSbecauseitprovidespacketsthathave

unclassifiedheadersandsecretplaintextuserdata,anMLSdataconstruct.Sincethe

sourceisuntrusted,itcouldbecorruptandplacesecretsintheunclassifiedpacket

header.Thecorruptedpacketheaderscouldbenonsensebutitisimpossibleforthe

subjectsystem todeterminethatwithanyreasonablereliability.Thepacketuserdatais

cryptographicallywellprotectedbutthepacketheadercancontainreadablesecrets.If

thecorruptedpacketsarepassedtoanuntrustednetworkbythesubjectsystem they

maynotberoutablebutsomecooperatingcorruptprocessinthenetworkcouldgrab

thepacketsandacknowledgethem andthesubjectsystem maynotdetecttheleak.

Thiscanbealargeovertleakthatishardtodetect.Viewingclassifiedpacketswith

unclassifiedheadersassystem highstructuresinsteadoftheMLSstructuresthey

reallyarepresentsaverycommonbutseriousthreat.

Mostbypassisavoidable.Avoidablebypassoftenresultswhensystem architects

designasystem beforecorrectlyconsideringsecurity,thenattempttoapplysecurity

afterthefactasadd-onfunctions.Inthatsituation,bypassappearstobetheonly(easy)

wayto makethesystem work.Somepseudo-secureschemesareproposed (and

approved!)thatexaminethecontentsofthebypassed data in avain attemptto

establishthatbypasseddatacontainsnosecrets.Thisisnotpossiblewithouttrusting

somethingaboutthedatasuchasitsformat,whichiscontrarytotheassumptionthat

thesourceisnottrustedtopreserveanycharacteristicsofthesourcedata.Assured

"secure bypass"is a myth,justas a so-called High Assurance Guard (HAG)that

transparently implements bypass. The risk these introduce has long been

acknowledged;extantsolutionsareultimatelyprocedural,ratherthantechnical.Thereis

nowaytoknow withcertaintyhow muchclassifiedinformationistakenfrom our

systemsbyexploitationofbypass.

MLSisdeceptivelycomplexandjustbecausesimplesolutionsarenotobviousdoesnot

justifyaconclusionthattheydonotexist.Thiscanleadtoacripplingignoranceabout

COMPUSECthatmanifestsitselfaswhispersthat"onecannottalkaboutMLS,"and

"There'snosuchthingasMLS."TheseMLS-denialschemeschangesorapidlythatthey

cannotbeaddressed.Instead,itisimportanttoclarifythedistinctionbetweenMLS-

environmentandMLS-capable.

 MLSasasecurityenvironmentor securitymode:Acommunitywhoseusershave

differingsecurityclearancesmayperceiveMLSasa datasharing capability:users

can share information with recipients whose clearance allows receiptofthat

information.A system isoperatinginMLS Modewhenithas(orcould have)

connectivitytoadestinationthatisclearedtoalowersecuritylevelthananyofthe

datatheMLSsystem contains.ThisisformalizedintheCS-IVT.Determinationof

securitymodeofasystem dependsentirelyonthesystem'ssecurityenvironment;

theclassificationofdataitcontains,theclearanceofthosewhocangetdirector

indirectaccesstothesystem oritsoutputsorsignals,andthesystem'sconnectivity

andportstoothersystems.Securitymodeisindependentofcapabilities,althougha

system shouldnotbeoperatedinamodeforwhichitisnotworthyoftrust.

 MLSasa capability:DevelopersofproductsorsystemsintendedtoallowMLSdata

sharingtendtolooselyperceiveitintermsofacapabilitytoenforcedata-sharing

restrictionsorasecuritypolicy,likemechanismsthatenforcethe Bell–LaPadula

model.Asystem isMLS-capableifitcanbeshowntorobustlyimplementasecurity

policy.

Theoriginaluseoftheterm MLSappliedtothesecurityenvironment,ormode.One

solutiontothisconfusionistoretaintheoriginaldefinitionofMLSandbespecific

aboutMLS-capablewhenthatcontextisused.

MILSarchitecture[edit]

MultipleIndependentLevelsofSecurity (MILS)isanarchitecturethataddressesthe

domainseparationcomponentofMLS.NotethatUCDMO(theUSgovernmentleadfor

crossdomain and multilevelsystems)created a term CrossDomain Access asa

categoryinitsbaselineof DoD and IntelligenceCommunity accreditedsystems,and

thiscategorycanbeseenasessentiallyanalogoustoMILS.

Securitymodelssuchasthe Bibamodel (forintegrity)andthe Bell–LaPadulamodel (for

confidentiality)allowone-wayflowbetweencertainsecuritydomainsthatareotherwise

assumed to be isolated.MILS addresses the isolation underlying MLS without

addressingthecontrolledinteractionbetweenthedomainsaddressedbytheabove

models.Trustedsecurity-compliantchannelsmentionedabovecanlinkMILSdomains

tosupportmoreMLSfunctionality.

TheMILSapproachpursuesastrategycharacterizedbyanolderterm,MSL(multiple

single level),thatisolates each levelofinformation within its own single-level

environment(System High).

TherigidprocesscommunicationandisolationofferedbyMILSmaybemoreusefulto

ultrahighreliabilitysoftwareapplicationsthanMLS.MILSnotablydoesnotaddressthe

hierarchicalstructurethatisembodiedbythenotionofsecuritylevels.Thisrequiresthe

additionofspecificimport/exportapplicationsbetweendomainseachofwhichneeds

to be accredited appropriately.As such,MILS mightbe bettercalled Multiple

IndependentDomainsofSecurity(MLSemulationonMILSwouldrequireasimilarsetof

accreditedapplicationsfortheMLSapplications).Bydecliningtoaddressoutofthebox

interactionamonglevelsconsistentwiththehierarchicalrelationsofBell-LaPadula,

MILS is (almostdeceptively)simple to implementinitially butneeds non-trivial

supplementary import/exportapplications to achieve the richness and flexibility

expectedbypracticalMLSapplications.

AnyMILS/MLScomparisonshouldconsideriftheaccreditationofasetofsimpler

exportapplicationsismoreachievablethanaccreditationofone,morecomplexMLS

kernel.Thisquestiondependsinpartontheextentoftheimport/exportinteractions

thatthestakeholdersrequire.InfavourofMILSisthepossibilitythatnotalltheexport

applicationswillrequiremaximalassurance.

MSLsystems[edit]

Thereisanotherwayofsolvingsuchproblemsknownas multiplesingle-level.Each

securitylevelisisolatedinaseparateuntrusteddomain.Theabsenceofmedium of

communication between the domains assures no interaction is possible.The

mechanism forthisisolationisusuallyphysicalseparationinseparatecomputers.This

isoftenusedtosupportapplicationsor operatingsystems whichhavenopossibilityof

supportingMLSsuchas MicrosoftWindows.

Applications[edit]

InfrastructuresuchastrustedoperatingsystemsareanimportantcomponentofMLS

systems,butin orderto fulfillthe criteria required underthe definition ofMLS

by CNSSI 4009(paraphrasedatthestartofthisarticle),thesystem mustprovideauser

interfacethatiscapableofallowingausertoaccessandprocesscontentatmultiple

classificationlevelsfrom onesystem.TheUCDMOranatrackspecificallyfocusedon

MLSatthe NSA InformationAssuranceSymposium in2009,inwhichithighlighted

severalaccredited(inproduction)andemergentMLSsystems.NotetheuseofMLS

in SELinux.[11]

There are severaldatabases classified as MLS systems. Oracle has a product

named Oracle LabelSecurity (OLS) that implements mandatory access controls -

typicallybyaddinga'label'columntoeachtableinan Oracledatabase.OLSisbeing

deployed atthe US Army INSCOM as the foundation ofan "all-source"intelligence

databasespanningthe JWICS and SIPRNet networks.Thereisaprojecttocreatea

labeled version of PostgreSQL, and there are also older labeled-database

implementations such as Trusted Rubix.These MLS database systems provide a

unifiedback-endsystem forcontentspanningmultiplelabels,buttheydonotresolve

thechallengeofhavingusersprocesscontentatmultiplesecuritylevelsinonesystem

whileenforcingmandatoryaccesscontrols.

TherearealsoseveralMLSend-userapplications.TheotherMLScapabilitycurrentlyon

theUCDMO baselineiscalled MLChat,anditisachatserverthatrunsonthe XTS-

400 operatingsystem -itwascreatedbytheUS NavalResearchLaboratory.Giventhat

contentfrom usersatdifferentdomainspassesthroughtheMLChatserver,dirty-word

scanningisemployedtoprotectclassifiedcontent,andtherehasbeensomedebate

aboutifthisistrulyanMLSsystem ormoreaform of cross-domaintransfer data

guard. Mandatoryaccesscontrols aremaintainedbyacombinationof XTS-400 and

application-specificmechanisms.[12]

JointCrossDomaineXchange (JCDX)isanotherexampleofanMLScapabilitycurrently

onthe UCDMO[permanentdeadlink] baseline.JCDXistheonlyDepartmentofDefense(DoD),

Defense Intelligence Agency(DIA)accredited MultilevelSecurity(MLS)Command,

Control,Communication,ComputersandIntelligence(C4I)system thatprovidesnear

real-timeintelligenceandwarningsupporttotheaterandforwarddeployedtactical

commanders.The JCDX architecture is comprehensively integrated with a high

assuranceProtectionLevelFour(PL4)secureoperatingsystem,utilizingdatalabeling

todisseminatenearreal-timedatainformationonforceactivitiesandpotentialterrorist

threatsonandaroundtheworld'soceans.ItisinstalledatlocationsinUnitedStates

andAlliedpartnercountrieswhereitiscapableofprovidingdatafrom TopSecret/SCI

downtoSecret-Releasablelevels,allonasingleplatform.

MLSapplicationsnotcurrentlypartoftheUCDMObaselineincludeseveralapplications

from BlueSpace.BlueSpacehasseveralMLSapplications,includinganMLSemailclient,

anMLSsearchapplicationandanMLSC2system.BlueSpaceleveragesamiddleware

strategyto enable itsapplicationsto be platform neutral,orchestrating one user

interface across multiple Windows OS instances (virtualized or remote terminal

sessions).TheUS NavalResearchLaboratory hasalsoimplementedamultilevelweb

application frameworkcalled MLWeb which integratesthe Rubyon Rails framework

withamultileveldatabasebasedon SQLite3.

Future[edit]

Perhapsthegreatestchangegoingoninthemultilevelsecurityarenatodayisthe

convergenceofMLSwithvirtualization.Anincreasingnumberoftrustedoperating

systemsaremovingawayfrom labelingfilesandprocesses,andareinsteadmoving

towards UNIXcontainers or virtualmachines.Examplesinclude zones in Solaris10TX,

andthepaddedcell hypervisor insystemssuchas GreenHill's Integrity platform,and

XenClientXT from Citrix.The High Assurance Platform from NSA as implemented

in GeneralDynamics' TrustedVirtualizationEnvironment (TVE)isanotherexample-it

uses SELinux atitscore,andcansupportMLSapplicationsthatspanmultipledomains.

UNIT-5
NetworkSecurity

NetworkConcepts:
Threats:
Wecanconsiderpotentialharm toassetsintwoways:First,we
canlookatwhatbadthingscanhappentoassets,andsecond,we
canlookatwhoorwhatcancauseorallowthosebadthingsto
happen.Thesetwoperspectivesenableustodeterminehowto
protectassets.
Thinkforamomentaboutwhatmakesyourcomputervaluableto
you.First,youuseitIsatoolforsendingandreceivingemail,
searchingtheweb,writingpapers,andperformingmanyother
tasks,andyouexpectittobeavailableforusewhenyouwant
it.Withoutyourcomputerthesetaskswouldbeharder,ifnot
impossible.Second,yourelyheavilyonyourcomputer’sintegrity.
Whenyouwriteapaperandsaveit,youtrustthatthepaperwill
reloadexactlyasyousavedit.Similarly,youexpectthatthephoto
afriendpassesyouonaflashdrivewillappearthesamewhen
youloaditintoyourcomputeras
whenyousawitonyourfriend’scomputer.Finally,youexpectthe
“personal”aspectofapersonalcomputertostaypersonal,
meaningyouwantittoprotectyourconfidentiality.
Forexample,youwantyouremailmessagestobejustbetween
youandyourlistedrecipients;youdon’twantthem broadcastto
otherpeople.Andwhenyouwriteanessay,youexpectthatno
onecancopyitwithoutyourpermission.
Thesethreeaspects,confidentiality,integrity,andavailability,
makeyourcomputervaluabletoyou.Butviewedfrom another
perspective,theyarethreepossiblewaystomakeitlessvaluable,

thatis,tocauseyouharm.Ifsomeonestealsyourcomputer,
scramblesdataonyourdisk,orlooksatyourprivatedatafiles,
thevalueofyourcomputer
hasbeendiminishedoryourcomputerusehasbeenharmed.
Thesecharacteristicsarebothbasicsecuritypropertiesandthe
objectsofsecuritythreats.Wecandefinethesethreeproperties
asfollows.

•availability:theabilityofasystem toensurethatanassetcan
beusedbyanyauthorizedparties
•integrity:theabilityofasystem toensurethatanassetis
modifiedonlybyauthorizedparties
•confidentiality:theabilityofasystem toensurethatanassetis
viewedonlybyauthorizedpartiesThesethreeproperties,
hallmarksofsolidsecurity,appearintheliteratureasearlyas
JamesP.Anderson’sessayoncomputersecurity[AND73]and
reappearfrequentlyin
morerecentcomputersecuritypapersanddiscussions.Taken
together(andrearranged),thepropertiesarecalledtheC-I-Atriad
orthesecuritytriad.ISO7498-2[ISO89]addstothem twomore
propertiesthataredesirable,particularlyincommunication
networks:

•authentication:theabilityofasystem toconfirm theidentityof
asender

•nonrepudiationoraccountability:theabilityofasystem to
confirm thatasendercannotconvincinglydenyhavingsent
something
TheU.S.DepartmentofDefense[DOD85]addsauditability:the
abilityofasystem totraceallactionsrelatedtoagivenasset.
TheC-I-Atriadformsafoundationforthinkingaboutsecurity.

FIGURE1-5FourActstoCauseSecurityHarm
Toanalyzeharm,wenextrefinetheC-I-Atriad,lookingmore
closelyateachofitselements.
Confidentiality
Somethingsobviouslyneedconfidentialityprotection.For
example,students’grades,financialtransactions,medicalrecords,
andtaxreturnsaresensitive.Aproudstudentmayrunoutofa
classroom screaming“IgotanA!”butthestudentshouldbethe
onetochoosewhethertorevealthatgradetoothers.Otherthings,
suchasdiplomaticandmilitary
secrets,companies’marketingandproductdevelopmentplans,
andeducators’tests,alsomustbecarefullycontrolled.
Sometimes,however,itisnotsoobviousthatsomethingis
sensitive.

Forexample,amilitaryfoodordermayseem likeinnocuous
information,butasuddenincreaseintheordercouldbeasignof
incipientengagementinconflict.Purchasesoffood,hourly
changesinlocation,andaccesstobooksarenotthingsyou
would
ordinarilyconsiderconfidential,buttheycanrevealsomething
thatsomeonewantstobekeptconfidential.
Thedefinitionofconfidentialityisstraightforward:Only
authorizedpeopleorsystemscanaccessprotecteddata.
However,asweseeinlaterchapters,ensuringconfidentialitycan
bedifficult.
Forexample,whodetermineswhichpeopleorsystemsare
authorizedto
accessthecurrentsystem?By“accessing”data,dowemeanthat
anauthorizedpartycan
accessasinglebit?thewholecollection?piecesofdataoutof
context?Cansomeonewho
isauthorizeddisclosedatatootherparties?Sometimesthereis
evenaquestionofwho
ownsthedata:Ifyouvisitawebpage,doyouownthefactthat
youclickedonalink,or
doesthewebpageowner,theInternetprovider,someoneelse,or
allofyou?
Inspiteofthesecomplicatingexamples,confidentialityisthe
securitypropertywe
understandbestbecauseitsmeaningisnarrowerthanthatofthe
othertwo.Wealso
understandconfidentialitywellbecausewecanrelatecomputing
examplestothoseof
preservingconfidentialityintherealworld.
Confidentialityrelatesmostobviouslytodata,althoughwecan
thinkofthe
confidentialityofapieceofhardware(anovelinvention)ora
person(thewhereaboutsof
awantedcriminal).Herearesomepropertiesthatcouldmeana

failureofdata
confidentiality:
•Anunauthorizedpersonaccessesadataitem.
•Anunauthorizedprocessorprogram accessesadataitem.
•Apersonauthorizedtoaccesscertaindataaccessesotherdata
notauthorized
(whichisaspecializedversionof“anunauthorizedperson
accessesadata
item”).
•Anunauthorizedpersonaccessesanapproximatedatavalue
(forexample,notknowingsomeone’sexactsalarybutknowing
thatthesalaryfallsinaparticularrangeorexceedsaparticular
amount).
•Anunauthorizedpersonlearnstheexistenceofapieceofdata
(forexample,
knowingthatacompanyisdevelopingacertainnewproductor
thattalksareunderwayaboutthemergeroftwocompanies).
Noticethegeneralpatternofthesestatements:Aperson,process,
orprogram is(orisnot)authorizedtoaccessadataitem ina
particularway.Wecalltheperson,process,orprogram asubject,
thedataitem anobject,thekindofaccess(suchasread,write,or
execute)anaccessmode,andtheauthorizationapolicy,as
showninFigure1-6.These
fourtermsreappearthroughoutthisbookbecausetheyare
fundamentalaspectsof
computersecurity

FIGURE1-6AccessControl
Onewordthatcapturesmostaspectsofconfidentialityisview,
althoughyoushouldnottakethatterm literally.Afailureof
confidentialitydoesnotnecessarilymeanthatsomeoneseesan
objectand,infact,itisvirtuallyimpossibletolookatbitsinany
meaningfulway
(althoughyoumaylookattheirrepresentationascharactersor
pictures).Thewordviewdoesconnoteanotheraspectof
confidentialityincomputersecurity,throughtheassociationwith
viewingamovieorapaintinginamuseum:lookbutdonottouch.
In
computersecurity,confidentialityusuallymeansobtainingbutnot
modifying.
Modificationisthesubjectofintegrity,whichweconsiderinthe
nextsection.
TypesofThreats
Forsomeideasofharm,lookatFigure1-8,takenfrom Willis
Ware’sreport[WAR70].
Althoughitwaswrittenwhencomputersweresobig,so

expensive,andsodifficulttooperatethatonlylargeorganizations
likeuniversities,majorcorporations,orgovernmentdepartments
wouldhaveone,Ware’sdiscussionisstillinstructivetoday.Ware
was
concernedprimarilywiththeprotectionofclassifieddata,thatis,
preservingconfidentiality.Inthefigure,hedepictshumanssuch
asprogrammersandmaintenancestaffgainingaccesstodata,
aswellasradiationbywhichdatacanescapeassignals.From
thefigureyoucanseesomeofthemanykindsofthreatstoa
computersystem.

FIGURE1-8Computer[Network]Vulnerabilities(from [WAR70])
Onewaytoanalyzeharm istoconsiderthecauseorsource.We
callapotentialcauseofharm athreat.Harm canbecausedby
eithernonhumaneventsorhumans.
Threatscanbetargetedorrandom.
AlthoughthedistinctionsshowninFigure1-9seem clear-cut,
sometimesthenatureofanattackisnotobviousuntiltheattack
iswellunderway,orperhapsevenended.Anormalhardware

failurecanseem likeadirected,maliciousattacktodenyaccess,
and
hackersoftentrytoconcealtheiractivitytolooklikeordinary,
authorizedusers.Ascomputersecurityexpertsweneedto
anticipatewhatbadthingsmighthappen,insteadofwaitingfor
theattacktohappenordebatingwhethertheattackisintentional
oraccidental.
Neitherthisbooknoranychecklistormethodcanshowyouall
thekindsofharm thatcanhappentocomputerassets.Thereare
toomanywaystointerferewithyouruseoftheseassets.Two
retrospectivelistsofknownvulnerabilitiesareofinterest,
however.The
CommonVulnerabilitiesandExposures(CVE)list(see
http://cve.mitre.org/)isa
dictionaryofpubliclyknownsecurityvulnerabilitiesandexposures.
CVE’scommon
identifiersenabledataexchangebetweensecurityproductsand
provideabaselineindex
pointforevaluatingcoverageofsecuritytoolsandservices.To
measuretheextentof
harm,theCommonVulnerabilityScoringSystem (CVSS)(see
http://nvd.nist.gov/cvss.cfm)providesastandardmeasurement
system thatallowsaccurate
andconsistentscoringofvulnerabilityimpact.
TypesofAttackers
Whoareattackers?Aswehaveseen,theirmotivationsrange
from chancetoaspecific
target.Puttingasideattacksfrom naturalandbenigncauses,we
canexplorewhothe
attackersareandwhatmotivatesthem.
Moststudiesofattackersactuallyanalyzecomputercriminals,
thatis,peoplewhohave
actuallybeenconvictedofacrime,primarilybecausethatgroup
iseasytoidentifyand
study.Theoneswhogotawayorwhocarriedoffanattack

withoutbeingdetectedmay
havecharacteristicsdifferentfrom thoseofthecriminalswho
havebeencaught.Worse,by
studyingonlythecriminalswehavecaught,wemaynotlearnhow
tocatchattackerswho
knowhowtoabusethesystem withoutbeingapprehended.
Whatdoesacybercriminallooklike?Intelevisionandfilmsthe
villainsworeshabby
clothes,lookedmeanandsinister,andlivedingangssomewhere
outoftown.Bycontrast,
thesheriffdressedwell,stoodproudandtall,wasknownand
respectedbyeveryonein
town,andstruckfearintheheartsofmostcriminals.
Tobesure,somecomputercriminalsaremeanandsinistertypes.
Butmanymorewear
businesssuits,haveuniversitydegrees,andappeartobepillars
oftheircommunities.
Somearehighschooloruniversitystudents.Othersaremiddle-
agedbusinessexecutives.
Somearementallyderanged,overtlyhostile,orextremely
committedtoacause,andthey
attackcomputersasasymbol.Othersareordinarypeople
temptedbypersonalprofit,
revenge,challenge,advancement,orjobsecurity—like
perpetratorsofanycrime,usinga
computerornot.Researchershavetriedtofindthepsychological
traitsthatdistinguish
attackers,asdescribedinSidebar1-1.Thesestudiesarefarfrom
conclusive,however,and
thetraitstheyidentifymayshowcorrelationbutnotnecessarily
causality.Toappreciate
thispoint,supposeastudyfoundthatadisproportionatenumber
ofpeopleconvictedof
computercrimewereleft-handed.Doesthatresultimplythatall
left-handedpeopleare

computercriminalsorthatonlyleft-handedpeopleare?Certainly
not.Nosingleprofile
capturesthecharacteristicsofa“typical”computerattacker,and
thecharacteristicsof
somenotoriousattackersalsomatchmanypeoplewhoarenot
attackers.Asshownin
Figure1-10,attackerslookjustlikeanybodyinacrowd.

FIGURE1-10Attackers

Firewalls:

Firewallsinbuildings,astheirnameimplies,arewallsintendedto
inhibitthespreadoffirefrom onepartofabuildingtoanother,for

example,betweenoneapartmentandthenext.Firewallsarebuilt
ofmaterialsthatwithstandfiresofaparticularintensityor
duration;theydeterfirespreadbutarenotguaranteedorintended
tostopaparticularly
intensefire.
Ascomputersecuritydevices,networkfirewallsaresimilar,
protectingonesubnetfrom harm from anothersubnet.The
primaryuseofafirewallistoprotectaninternalsubnetworkfrom
themanythreatswehavealreadydescribedinthewildInternet.
Firewallscanalsobeusedtoseparatesegmentsofaninternal
network,forexample,topreservehighconfidentialityofa
sensitiveresearchnetworkwithinalargerorganization.
DesignofFirewalls
Aswehavedescribedthem,firewallsaresimpledevicesthat
rigorouslyandeffectivelycontroltheflowofdatatoandfrom a
network.Twoqualitiesleadtothateffectiveness:awell-
understoodtrafficflowpolicyandatrustworthydesignand
implementation.
Policy
Afirewallimplementsasecuritypolicy,thatis,asetofrulesthat
determinewhattrafficcanorcannotpassthroughthefirewall.As
withmanyproblemsincomputersecurity,wewouldideallylikea
simplepolicy,suchas“good”trafficcanpassbut“bad”trafficis
blocked.Unfortunately,defining“good”and“bad”isneither
simplenor
algorithmic.Firewallscomewithexamplepolicies,buteach
networkadministratorneedstodeterminewhattraffictoallow
intoaparticularnetwork.Anexampleofasimplefirewall
configurationisshowninTable6-5.Thetableisprocessedfrom
thetopdown,andthefirstmatchingruledeterminesthefirewall’s
action.
The*charactermatchesanyvalueinthatfield.Thispolicysays
anyinboundtraffictoport25(mailtransfer)orport69(so-called
trivialfiletransfer)isallowedtoorfrom anyhostonthe192.168.1
subnetwork.Byrule3anyinsidehostisallowedoutboundtraffic

anywhereonport80(webpagefetches).Furthermore,byrule4
outsidetraffictothe
internalhostatdestinationaddress192.168.1.18(presumablya
webserver)isallowed.
Allothertraffictothe192.168.1networkisdenied.

TABLE6-5ExampleFirewallConfiguration
Trust
Afirewallisanexampleofthereferencemonitor,afundamental
computersecurityconcept.Rememberfrom Chapters2and5
thatareferencemonitorhasthreecharacteristics:
•alwaysinvoked
•tamperproof
•smallandsimpleenoughforrigorousanalysis
Afirewallisaspecialform ofreferencemonitor.Bycarefully
positioningafirewallinanetwork’sarchitecture,wecanensure
thatallnetworkaccessesthatwewanttocontrolmustpass
throughthefirewall.Afirewallispositionedasthesinglephysical
connection
betweenaprotected(internal)networkandanuncontrolled
(external)one.Thisplacementensuresthe“alwaysinvoked”
condition.
Afirewallistypicallywellisolated,makingithighlyimmuneto

modification.Usuallyafirewallisimplementedonaseparate
computer,withdirectconnectionsonlytotheoutsideandinside
networks.Thisisolationisexpectedtomeetthe“tamperproof”
requirement.Furthermore,thefirewallplatform runsastripped-
downoperatingsystem runningminimalservicesthatcouldallow
compromiseoftheoperatingsystem orthefirewallapplication.
Forexample,thefirewallprobablygeneratesalogoftraffic
denied,butitmaynothaveinstalledtoolsbywhichtoviewand
editthatlog;modifications,ifnecessary,canbedoneona
differentmachineinaprotectedenvironment.
Inthisway,evenifanattackershouldcompromisethefirewall’s

system,therearenotoolswithwhichtodisguiseordeletethelog
entriesthatmightshowtheincident.
Finally,firewalldesignersstronglyrecommendkeepingthe
functionalityofthefirewallsimple.Overtime,unfortunately,
demandsonfirewallfunctionalityhaveincreased(suchastraffic
auditing,agraphicaluserinterface,alanguageforexpressingand
implementingcomplexpolicyrules,andcapabilitiesforanalyzing
highlystructuredtraffic),somost
currentfirewallscannotbeconsideredeithersmallorsimple.
Nevertheless,firewall
manufacturershavewithstoodmostmarketingattemptstoadd
irrelevantfunctionalitywhoseneteffectisonlytoreducethe
basisforconfidencethatafirewalloperatesasexpected.
Afirewallisareferencemonitor,positionedtomonitoralltraffic,
notaccessibletooutsideattacks,andimplementingonlyaccess
control.
TypesofFirewalls
Firewallshaveawiderangeofcapabilities,butingeneral,
firewallsfallintooneofasmallnumberoftypes.Eachtypedoes
differentthings;noonetypeisnecessarilyrightorbetterandthe
otherswrong.Inthissection,wefirstmotivatetheneedfor
differenttypesoffirewallsandthenexamineeachtypetosee
whatitis,howitworks,andwhatits
strengthsandweaknessesare.Differenttypesoffirewalls

implementdifferenttypesofpolicies;
forexample,simplefirewallscalledscreeningroutersjudge

basedonlyonheaderdata:addresses.Morecomplexfirewalls
lookintothecontentbeingcommunicatedtomakeaccess
decisions.Simplicityinasecuritypolicyisnotabadthing;the
importantquestiontoaskwhenchoosingatypeoffirewallis
whatthreatsaninstallationneedstocounter.
Becauseafirewallisatypeofhost,itisoftenasprogrammable
asagood-qualityworkstation.Whileascreeningroutercanbe
fairlyprimitive,thetendencyistoimplementevenrouterson
completecomputerswithoperatingsystemsbecauseeditorsand
other
programmingtoolsassistinconfiguringandmaintainingthe
router.However,firewall
developersareminimalists:Theytrytoeliminatefrom thefirewall
allthatisnotstrictly
necessaryforthefirewall’sfunctionality.Thereisagoodreason
forthisminimal
constraint:togiveaslittleassistanceaspossibletoasuccessful
attacker.Thus,firewalls
tendnottohaveuseraccountssothat,forexample,theyhaveno
passwordfiletoconceal.
Indeed,themostdesirablefirewallisonethatrunscontentedlyin
abackroom;exceptfor
periodicscanningofitsauditlogs,thereisseldom areasonto
touchit.
NetworkTechnologyBackground
Beforewedescribefirewalls,weneedtoreiterateandexpand
uponabitofnetwork
technologythatweintroducedatthestartofthischapter.Figure
6-52depictswhatis
knownastheISOOpenSystemsInterconnect(OSI)modelof
networking.

FIGURE6-52OSIReferenceModel
Inthismodel,dataaregeneratedatthetoplayer(7—Application)
bysomeapplication
program.Thenthedatapassthroughtheothersixlayers;ateach
layerthedataare
reformatted,packaged,andaddressed.Forexample,the
transportlayerperformserror
checkingandcorrectiontoensureareliabledataflow,the
networklayerhandles
addressingtodeterminehowtoroutedata,andthedatalinklayer
dividesdatainto
manageableblocksforefficienttransfer.Thelastlayer,the
physicallayer,dealswiththe
electricalorothertechnologybywhichsignalsaretransmitted
acrosssomephysical
medium.Atthedestination,thedataenteratthebottom ofa
similarstackandtravelup
throughthelayers,whereaddressingdetailsareremovedand
itemsareagainrepackaged
andreformatted.Finally,theyaredeliveredtoanapplicationon
thedestinationside.Each
layerplaysawell-definedroleinthecommunication.This
architectureismoreconceptual
thanactual,butitfacilitatesdiscussionofnetworkfunctions.

Differentfirewalltypescorrespondtodifferentthreats.Consider
theportscanexample
withwhichwebeganthischapter.Supposeyouidentifiedan
attackerwhoprobedyour
system severaltimes.Evenifyoudecidedyourdefenseswere
solid,youmightwantto
blockalloutsidetraffic—notjustportscans—from theattacker’s
address.Thatway,even
iftheattackerdidlearnofavulnerabilityinyoursystem,you
wouldpreventany
subsequentattackfrom thesameaddress.Butthattakescareof
onlyoneattackerata
time.
Nowconsiderhowaportscanoperates.Thescannersendsa
probefirsttoport1,then
toports2,3,4,andsoforth.Theseportsrepresentservices,
someofwhichyouneedto
keepalivesothatexternalclientscanaccessthem.Butno
normalexternalclientneedsto
trytoconnecttoallyourports.Soyoumightdetectandblock
probesfrom anysourcethat
seemstobetryingtoinvestigateyournetwork.Eveniftheorder
oftheprobesisnot1-2-
3-4(thescannermightscrambletheorderoftheprobestomake
theirdetectionmore
difficult),receivingseveralconnectionattemptstounusualports
from thesamesource
mightbesomethingtostopafteryouhadseenenoughprobesto
identifytheattack.For
that,yourfirewallwouldneedtorecordandcorrelateindividual
connectionprobes.
Adifferentnetworkattackmighttargetaspecificapplication.For
example,aflaw
mightbeknownaboutversionx.yofthebrandzwebserver,
involvingadatastream ofa

specificstringofcharacters.Yourfirewallcouldlookforexactly
thatcharacterstring
directedtothewebserver’sport.Thesedifferentkindsofattacks
anddifferentwaysto
detectthem leadtoseveralkindsoffirewalls.Typesoffirewalls
include
•packetfilteringgatewaysorscreeningrouters
•statefulinspectionfirewalls
•application-levelgateways,alsoknownasproxies
•circuit-levelgateways
•guards
•personalfirewalls
Wedescribethesetypesinthefollowingsections.
PacketFilteringGateway
Apacketfilteringgatewayorscreeningrouteristhesimplest,
andinsomesituations,themosteffectivetypeoffirewall.A
packetfilteringgatewaycontrolsaccessonthebasisofpacket
address(sourceordestination)orspecifictransportprotocoltype
(suchasHTTP
webtraffic),thatis,byexaminingthecontrolinformationofeach
singlepacket.
Afirewallcanscreentrafficbeforeitgetstotheprotected

network.So,iftheportscanoriginatedfrom address100.200.3.4,
youmightconfigurethepacketfilteringgatewayfirewallto
discardallpacketsfrom thataddress.Figure6-53showsapacket
filterthatblocksaccess
from (orto)addressesinonenetwork;thefilterallowsHTTP
trafficbutblockstrafficby
usingtheTelnetprotocol.PacketfiltersoperateatOSIlevel3.

FIGURE6-53PacketFilter
Packetfilters—screeningrouters—limittrafficbasedonpacket
header
data:addressesandportsonpackets
Packetfiltersdonot“seeinside”apacket;theyblockoraccept
packetssolelyonthe
basisoftheIPaddressesandports.Thus,anydetailsinthe
packet’sdatafield(for
example,allowingcertainTelnetcommandswhileblockingother
services)isbeyondthe
capabilityofapacketfilter.
Packetfilterscanperform theimportantserviceofensuringthe
validityofinside
addresses.Aninsidehosttypicallytrustsotherinsidehosts
preciselybecausetheyarenot
outsiders:Outsideisuncontrolledandfraughtwithharmful
creatures.Buttheonlywayan
insidehostcanrecognizeanotherinsidehostisbytheaddress
showninthesourcefieldof
amessage.Sourceaddressesinpacketscanbeforged,soan
insideapplicationmightthink

itwascommunicatingwithanotherhostontheinsideinsteadof
anoutsideforger.A
packetfiltersitsbetweentheinsidenetworkandtheoutsidenet,
soitcandetermineifa
packetfrom theoutsideisforginganinsideaddress,asshownin
Figure6-54.

FIGURE6-54PacketFilterScreeningOutsideHosts
Whenwesaythefilter“sitsbetween”twonetworkswereally
meanitconnectstoboth
theinsideandoutsidenetworks,bytwoseparateinterfacecards.
Thepacketfiltercan
easilydistinguishinsidefrom outsidetrafficbasedonwhich
interfaceapacketarrivedon.
Ascreeningpacketfiltermightbeconfiguredtoblockallpackets
from theoutsidethat
claimedtheirsourceaddresswasaninsideaddress.Inthis
example,thepacketfilter
blocksallpacketsclaimingtocomefrom anyaddressoftheform
100.50.25.x(but,of
course,itpermitsinanypacketswithdestination100.50.25.x).A
packetfilteracceptsor

rejectssolelyaccordingtotheheaderinformation—address,size,
protocoltype—ofeach
packetbyitself.Suchprocessingissimple,efficient,andfast,so
apacketfilteringfirewall
oftenservesasasturdydoorkeepertoquicklyeliminateobviously
unwantedtraffic.
Theprimarydisadvantageofpacketfilteringroutersisa
combinationofsimplicityand
complexity.Therouter’sinspectionissimplistic;toperform
sophisticatedfiltering,the
rulessetneedstobeverydetailed.Adetailedrulessetwillbe
complexandtherefore
pronetoerror.Forexample,blockingallport23traffic(Telnet)is
simpleand
straightforward.ButifsomeTelnettrafficistobeallowed,each
IPaddressfrom whichit
isallowedmustbespecifiedintherules;inthisway,theruleset
canbecomeverylong.
Guard
Aguardisasophisticatedfirewall.Likeaproxyfirewall,it
receivesprotocoldataunits,interpretsthem,andemitsthesame
ordifferentprotocoldataunitsthatachieveeitherthesameresult
oramodifiedresult.Theguarddetermineswhatservicesto
perform ontheuser’sbehalfinaccordancewithitsavailable
information,suchaswhateveritcanreliablyascertainofthe
(outside)user’sidentity,previousinteractions,andsoforth.The
degreeofcontrolaguardcanprovideislimitedonlybywhatis
computable.Butguardsandproxyfirewallsaresimilarenough
thatthedistinctionbetweenthem issometimesfuzzy.Thatis,we
canaddfunctionalitytoaproxyfirewalluntilitstartstolookalot
likeaguard.
Guardactivitiescanbequitedetailed,asillustratedinthe
followingexamples:
•Auniversitywantstoallowitsstudentstouseemailuptoalimit
ofsomanymessagesorsomanycharactersofemailinthelast

somanydays.Althoughthisresultcouldbeachievedby
modifyingemailhandlers,itismoreeasilydonebymonitoringthe
commonpointthroughwhichallemailflows,themailtransfer
protocol.
•AschoolwantsitsstudentstobeabletoaccesstheWorldWide
Webbut,becauseofthecapacityofitsconnectiontotheweb,it
willallowonlysomanybytespersecond(thatis,allowingtext
modeandsimplegraphicsbutdisallowingcomplexgraphics,
video,music,orthelike).
•Alibrarywantstomakeavailablecertaindocumentsbut,to
supportfairuseofcopyrightedmatter,itwillallowauserto
retrieveonlythefirstsomanycharactersofadocument.After
thatamount,thelibrarywillrequiretheusertopayafeethatwill
beforwardedtotheauthor.
•Acompanyisdevelopinganewproductbasedonpetroleum and
helium gas,code-named“lightoil.”Inanyoutbounddataflows,as
filetransfers,email,webpages,orotherdatastream,itwill
replacethewords“petroleum,”“helium,”or“lightoil”with“magic.”
Afirewallisthoughtofprimarilyasaninboundfilter:
lettinginonlyappropriatetraffic(thatwhichconformstothe
firewall’ssecuritypolicy).Thisexampleshowsthatafirewallor
guardcanjustaseasilyscreenoutboundtraffic.
•AcompanywantstoallowitsemployeestofetchfilesbyFTP.
However,topreventintroductionofviruses,itwillfirstpassall
incomingfilesthroughavirusscanner.Eventhoughmanyof
thesefileswillbenonexecutabletextorgraphics,thecompany
administratorthinksthattheexpenseofscanningthem (which
fileshallpass)willbenegligible.
Aguardcanimplementanyprogrammablesetofconditions,
eveniftheprogram conditionsbecomehighlysophisticated.
Eachofthesescenarioscanbeimplementedasamodifiedproxy.
Becausetheproxydecsionisbasedonsomequalityofthe
communicationdata,wecalltheproxyaguard.Sincethesecurity
olicyimplementedbytheguardissomewhatmorecomplexthan
the

actionofaproxy,theguard’scodeisalsomorecomplexand
thereforemoreexposedtoerror.Simplerfirewallshavefewer
possiblewaystofailorbesubverted.Anexampleofaguard
processistheso-calledGreatFirewallofChina,describedin
Sidebar6-23.
Wehavepurposelyarrangedthesefirewalltypesfrom simpleto
complex.
Simplescreeningishighlymechanisticandalgorithmic,implying
thatcodetoimplementitisregularandstraightforward.Complex
contentdeterminationsedgeclosertomachineintelligence,a
moreheuristicandvariableactivity.Morecomplexanalysistakes
more
time,whichmayaffectafirewall’sperformanceandusefulness.
Nosinglefirewallapproachisnecessarilyrightorbetter;eachhas
itsappropriatecontextofuse.

EmailSecurity:

WebrieflyintroducedemailthreatsinChapter4,focusingthere
onhowemailcanbeusedasavectortocommunicateanattack.
Inthischapterwereturntoemail,thistimeanalyzingprivacy,and
itslack,inemailcorrespondence.
Emailisusuallyexposedasittravelsfrom nodetonodealongthe
Internet.Furthermore,theprivacyofanemailmessagecanbe
compromisedonthesender’sorreceiver’sside,withoutwarning.
Considerthedifferencesbetweenemailandregularletters.
Regularmailishandledbyasurface-basedpostalsystem thatby
law(inmostcountriesandinmostsituations)isforbiddentolook
insideletters.Aletterissealedinsideanopaqueenvelope,making
italmostimpossibleforanoutsidertoseethecontents.The
physicalenvelopeistamperevident,
meaningtheenvelopeshowsdamageifsomeoneopensit.A
sendercandropa
letterinanymailbox,makingthesendingofaletteranonymous;

thereisnorequirement
forareturnaddressorasignatureontheletter.Forthesereasons,
wehaveahigh
expectationofprivacywithsurfacemail.(Atcertaintimesin
history,forexample,during
awarorunderanautocraticruler,mailwasinspectedregularly.In
thosecases,most
citizensknewtheirmailwasnotprivate.)
Buttheseexpectationsforprivacyaredifferentwithemail.Inthis
sectionwelookattherealityofprivacyforemail.
InterceptionofEmail
Emailissubjecttothesameinterceptionrisksasotherweb
traffic:Whileintransiton
theInternet,emailisopenforanyinterceptortoread.
Emailissubjecttointerceptionandmodificationatmanypoints
from
sendertorecipient.
InChapter4wedescribedtechniquesforencryptingemail.In
particular,S/MIMEand
PGParetwowidelyusedemailprotectionprograms.S/MIMEand
PGPareavailablefor
popularmailhandlerssuchasOutlook,Mail(from Apple),
Thunderbird,andothers.
Theseproductsprotectemailfrom theclient’sworkstation
throughmailagents,acrossthe
Internet,andtotherecipient’sworkstation.Thatprotectionis
consideredend-to-end,
meaningfrom thesendertotherecipient.Encryptedemail
protectionissubjecttothe
strengthoftheencryptionandthesecurityoftheencryption
protocol.
Avirtualprivatenetwork,describedinChapter6,canprotectdata
ontheconnection
betweenaclient’sworkstationandsomeedgepoint,usuallya
routerorfirewall,atthe

organizationtowhichtheclientbelongs.Foracorporateor
governmentemployeeora
universitystudent,communicationisprotectedjustuptothe
edgeofthecorporate,
government,oruniversitynetwork.Thus,withavirtualprivate
network,emailis
protectedonlyfrom thesendertothesender’soffice,notevenup
tothesender’smail
agent,andcertainlynottotherecipient.
Someorganizationsroutinelycopyallemailsentfrom their
computers.Themany
purposesforthesecopiesincludeusingtheemailasevidencein
legalaffairsand
monitoringtheemailforinappropriatecontent.
MonitoringEmail
Inmanycountries,companiesandgovernmentagenciescan
legitimatelymonitortheir
employees’emailuse.Similarly,schoolsandlibrariescanmonitor
theirstudents’or
patrons’computeruse.NetworkadministratorsandISPscan
monitortrafficfornormal
businesspurposes,suchastomeasuretrafficpatternsorto
detectspam.Organizations
usuallymustadviseusersofthismonitoring,butthenoticecan
beasmallsidebarina
personnelhandbookorthefineprintofaservicecontract.
Organizationscanusethe
monitoringdataforanylegalpurpose,forexample,toinvestigate
leaks,tomanage
resources,ortotrackuserbehavior.
Networkusersshouldhavenoexpectationofprivacyintheir
emailorgeneralcomputer
use.
Anonymous,Pseudonymous,andDisappearingEmail
Wehavedescribedanonymityinothersettings;therearereasons

foranonymousemail,
aswell.
Aswithtelephonecalls,employeessendingtipsorcomplainingto
managementmay
wanttodosoanonymously.Forexample,consumersmaywant
tocontactcommercial
establishments—toregisteracomplaint,inquireaboutproducts,
orrequestinformation—
withoutgettingonamailinglistorbecomingatargetforspam.Or
peoplebeginninga
personalrelationshipmaywanttopassalongsomeinformation
withoutgivingawaytheir
fullidentitiesorlocation.Forthesereasonsandmore,people
wanttobeabletosend
anonymousemail.
Freeemailaddressesarereadilyavailablefrom Yahoo!,Microsoft
Hotmail,andmany
otherplaces,andseveralservicesofferdisposableaddresses,too.
Peoplecantreatthese
addressesasdisposable:Obtainone,useitforawhile,and
discardit(byceasingtouseit).
SimpleRemailers
Anothersolutionisaremailer.Aremailerisatrustedthirdparty
towhom yousendanemailmessageandindicatetowhom you
wantyourmailsent.Theremailerstripsoffthesender’sname
andaddress,assignsananonymouspseudonym asthesender,
andforwardsthemessagetothedesignatedrecipient.Thethird
partykeepsarecordofthecorrespondencebetween
pseudonymsandrealnamesandaddresses.Iftherecipient
replies,theremailerremovestherecipient’snameandaddress,
appliesadifferentanonymouspseudonym,andforwardsthe
messagetotheoriginalsender.Sucharemailerknowsboth
senderandreceiver,soitprovidespseudonymity,notanonymity.
MultipleRemailers
Amorecomplicateddesignisneededtoovercometheproblem

thattheremailerknows
whotherealsenderandreceiverare.Thebasicapproachinvolves
asetofcooperating
hosts,sometimescalledmixmasterremailers,thatagreeto
forwardmail.Eachhost
publishesitsownpublicencryptionkey.
Thesendercreatesamessageandselectsseveralofthe
cooperatinghosts.Thesender
designatestheultimaterecipient(callitnoden)andplacesa
destinationnotewiththe
content.Thesenderthenchoosesoneofthecooperatinghosts
(callitnoden–1),encrypts
thepackagewiththepublickeyofnode(n–1)andplacesa
destinationnoteshowingnode
(n)withtheencryptedpackage.Thesenderchoosesanother
node(n–2),encrypts,and
addsadestinationnotefor(n–1).Thesenderthusbuildsa
multilayeredpackage,withthe
messageinside;eachlayeraddsanotherlayerofencryptionand
anotherdestination.
Eachremailernodeknowsonlyfrom whereitreceivedthe
packageandtowhom to
senditnext.Onlythefirstremailerknowsthetruerecipient,and
onlythelastremailer
knowsthefinalrecipient.Therefore,noremailercancompromise
therelationshipbetween
senderandreceiver.
Althoughthisstrategyissound,theoverheadinvolvedindicates
thatthisapproach
shouldbeusedonlywhenanonymityiscritical.Thegeneral
conceptleadstothe
anonymity-preservingnetworkTORdescribedinChapter6.
SpoofingandSpamming
Emailhasverylittleauthenticityprotection.NothingintheSMTP
protocolchecksto

verifythatthelistedsender(theFrom:address)isaccurateor
evenlegitimate.Spoofing
thesourceaddressofanemailmessageisnotdifficult.This
limitationfacilitatesthe
sendingofspam becauseitisimpossibletotracetherealsender
ofaspam message.
Sometimestheapparentsenderwillbesomeonetherecipient
knowsorsomeoneona
commonmailinglistwiththerecipient.Spoofingsuchan
apparentsenderisintendedto
lendcredibilitytothespam message.
Phishingisaform ofspam inwhichthesenderattemptsto
convincethereceiverto
revealpersonaldata,suchasbankingdetails.Thesender
enhancesthecredibilityofa
phishingmessagebyspoofingaconvincingsourceaddressor
usingadeceptivedomain
name.
Thesekindsofemailmessagesenticegullibleuserstoreveal
sensitivepersonaldata.
BecauseoflimitedregulationoftheInternet,verylittlecanbe
donetocontrolthese
threats.Userawarenessisthebestdefense.

NetworkConcepts:

Anetworkisalittlemorecomplicatedthanalocalcomputing
installation.Totrivialize,wecanthinkofalocalenvironmentasa
setofcomponents—computers,printers,storagedevices,andso
forth—andwires.Awireispointtopoint,withessentiallyno
leakagebetweenendpoints,althoughwiretappingdoesallow

anyonewithaccesstothewiretointercept,modify,orevenblock
thetransmission.Inalocalenvironment,thephysicalwiresare
frequentlysecuredphysicallyorperhapsvisuallysowiretappingis
notamajorissue.Withremotecommunication,thesamenotion
ofwiresapplies,butthewiresare
outsidethecontrolandprotectionoftheuser,sotamperingwith
thetransmissionisaseriousthreat.Thenatureofthatthreat
dependsinpartonthemedium ofthese“wires,”whichcan
actuallybemetalwire,glassfibers,orelectromagneticsignals
suchasradiocommunications.Inamomentwelookatdifferent
kindsofcommunicationsmedia.
Returningourattentiontothelocalenvironmentwithawirefor
eachpairofdevices,tosenddatafrom onedevicetoanotherthe
sendersimplyusestheonewiretothedestination.Witharemote
network,ordinarilythesenderdoesnothaveonewireforeach
possiblerecipient,becausethenumberofwireswouldbecome
unmanageable.Instead,as
youprobablyknow,thesenderprecedesdatawithwhatis
essentiallyamailinglabel,atagshowingtowhere(andoften
from where)totransmitdata.Atvariouspointsalongthe
transmissionpathdevicesinspectthelabeltodetermineifthat
deviceistheintendedrecipientand,ifnot,howtoforwardthe
datatogetnearertothedestination.Thisprocessingofalabelis
calledrouting.Routingisimplementedbycomputersand,asyou
alreadyknow,computerprogramsarevulnerabletounintentional
andmaliciousfailures.
Inthissectionwealsoconsidersomeofthethreatstowhich
routingissusceptible.
Background:NetworkTransmissionMedia
Whendataitemsleaveaprotectedenvironment,othersalongthe
waycanvieworinterceptthedata;othertermsusedare
eavesdrop,wiretap,orsniff.Ifyoushoutsomethingatafriend
somedistanceaway,youareawarethatpeoplearoundyoucan
hearwhatyousay.Thesameistruewithdata,whichcanbe
interceptedbothremotely,acrossa

wideareanetwork,andlocally,inalocalareanetwork(LAN).Data
communicationstraveleitheronwireorwirelessly,bothofwhich
arevulnerable,withvaryingdegreesofeaseofattack.Thenature
ofinterceptiondependsonthemedium,whichwedescribenext.
Asyoureadthisexplanation,thinkalsoofmodificationand
blockingattacks,whichwedescribeshortly.
Signalinterceptionisaseriouspotentialnetworkvulnerability.
Cable
Atthemostlocallevel,allsignalsinanEthernetorotherLANare
availableonthecableforanyonetointercept.EachLAN
connector(suchasacomputerboard)hasauniqueaddress,
calledtheMAC(forMediaAccessControl)address;eachboard
anditsdriversareprogrammedtolabelallpacketsfrom itshost
withitsuniqueaddress(asasender’s“returnaddress”)andto
takefrom thenetonlythosepacketsaddressedtoitshost.
PacketSniffing
Removingonlythosepacketsaddressedtoagivenhostismostly
amatterofpoliteness;
thereislittletostopaprogram from examiningeachpacketasit
goesby.Adevicecalled
apacketsnifferretrievesallpacketsonitsLAN.Alternatively,one
oftheinterfacecards
canbereprogrammedtohavethesupposedlyuniqueMAC
addressofanotherexisting
cardontheLANsothattwodifferentcardswillbothfetch
packetsforoneaddress.(To
avoiddetection,theroguecardwillhavetoputbackonthenet
copiesofthepacketsithas
intercepted.)Fortunately(fornow),wiredLANsareusuallyused
onlyinenvironments
thatarefairlyfriendly,sothesekindsofattacksoccurinfrequently.
Radiation
Cleverattackerscantakeadvantageofawire’spropertiesand
canreadpacketswithout
anyphysicalmanipulation.Ordinarywire(andmanyother

electroniccomponents)emits
radiation.Byaprocesscalledinductanceanintrudercantapa
wireandreadradiated
signalswithoutmakingphysicalcontactwiththecable;
essentially,theintruderputsan
antennaclosetothecableandpicksuptheelectromagnetic
radiationofthesignalspassing
throughthewire.(ReadSidebar6-1forsomeexamplesof
interceptionofsuchradiation.)
Acable’sinductancesignalstravelonlyshortdistances,andthey
canbeblockedbyother
conductivematerials,soanattackercanfoilinductanceby
wrappingacableinmorewire
andperhapssendingother,confoundingsignalsthroughthe
wrappedwire.Theequipment
neededtopickupsignalsisinexpensiveandeasytoobtain,so
inductancethreatsarea
seriousconcernforcable-basednetworks.Fortheattacktowork,
theintrudermustbe
fairlyclosetothecable;therefore,thisform ofattackislimitedto
situationswithphysical
access.
OpticalFiber
Opticalfiberofferstwosignificantsecurityadvantagesoverother
transmissionmedia.
First,theentireopticalnetworkmustbetunedcarefullyeachtime
anewconnectionis
made.Therefore,noonecantapanopticalsystem without
detection.Clippingjustone
fiberinabundlewilldestroythebalanceinthenetwork.
Second,opticalfibercarrieslightenergy,notelectricity.Light
doesnotcreateamagneticfieldselectricitydoes.Therefore,an
inductivetapisimpossibleonanoptical
fibercable.
Justusingfiber,however,doesnotguaranteesecurity,anymore

thandoesjustusingencryption.Therepeaters,splices,andtaps
alongacableareplacesatwhichdatamaybeavailablemore
easilythaninthefibercableitself.Theconnectionsfrom
computingequipmenttothefibermayalsobepointsfor
penetration.Byitself,fiberismuchmoresecurethancable,butit
hasvulnerabilities,too.
Physicalcablesarethussusceptibletoarangeofinterception
threats.Butpullingoffsuchanintrusionrequiresphysicalaccess
tooneofthecablescarryingthecommunicationofinterest,no
smallfeat.Inmanycasespullingdatafrom theairiseasier,aswe
describenext.
Background:ProtocolLayers
Networkcommunicationsareperformedthroughavirtual
conceptcalledtheOpen
System Interconnection(orOSI)model.Thisseven-layermodel
startswithanapplication
thatpreparesdatatobetransmittedthroughanetwork.Thedata
movedownthroughthe
layers,beingtransformedandrepackaged;atthelowerlayers,
controlinformationis
addedinheadersandtrailers.Finally,thedataarereadytotravel
onaphysicalmedium,
suchasacableorthroughtheaironamicrowaveorsatellitelink.
TheOSImodel,mostusefulconceptually,describessimilar
processesof
boththesenderandreceiver.
Onthereceivingend,thedataenterthebottom ofthemodeland
progressupthrough
thelayerswherecontrolinformationisexaminedandremoved,
andthedataare
reformatted.Finally,thedataarriveatanapplicationatthetop
layerofthemodelforthe
receiver.ThiscommunicationisshowninFigure6-4.

FIGURE6-4OSIModel
Interceptioncanoccuratanylevelofthismodel:Forexample,the
applicationcan
covertlyleakdata,aswepresentedinChapter3,thephysical
mediacanbewiretapped,as
wedescribedinthischapter,orasessionbetweentwo
subnetworkscanbecompromised.
Background:AddressingandRouting
Ifdataaretogofrom pointAtoB,theremustbesomepath
betweenthesetwopoints.
Oneway,obviously,isadirectconnectionwire.Andforfrequent,
high-volumetransfers
betweentwoknownpoints,adedicatedlinkisindeedused.A
companywithtwooffices
onoppositesidesoftownmightprocureitsownprivate
connection.Thisprivate
connectionbecomesasinglepointoffailure,however,becauseif

thatlinefailsforany
reasonthetwoofficesloseconnectivity,andasolidconnection
wasthewholereasonfor
theprivateline.
Obviously,directconnectionsworkonlyforasmallnumberof
parties.Itwouldbe
infeasibleforeveryInternetusertohaveadedicatedwiretoevery
otheruser.Forreasons
ofreliabilityandsize,theInternetandmostothernetworks
resembleamesh,withdata
beingboostedalongpathsfrom sourcetodestination.
Addressing
Buthowdoesthesendercontactthereceiver?Supposeyour
messageisaddressedto
yourfriend@somewhere.net.Thisnotationmeansthat
“somewhere.net”isthenameofa
destinationhost(ormoreaccurately,adestinationnetwork).At
thenetworklayer,a
hardwaredevicecalledarouteractuallysendsthemessagefrom
yournetworktoarouter
onthenetworksomewhere.net.Thenetworklayeraddstwo
headerstoshowyour
computer’saddressasthesourceandsomewhere.net’saddress
asthedestination.
Logically,yourmessageispreparedtomovefrom yourmachine
toyourroutertoyour
friend’sroutertoyourfriend’scomputer.(Infact,betweenthetwo
routerstheremaybe
manyotherroutersinapaththroughthenetworksfrom youto
yourfriend.)Together,the
networklayerstructurewithdestinationaddress,sourceaddress,
anddataiscalleda
packet.Thebasicnetworklayerprotocoltransformationisshown
inFigure6-5.

FIGURE6-5NetworkLayerTransformation
Packet:Smallestindividuallyaddressabledataunittransmitted
Themessagemusttravelfrom yourcomputertoyourrouter.
Everycomputerconnected
toanetworkhasanetworkinterfacecard(NIC)withaunique
physicaladdress,calleda
MACaddress(forMediaAccessControl).Atthedata-linklevel,
twomoreheadersare
added,oneforyourcomputer’sNICaddress(thesourceMAC)
andoneforyourrouter’s
NICaddress.Adata-linklayerstructurewithdestinationMAC,
sourceMAC,anddatais
calledaframe.EveryNICputsdataontothecommunications
medium whenithasdatato
transmitandseizesfrom thenetworkthoseframeswithitsown
addressasadestination
address.
MACaddress:uniqueidentifierofanetworkinterfacecardthat
connects
acomputerandanetwork
Onthereceiving(destination)side,thisprocessisexercisedin

reverse:TheNICcard
receivesframesdestinedforit.Therecipientnetworklayer
checksthatthepacketisreally
addressedtoit.Packetsmaynotarriveintheorderinwhichthey
weresent(becauseof
networkdelaysordifferencesinpathsthroughthenetwork),so
thesessionlayermayhave
toreorderpackets.Thepresentationlayerremovescompression
andsetstheappearance
appropriateforthedestinationcomputer.Finally,theapplication
layerformatsand
deliversthedataasacompleteunit.
Thelayeringandcoordinatingarealotofwork,andeachprotocol
layerdoesitsown
part.Buttheworkisworththeeffortbecausethedifferentlayers
arewhatenableOutlook
runningonanIBM PConanEthernetnetworkinWashingtonD.C.
tocommunicatewitha
userrunningEudoraonanApplecomputerviaadial-up
connectioninPrague.Moreover,
theseparationbylayershelpsthenetworkstafftroubleshoot
whensomethinggoesawry.
Routing
Westillhavenotansweredthequestionofhowdatagetfrom a
sourceNICtothe
destination.TheInternethasmanydevicescalledrouters,whose
purposeistoredirect
packetsinanefforttogetthem closertotheirdestination.
Routingprotocolsareintricate,
butbasicallywhenarouterreceivesapacketitusesatableto
determinethequickestpath
tothedestinationandforwardsthepackettothenextstepon
thatpath.Routerscommunicatewithneighboringroutersto
updatethestateofconnectivityandtrafficflow;withthese
updatestherouterscontinuouslyupdatetheirtablesofbestnext

steps.

ElectronicMailSecurity

PrettyGoodPrivacy

PGPisaremarkablephenomenon.Largelytheeffortofasingle
person,PhilZimmermann,PGPprovidesaconfidentialityand
authenticationservicethatcanbeusedforelectronicmailandfile
storage
applications.Inessence,Zimmermannhasdonethefollowing:
1.
Selectedthebestavailablecryptographicalgorithmsasbuilding
blocks
2.
Integratedthesealgorithmsintoageneral-purposeapplication
thatisindependentofoperatingsystem andprocessorandthatis
basedonasmallsetofeasy-to-usecommands
3.
Madethepackageanditsdocumentation,includingthesource
code,freelyavailableviatheInternet,bulletinboards,and
commercialnetworkssuchasAOL(AmericaOnLine)
4.
Enteredintoanagreementwithacompany(Viacrypt,now
NetworkAssociates)toprovideafullycompatible,low-cost
commercialversionofPGPPGPhasgrownexplosivelyandis
nowwidelyused.Anumberofreasonscanbecitedforthis
growth:

1.
Itisavailablefreeworldwideinversionsthatrunonavarietyof
platforms,includingWindows,UNIX,Macintosh,andmanymore.
Inaddition,thecommercialversionsatisfiesuserswhowanta
productthatcomeswithvendorsupport.

2.
Itisbasedonalgorithmsthathavesurvivedextensivepublic
reviewandareconsideredextremelysecure.Specifically,the
packageincludesRSA,DSS,andDiffie-Hellmanforpublic-key
encryption;
CAST-128,IDEA,and3DESforsymmetricencryption;andSHA-1
forhashcoding.
3.
Ithasawiderangeofapplicability,from corporationsthatwishto
selectandenforceastandardizedschemeforencryptingfilesand
messagestoindividualswhowishtocommunicatesecurelywith
othersworldwideovertheInternetandothernetworks.
4.
Itwasnotdevelopedby,norisitcontrolledby,anygovernmental
orstandardsorganization.Forthosewithaninstinctivedistrustof
"theestablishment,"thismakesPGPattractive.
5.
PGPisnowonanInternetstandardstrack(RFC3156).
Nevertheless,PGPstillhasanauraofanantiestablishment
endeavor.
WebeginwithanoveralllookattheoperationofPGP.Next,we
examinehowcryptographickeysarecreatedandstored.Then,we
addressthevitalissueofpublickeymanagement.

ConfidentialityandAuthentication

AsFigure15.1cillustrates,bothservicesmaybeusedforthe
samemessage.First,asignatureisgeneratedfortheplaintext
messageandprependedtothemessage.Thentheplaintext
messageplus
signatureisencryptedusingCAST-128(orIDEAor3DES),andthe
sessionkeyisencryptedusingRSA(orElGamal).Thissequence
ispreferabletotheopposite:
encryptingthemessageandthengeneratingasignatureforthe
encryptedmessage.Itisgenerallymoreconvenienttostorea

signaturewitha
plaintextversionofamessage.Furthermore,forpurposesofthird
-partyverification,ifthesignatureisperformedfirst,athirdparty
neednotbeconcernedwiththesymmetrickeywhenverifyingthe
signature.
Insummary,whenbothservicesareused,thesenderfirstsigns
themessagewithitsownprivatekey,thenencryptsthemessage
withasessionkey,andthenencryptsthesessionkeywiththe
recipient's
publickey.

Compression

Asadefault,PGPcompressesthemessageafterapplyingthe
signaturebutbeforeencryption.Thishasthebenefitofsaving
spacebothfore-mailtransmissionandforfilestorage.

Theplacementofthecompressionalgorithm,indicatedbyZfor
compressionandZ-1fordecompressioninFigure15.1,iscritical:
1.
Thesignatureisgeneratedbeforecompressionfortworeasons:
a.
Itispreferabletosignanuncompressedmessagesothatone
canstoreonlytheuncompressedmessagetogetherwiththe
signatureforfutureverification.Ifonesignedacompressed
document,thenitwouldbenecessaryeithertostorea
compressedversionofthemessageforlaterverificationorto
recompressthemessagewhenverificationis
required.
b.
Evenifonewerewillingtogeneratedynamicallyarecompressed
messageforverification,PGP'scompressionalgorithm presents
adifficulty.Thealgorithm isnotdeterministic;
variousimplementationsofthealgorithm achievedifferent
tradeoffsinrunningspeedversuscompressionratioand,asa

result,producedifferentcompressedforms.However,these
differentcompressionalgorithmsareinteroperablebecauseany
versionofthealgorithm cancorrectlydecompresstheoutputof
anyotherversion.Applyingthehash
functionandsignatureaftercompressionwouldconstrainallPGP
implementationstothesameversionofthecompression
algorithm.
2.
Messageencryptionisappliedaftercompressiontostrengthen
cryptographicsecurity.Becausethecompressedmessagehas
lessredundancythantheoriginalplaintext,cryptanalysisismore
difficult.
Thecompressionalgorithm usedisZIP,whichisdescribedin
Appendix15A.

CryptographicKeysandKeyRings

PGPmakesuseoffourtypesofkeys:one-timesession
symmetrickeys,publickeys,privatekeys,andpassphrase-based
symmetrickeys(explainedsubsequently).Threeseparate
requirementscanbe
identifiedwithrespecttothesekeys:
1.
Ameansofgeneratingunpredictablesessionkeysisneeded.
2.
Wewouldliketoallowausertohavemultiplepublic-key/private-
keypairs.Onereasonisthattheusermaywishtochangehisor
herkeypairfrom timetotime.Whenthishappens,anymessages
inthepipelinewillbeconstructedwithanobsoletekey.
Furthermore,recipientswill
knowonlytheoldpublickeyuntilanupdatereachesthem.In
additiontotheneedtochangekeysovertime,ausermaywishto
havemultiplekeypairsatagiventimetointeractwithdifferent
groupsofcorrespondentsorsimplytoenhancesecurityby
limitingtheamountof

materialencryptedwithanyonekey.Theupshotofallthisisthat
thereisnotaone-to-onecorrespondencebetweenusersandtheir
publickeys.Thus,somemeansisneededforidentifyingparticular
keys.
3.
EachPGPentitymustmaintainafileofitsownpublic/privatekey
pairsaswellasafileofpublickeysofcorrespondents.We
examineeachoftheserequirementsinturn.

SessionKeyGeneration
Eachsessionkeyisassociatedwithasinglemessageandisused
onlyforthepurposeofencryptinganddecryptingthatmessage.
Recallthatmessageencryption/decryptionisdonewitha
symmetric
encryptionalgorithm.CAST-128andIDEAuse128-bitkeys;3DES
usesa168-bitkey.Forthefollowingdiscussion,weassume
CAST-128.
Random 128-bitnumbersaregeneratedusingCAST-128itself.
Theinputtotherandom numbergeneratorconsistsofa128-bit
keyandtwo64-bitblocksthataretreatedasplaintexttobe
encrypted.
Usingcipherfeedbackmode,theCAST-128encrypterproduces
two64-bitciphertextblocks,whichareconcatenatedtoform the
128-bitsessionkey.Thealgorithm thatisusedisbasedonthe
onespecified
inANSIX12.17.
The"plaintext"inputtotherandom numbergenerator,consisting
oftwo64-bitblocks,isitselfderivedfrom astream of128-bit
randomizednumbers.Thesenumbersarebasedonkeystroke
inputfrom the
user.Boththekeystroketimingandtheactualkeysstruckare
usedtogeneratetherandomizedstream.
Thus,iftheuserhitsarbitrarykeysathisorhernormalpace,a
reasonably"random"inputwillbegenerated.Thisrandom inputis
alsocombinedwithprevioussessionkeyoutputfrom CAST-128

toform
thekeyinputtothegenerator.Theresult,giventheeffective
scramblingofCAST-128,istoproduceasequenceofsession
keysthatiseffectivelyunpredictable.
Appendix15CdiscussesPGPrandom numbergeneration
techniquesinmoredetail.

KeyIdentifiers
Aswehavediscussed,anencryptedmessageisaccompaniedby
anencryptedform ofthesessionkeythatwasusedformessage
encryption.Thesessionkeyitselfisencryptedwiththerecipient's
publickey.
Hence,onlytherecipientwillbeabletorecoverthesessionkey
andthereforerecoverthemessage.Ifeachuseremployeda
singlepublic/privatekeypair,thentherecipientwould
automaticallyknowwhichkeytousetodecryptthesessionkey:
therecipient'suniqueprivatekey.However,wehavestateda
requirementthatanygivenusermayhavemultiplepublic/private
keypairs.
How,then,doestherecipientknowwhichofitspublickeyswas
usedtoencryptthesessionkey?
Onesimplesolutionwouldbetotransmitthepublickeywiththe
message.Therecipientcouldthenverifythatthisisindeedoneof
itspublickeys,andproceed.Thisschemewouldwork,butitis
unnecessarilywastefulofspace.AnRSApublickeymaybe
hundredsofdecimaldigitsinlength.Anothersolutionwouldbeto
associateanidentifierwitheachpublickeythatisuniqueatleast
withinoneuser.Thatis,thecombinationofuserIDandkeyID
wouldbesufficienttoidentifyakeyuniquely.Thenonlythemuch
shorterkeyIDwouldneedtobetransmitted.Thissolution,
however,raisesamanagementand
overheadproblem:KeyIDsmustbeassignedandstoredsothat
bothsenderandrecipientcouldmapfrom keyIDtopublickey.
Thisseemsunnecessarilyburdensome.
ThesolutionadoptedbyPGPistoassignakeyIDtoeachpublic

keythatis,withveryhighprobability,uniquewithinauserID.
[1]
ThekeyIDassociatedwitheachpublickeyconsistsofitsleast
significant64bits.Thatis,thekeyIDofpublicPUais(PUamod
264).Thisisasufficientlengththattheprobabilityofduplicate
keyIDsisverysmall.
[1]Wehaveseenthisintroductionofprobabilisticconcepts
before,inSection8.3,fordeterminingwhetheranumberisprime.
Itisoftenthecaseindesigningalgorithmsthattheuseof
probabilistictechniquesresultsinalesstime-consumingorless
complexsolution,orboth.

AkeyIDisalsorequiredforthePGPdigitalsignature.Becausea
sendermayuseoneofanumberofprivatekeystoencryptthe
messagedigest,therecipientmustknowwhichpublickeyis
intendedforuse.Accordingly,thedigitalsignaturecomponentof
amessageincludesthe64-bitkeyIDoftherequiredpublickey.
Whenthemessageisreceived,therecipientverifiesthatthekey
IDisforapublickeythatitknowsforthatsenderandthen
proceedstoverifythesignature.
NowthattheconceptofkeyIDhasbeenintroduced,wecantake
amoredetailedlookattheformatofatransmittedmessage,
whichisshowninFigure15.3.Amessageconsistsofthree
components:themessagecomponent,asignature(optional),and
asessionkeycomponent(optional).

Figure15.3.GeneralFormatofPGPMessage(from AtoB)

Themessagecomponentincludestheactualdatatobestoredor
transmitted,aswellasafilenameandatimestampthatspecifies
thetimeofcreation.
Thesignaturecomponentincludesthefollowing:

●Timestamp:Thetimeatwhichthesignaturewasmade.
●Messagedigest:The160-bitSHA-1digest,encryptedwiththe
sender'sprivatesignaturekey.
Thedigestiscalculatedoverthesignaturetimestamp
concatenatedwiththedataportionofthemessagecomponent.
Theinclusionofthesignaturetimestampinthedigestassures
againstreplaytypesofattacks.Theexclusionofthefilenameand
timestampportionsofthemessage
componentensuresthatdetachedsignaturesareexactlythe
sameasattachedsignaturesprefixedtothemessage.
Detachedsignaturesarecalculatedonaseparatefilethathas
noneof
themessagecomponentheaderfields.
●Leadingtwooctetsofmessagedigest:Toenabletherecipient
todetermineifthecorrectpublickeywasusedtodecryptthe
messagedigestforauthentication,bycomparingthisplaintext
copyofthefirsttwooctetswiththefirsttwooctetsofthe
decrypteddigest.These
octetsalsoserveasa16-bitframechecksequenceforthe
message.
●KeyIDofsender'spublickey:Identifiesthepublickeythat
shouldbeusedtodecryptthemessagedigestand,hence,
identifiestheprivatekeythatwasusedtoencryptthemessage
digest.
Themessagecomponentandoptionalsignaturecomponentmay
becompressedusingZIPandmaybeencryptedusingasession
key.
Thesessionkeycomponentincludesthesessionkeyandthe
identifieroftherecipient'spublickeythatwasusedbythesender
toencryptthesessionkey.
Theentireblockisusuallyencodedwithradix-64encoding.
Public-KeyManagement
Ascanbeseenfrom thediscussionsofar,PGPcontainsaclever,
efficient,interlockingsetoffunctionsandformatstoprovidean
effectiveconfidentialityandauthenticationservice.Tocomplete

thesystem,onefinalareaneedstobeaddressed,thatofpublic-
keymanagement.ThePGPdocumentationcapturesthe
importanceofthisarea:
Thiswholebusinessofprotectingpublickeysfrom tamperingis
thesinglemostdifficultproblem inpracticalpublickey
applications.Itisthe"Achillesheel"ofpublickeycryptography,
andalotofsoftwarecomplexityistiedupinsolvingthisone
problem.
PGPprovidesastructureforsolvingthisproblem,withseveral
suggestedoptionsthatmaybeused.
BecausePGPisintendedforuseinavarietyofformaland
informalenvironments,norigidpublic-keymanagementscheme
issetup,suchaswewillseeinourdiscussionofS/MIMElaterin
thischapter.

S/MIME

S/MIME(Secure/MultipurposeInternetMailExtension)isa
securityenhancementtotheMIMEInternetemail
formatstandard,basedontechnologyfrom RSADataSecurity.
AlthoughbothPGPandS/MIMEare
onanIETFstandardstrack,itappearslikelythatS/MIMEwill
emergeastheindustrystandardfor
commercialandorganizationaluse,whilePGPwillremainthe
choiceforpersonale-mailsecurityfor
manyusers.S/MIMEisdefinedinanumberofdocuments,most
importantlyRFCs3369,3370,3850
and3851.
TounderstandS/MIME,weneedfirsttohaveageneral
understandingoftheunderlyinge-mailformat
thatituses,namelyMIME.Buttounderstandthesignificanceof
MIME,weneedtogobacktothe
traditionale-mailformatstandard,RFC822,whichisstillin
commonuse.Accordingly,thissectionfirst
providesanintroductiontothesetwoearlierstandardsandthen

movesontoadiscussionofS/MIME.
RFC822
RFC822definesaformatfortextmessagesthataresentusing
electronicmail.Ithasbeenthestandard
forInternet-basedtextmailmessageandremainsincommonuse.
IntheRFC822context,messages
areviewedashavinganenvelopeandcontents.Theenvelope
containswhateverinformationisneeded
toaccomplishtransmissionanddelivery.Thecontentscompose
theobjecttobedeliveredtothe
recipient.TheRFC822standardappliesonlytothecontents.
However,thecontentstandardincludesa
setofheaderfieldsthatmaybeusedbythemailsystem tocreate
theenvelope,andthestandardis
intendedtofacilitatetheacquisitionofsuchinformationby
programs.
[Page458]
TheoverallstructureofamessagethatconformstoRFC822is
verysimple.Amessageconsistsofsome
numberofheaderlines(theheader)followedbyunrestrictedtext
(thebody).Theheaderisseparated
from thebodybyablankline.Putdifferently,amessageisASCII
text,andalllinesuptothefirstblank
lineareassumedtobeheaderlinesusedbytheuseragentpartof
themailsystem.
Aheaderlineusuallyconsistsofakeyword,followedbyacolon,
followedbythekeyword'sarguments;
theformatallowsalonglinetobebrokenupintoseverallines.
Themostfrequentlyusedkeywordsare
From,To,Subject,andDate.Hereisanexamplemessage:
Date:Tue,16Jan199810:37:17(EST)
From:"William Stallings"<ws@shore.net>
Subject:TheSyntaxinRFC822
To:Smith@Other-host.com
Cc:Jones@Yet-Another-Host.com

Hello.Thissectionbeginstheactual
messagebody,whichisdelimitedfrom the
messageheadingbyablankline.
AnotherfieldthatiscommonlyfoundinRFC822headersis
Message-ID.Thisfieldcontainsaunique
identifierassociatedwiththismessage.
file:///D|/1/0131873164/ch15lev1sec2.html(1von19)
[14.10.200709:41:46]
Section15.2.S/MIME

MultipurposeInternetMailExtensions

MIMEisanextensiontotheRFC822frameworkthatisintended
toaddresssomeoftheproblemsand
limitationsoftheuseofSMTP(SimpleMailTransferProtocol)or
someothermailtransferprotocoland
RFC822forelectronicmail.[RODR02]liststhefollowing
limitationsoftheSMTP/822scheme:
1.
SMTPcannottransmitexecutablefilesorotherbinaryobjects.A
numberofschemesareinuse
forconvertingbinaryfilesintoatextform thatcanbeusedby
SMTPmailsystems,includingthe
popularUNIXUUencode/UUdecodescheme.However,noneof
theseisastandardorevenade
factostandard.
2.
SMTPcannottransmittextdatathatincludesnationallanguage
charactersbecausetheseare
representedby8-bitcodeswithvaluesof128decimalorhigher,
andSMTPislimitedto7-bit
ASCII.
3.
SMTPserversmayrejectmailmessageoveracertainsize.
[Page459]

4.
SMTPgatewaysthattranslatebetweenASCIIandthecharacter
codeEBCDICdonotusea
consistentsetofmappings,resultingintranslationproblems.
5.
SMTPgatewaystoX.400electronicmailnetworkscannothandle
nontextualdataincludedin
X.400messages.
6.
SomeSMTPimplementationsdonotadherecompletelytothe
SMTPstandardsdefinedinRFC
821.Commonproblemsinclude:

m Deletion,addition,orreorderingofcarriagereturnand
linefeed

m Truncatingorwrappinglineslongerthan76characters
m Removaloftrailingwhitespace(tabandspacecharacters)
m Paddingoflinesinamessagetothesamelength
m Conversionoftabcharactersintomultiplespacecharacters

MIMEisintendedtoresolvetheseproblemsinamannerthatis
compatiblewithexistingRFC822
implementations.ThespecificationisprovidedinRFCs2045
through2049.
Overview

TheMIMEspecificationincludesthefollowingelements:
1.
Fivenewmessageheaderfieldsaredefined,whichmaybe
includedinanRFC822header.Thesefieldsprovideinformation
aboutthebodyofthemessage.
2.
Anumberofcontentformatsaredefined,thusstandardizing
representationsthatsupportmultimediaelectronicmail.
3.
Transferencodingsaredefinedthatenabletheconversionofany

contentformatintoaform thatisprotectedfrom alterationbythe
mailsystem.
Inthissubsection,weintroducethefivemessageheaderfields.
Thenexttwosubsectionsdealwithcontentformatsandtransfer
encodings.
ThefiveheaderfieldsdefinedinMIMEareasfollows:
●MIME-Version:Musthavetheparametervalue1.0.Thisfield
indicatesthatthemessage
conformstoRFCs2045and2046.
●Content-Type:Describesthedatacontainedinthebodywith
sufficientdetailthatthereceiving
useragentcanpickanappropriateagentormechanism to
representthedatatotheuseror
otherwisedealwiththedatainanappropriatemanner.
●Content-Transfer-Encoding:Indicatesthetypeof
transformationthathasbeenusedto
representthebodyofthemessageinawaythatisacceptablefor
mailtransport.
●Content-ID:UsedtoidentifyMIMEentitiesuniquelyinmultiple
contexts.
●Content-Description:Atextdescriptionoftheobjectwiththe
body;thisisusefulwhenthe
objectisnotreadable(e.g.,audiodata).
AnyorallofthesefieldsmayappearinanormalRFC822header.
Acompliantimplementationmust
supporttheMIME-Version,Content-Type,andContent-Transfer-
Encodingfields;theContent-IDand
Content-Descriptionfieldsareoptionalandmaybeignoredbythe
recipientimplementation.

MIMEContentTypes
ThebulkoftheMIMEspecificationisconcernedwiththe
definitionofavarietyofcontenttypes.This
reflectstheneedtoprovidestandardizedwaysofdealingwitha
widevarietyofinformation

representationsinamultimediaenvironment.
Table15.3liststhecontenttypesspecifiedinRFC2046.There
aresevendifferentmajortypesof
contentandatotalof15subtypes.Ingeneral,acontenttype
declaresthegeneraltypeofdata,andthe
subtypespecifiesaparticularformatforthattypeofdata.

MIMEContentTypes

TypeSubtypeDescription
TextPlainUnformattedtext;maybeASCIIorISO8859.
EnrichedProvidesgreaterformatflexibility.
MultipartMixedThedifferentpartsareindependentbutaretobe
transmittedtogether.
Theyshouldbepresentedtothereceiverintheorderthatthey
appearin
themailmessage.
ParallelDiffersfrom Mixedonlyinthatnoorderisdefinedfor
deliveringtheparts
tothereceiver.
AlternativeThedifferentpartsarealternativeversionsofthe
sameinformation.
Theyareorderedinincreasingfaithfulnesstotheoriginal,andthe
recipient'smailsystem shoulddisplaythe"best"versiontothe
user.
DigestSimilartoMixed,butthedefaulttype/subtypeofeachpart
ismessage/
rfc822.
Messagerfc822Thebodyisitselfanencapsulatedmessagethat
conformstoRFC822.
PartialUsedtoallowfragmentationoflargemailitems,inaway
thatis
transparenttotherecipient.
External-bodyContainsapointertoanobjectthatexists
elsewhere.

ImagejpegTheimageisinJPEGformat,JFIFencoding.
gifTheimageisinGIFformat.
VideompegMPEGformat.
AudioBasicSingle-channel8-bitISDNmu-lawencodingata
samplerateof8kHz.
ApplicationPostScriptAdobePostscript.
octet-stream Generalbinarydataconsistingof8-bitbytes.
Forthetexttypeofbody,nospecialsoftwareisrequiredtoget
thefullmeaningofthetext,asidefrom
supportoftheindicatedcharacterset.Theprimarysubtypeis
plaintext,whichissimplyastringof
ASCIIcharactersorISO8859characters.Theenrichedsubtype
allowsgreaterformattingflexibility.
Themultiparttypeindicatesthatthebodycontainsmultiple,
independentparts.TheContent-Type
headerfieldincludesaparameter,calledboundary,thatdefines
thedelimiterbetweenbodyparts.This
boundaryshouldnotappearinanypartsofthemessage.Each
boundarystartsonanewlineand
consistsoftwohyphensfollowedbytheboundaryvalue.Thefinal
boundary,whichindicatestheendof
thelastpart,alsohasasuffixoftwohyphens.Withineachpart,
theremaybeanoptionalordinary
MIMEheader.
Hereisasimpleexampleofamultipartmessage,containingtwo
partsbothconsistingofsimpletext
(takenfrom RFC2046):
file:///D|/1/0131873164/ch15lev1sec2.html(4von19)
[14.10.200709:41:46]
Section15.2.S/MIME
From:NathanielBorenstein<nsb@bellcore.com>
To:NedFreed<ned@innosoft.com>
Subject:Samplemessage
MIME-Version:1.0
Content-type:multipart/mixed;boundary="simple

boundary"
Thisisthepreamble.Itistobeignored,thoughit
isahandyplaceformailcomposerstoincludean
explanatorynotetonon-MIMEconformantreaders.
simpleboundary
ThisisimplicitlytypedplainASCIItext.ItdoesNOT
endwithalinebreak.
simpleboundary
Content-type:text/plain;charset=us-ascii
ThisisexplicitlytypedplainASCIItext.ItDOESend
withalinebreak.
simpleboundary
Thisistheepilogue.Itisalsotobeignored.
Therearefoursubtypesofthemultiparttype,allofwhichhave
thesameoverallsyntax.Themultipart/
mixedsubtypeisusedwhentherearemultipleindependentbody
partsthatneedtobebundledina
particularorder.Forthemultipart/parallelsubtype,theorderof
thepartsisnotsignificant.Ifthe
recipient'ssystem isappropriate,themultiplepartscanbe
presentedinparallel.Forexample,apicture
ortextpartcouldbeaccompaniedbyavoicecommentarythatis
playedwhilethepictureortextis
displayed.
[Page462]
Forthemultipart/alternativesubtype,thevariouspartsare
differentrepresentationsofthesame
information.Thefollowingisanexample:
From:NathanielBorenstein<nsb@bellcore.com>
To:NedFreed<ned@innosoft.com>
Subject:Formattedtextmail
MIME-Version:1.0
Content-Type:multipart/alternative;
boundary=boundary42
--boundary42

Content-Type:text/plain;charset=us-ascii
...plaintextversionofmessagegoeshere....
--boundary42
Content-Type:text/enriched
....RFC1896text/enrichedversionofsamemessage
goeshere...
boundary42
Inthissubtype,thebodypartsareorderedintermsofincreasing
preference.Forthisexample,ifthe
recipientsystem iscapableofdisplayingthemessageinthe
text/enrichedformat,thisisdone;
otherwise,theplaintextformatisused.
Themultipart/digestsubtypeisusedwheneachofthebody
partsisinterpretedasanRFC822
messagewithheaders.Thissubtypeenablestheconstructionof
amessagewhosepartsareindividual
messages.Forexample,themoderatorofagroupmightcollecte-
mailmessagesfrom participants,
bundlethesemessages,andsendthem outinoneencapsulating
MIMEmessage.
file:///D|/1/0131873164/ch15lev1sec2.html(5von19)
[14.10.200709:41:46]
Section15.2.S/MIME
Themessagetypeprovidesanumberofimportantcapabilitiesin
MIME.Themessage/rfc822
subtypeindicatesthatthebodyisanentiremessage,including
headerandbody.Despitethenameof
thissubtype,theencapsulatedmessagemaybenotonlyasimple
RFC822message,butalsoanyMIME
message.
Themessage/partialsubtypeenablesfragmentationofalarge
messageintoanumberofparts,
whichmustbereassembledatthedestination.Forthissubtype,
threeparametersarespecifiedinthe
Content-Type:Message/Partialfield:anidcommontoall

fragmentsofthesamemessage,asequence
numberuniquetoeachfragment,andthetotalnumberof
fragments.
Themessage/external-bodysubtypeindicatesthattheactual
datatobeconveyedinthismessage
arenotcontainedinthebody.Instead,thebodycontainsthe
informationneededtoaccessthedata.As
withtheothermessagetypes,themessage/external-body
subtypehasanouterheaderandan
encapsulatedmessagewithitsownheader.Theonlynecessary
fieldintheouterheaderistheContent-
Typefield,whichidentifiesthisasamessage/external-body
subtype.Theinnerheaderisthemessage
headerfortheencapsulatedmessage.TheContent-Typefieldin
theouterheadermustincludean
access-typeparameter,whichindicatesthemethodofaccess,
suchasFTP(filetransferprotocol).
[Page463]
Theapplicationtypereferstootherkindsofdata,typicallyeither
uninterpretedbinarydataor
informationtobeprocessedbyamail-basedapplication.
Table15.7.S/MIMEContentTypes

TypeSubtypesmimeParameterDescription
MultipartSignedAclear-signedmessageintwoparts:oneis
themessageandtheotheristhesignature.
Applicationpkcs7-mimesignedDataAsignedS/MIMEentity.
pkcs7-mimeenvelopedDataAnencryptedS/MIMEentity.
pkcs7-mimedegeneratesignedDataAnentitycontainingonly
public-keycertificates.
pkcs7-mimeCompressedDataAcompressedS/MIMEentity
pkcs7-signaturesignedDataThecontenttypeofthesignature
subpartof
amultipart/signedmessage.
Weexamineeachoftheseinturnafterfirstlookingatthegeneral

proceduresforS/MIMEmessagepreparation.

SecuringaMIMEEntity

S/MIMEsecuresaMIMEentitywithasignature,encryption,or
both.AMIMEentitymaybeanentire
message(exceptfortheRFC822headers),oriftheMIME
contenttypeismultipart,thenaMIMEentity
isoneormoreofthesubpartsofthemessage.TheMIMEentity
ispreparedaccordingtothenormal
rulesforMIMEmessagepreparation.ThentheMIMEentityplus
somesecurity-relateddata,suchas
algorithm identifiersandcertificates,areprocessedbyS/MIMEto
producewhatisknownasaPKCS
object.APKCSobjectisthentreatedasmessagecontentand
wrappedinMIME(providedwith
appropriateMIMEheaders).Thisprocessshouldbecomeclearas
welookatspecificobjectsandprovide
examples.
[Page468]
Inallcases,themessagetobesentisconvertedtocanonical
form.Inparticular,foragiventypeand
subtype,theappropriatecanonicalform isusedforthemessage
content.Foramultipartmessage,the
appropriatecanonicalform isusedforeachsubpart.
Theuseoftransferencodingrequiresspecialattention.Formost
cases,theresultofapplyingthe
securityalgorithm willbetoproduceanobjectthatispartiallyor
totallyrepresentedinarbitrarybinary
data.ThiswillthenbewrappedinanouterMIMEmessageand
transferencodingcanbeappliedatthat
point,typicallybase64.However,inthecaseofamultipartsigned
message,describedinmoredetail
later,themessagecontentinoneofthesubpartsisunchangedby
thesecurityprocess.Unlessthat

contentis7bit,itshouldbetransferencodedusingbase64or
quoted-printable,sothatthereisno
dangerofalteringthecontenttowhichthesignaturewasapplied.
WenowlookateachoftheS/MIMEcontenttypes.
EnhancedSecurityServices
Asofthiswriting,threeenhancedsecurityserviceshavebeen
proposedinanInternetdraft.Thedetails
ofthesemaychange,andadditionalservicesmaybeadded.The
threeservicesareasfollows:
●Signedreceipts:Asignedreceiptmayberequestedina
SignedDataobject.Returningasigned
receiptprovidesproofofdeliverytotheoriginatorofamessage
andallowstheoriginatorto
demonstratetoathirdpartythattherecipientreceivedthe
message.Inessence,therecipient
signstheentireoriginalmessageplusoriginal(sender's)
signatureandappendsthenew
signaturetoform anewS/MIMEmessage.
●Securitylabels:Asecuritylabelmaybeincludedinthe
authenticatedattributesofa
SignedDataobject.Asecuritylabelisasetofsecurityinformation
regardingthesensitivityofthe
contentthatisprotectedbyS/MIMEencapsulation.Thelabels
maybeusedforaccesscontrol,by
indicatingwhichusersarepermittedaccesstoanobject.Other
usesincludepriority(secret,
confidential,restricted,andsoon)orrolebased,describingwhich
kindofpeoplecanseethe
information(e.g.,patient'shealth-careteam,medicalbilling
agents,etc.).
[Page474]
●Securemailinglists:Whenausersendsamessagetomultiple
recipients,acertainamountof
per-recipientprocessingisrequired,includingtheuseofeach
recipient'spublickey.Theusercan

berelievedofthisworkbyemployingtheservicesofanS/MIME
MailListAgent(MLA).AnMLA
cantakeasingleincomingmessage,perform therecipient-
specificencryptionforeachrecipient,
andforwardthemessage.Theoriginatorofamessageneedonly
sendthemessagetotheMLA,
withencryptionperformedusingtheMLA'spublickey.
file:///D|/1/0131873164/ch15lev1sec2.html(18von19)
[14.10.200709:41:46]
Section15.2.S/MIME
RecommendedWebSites
●PGPHomePage:PGPWebsitebyPGPCorp.,theleadingPGP
commercialvendor.
●InternationalPGPHomePage:Designedtopromote
worldwideuseofPGP.Contains
documentsandlinksofinterest.
●MITDistributionSiteforPGP:Leadingdistributoroffreeware
PGP.ContainsFAQ,other
information,andlinkstootherPGPsites.
●PGPCharter:LatestRFCsandInternetdraftsforOpen
SpecificationPGP.
●S/MIMECharter:LatestRFCsandInternetdraftsforS/MIME.
file:///D|/1/0131873164/ch15lev1sec2.html(19von19)
[14.10.200709:41:46]
Section15.3.KeyTerms,ReviewQuestions,andProblems
[Page474(continued)]
Format
Appendix15BRadix-64Conversion
Forexample,considerthe24-bitrawtextsequence00100011
0101110010010001,whichcanbe
expressedinhexadecimalas235C91.Wearrangethisinputin
blocksof6bits:
001000110101110010010001
Theextracted6-bitdecimalvaluesare8,53,50,17.Lookingthese
upinTable15.9yieldstheradix-64

encodingasthefollowingcharacters:I1yR.Ifthesecharactersare
storedin8-bitASCIIformatwith
paritybitsettozero,wehave
01001001001100010111100101010010
Inhexadecimal,thisis49317952.Tosummarize,
InputData
Binaryrepresentation001000110101110010010001
Hexadecimalrepresentation235C91
Radix-64EncodingofInputData
CharacterrepresentationI1yR
ASCIIcode(8bit,zeroparity)010010010011000101111001
01010010
Hexadecimalrepresentation49317952
Appendix15CPGPRandom NumberGeneration
PGPusesacomplexandpowerfulschemeforgeneratingrandom
numbersandpseudorandom numbers,
foravarietyofpurposes.PGPgeneratesrandom numbersfrom
thecontentandtimingofuser
keystrokes,andpseudorandom numbersusinganalgorithm
basedontheoneinANSIX9.17.PGPuses
thesenumbersforthefollowingpurposes:
[Page480]
●Truerandom numbers:
usedtogenerateRSAkeypairs
providetheinitialseedforthepseudorandom numbergenerator
provideadditionalinputduringpseudorandom numbergeneration
●Pseudorandom numbers:
usedtogeneratesessionkeys
usedtogenerateinitializationvectors(IVs)forusewiththe
sessionkeyinCFB
modeencryption
TrueRandom Numbers
PGPmaintainsa256-bytebufferofrandom bits.EachtimePGP
expectsakeystroke,itrecordsthetime,
in32-bitformat,atwhichitstartswaiting.Whenitreceivesthe

keystroke,itrecordsthetimethekey
waspressedandthe8-bitvalueofthekeystroke.Thetimeand
keystrokeinformationareusedto
generateakey,whichis,inturn,usedtoencryptthecurrentvalue
oftherandom-bitbuffer.

IPSecurity

IPSecurityOverview

Inresponsetotheseissues,theIABincludedauthenticationand
encryptionasnecessarysecurityfeaturesinthenext-generation
IP,whichhasbeenissuedasIPv6.Fortunately,thesesecurity
capabilitiesweredesignedtobeusablebothwiththecurrentIPv4
andthefutureIPv6.Thismeansthatvendorscanbeginoffering
thesefeaturesnow,andmanyvendorsdonowhavesomeIPSec
capabilityin
theirproducts.
ApplicationsofIPSec
IPSecprovidesthecapabilitytosecurecommunicationsacrossa
LAN,acrossprivateandpublicWANs,andacrosstheInternet.
Examplesofitsuseincludethefollowing:
●SecurebranchofficeconnectivityovertheInternet:A
companycanbuildasecurevirtualprivatenetworkoverthe
InternetoroverapublicWAN.Thisenablesabusinesstorely
heavily
ontheInternetandreduceitsneedforprivatenetworks,saving
costsandnetworkmanagementoverhead.
●SecureremoteaccessovertheInternet:Anenduserwhose
system isequippedwithIPsecurityprotocolscanmakealocal
calltoanInternetserviceprovider(ISP)andgainsecureaccessto
acompanynetwork.Thisreducesthecostoftollchargesfor
travelingemployeesandtelecommuters.

●Establishingextranetandintranetconnectivitywithpartners:
IPSeccanbeusedtosecurecommunicationwithother
organizations,ensuringauthenticationandconfidentialityand
providingakeyexchangemechanism.
●Enhancingelectroniccommercesecurity:Eventhoughsome
Webandelectroniccommerceapplicationshavebuilt-insecurity
protocols,theuseofIPSecenhancesthatsecurity.
TheprincipalfeatureofIPSecthatenablesittosupportthese
variedapplicationsisthatitcanencryptand/orauthenticateall
trafficattheIPlevel.Thus,alldistributedapplications,including
remotelogon,
client/server,e-mail,filetransfer,Webaccess,andsoon,canbe
secured.
Figure16.1isatypicalscenarioofIPSecusage.Anorganization
maintainsLANsatdispersedlocations.
NonsecureIPtrafficisconductedoneachLAN.Fortrafficoffsite,
throughsomesortofprivateorpublic
WAN,IPSecprotocolsareused.Theseprotocolsoperatein
networkingdevices,suchasarouteror
firewall,thatconnecteachLANtotheoutsideworld.TheIPSec
networkingdevicewilltypicallyencrypt
andcompressalltrafficgoingintotheWAN,anddecryptand
decompresstrafficcomingfrom theWAN;
theseoperationsaretransparenttoworkstationsandserverson
theLAN.Securetransmissionisalso
possiblewithindividualuserswhodialintotheWAN.Suchuser
workstationsmustimplementtheIPSec
protocolstoprovidesecurity.

Figure16.1.AnIPSecurityScenario
BenefitsofIPSec
[MARK97]liststhefollowingbenefitsofIPSec:
●WhenIPSecisimplementedinafirewallorrouter,itprovides
strongsecuritythatcanbeappliedtoalltrafficcrossingthe
perimeter.Trafficwithinacompanyorworkgroupdoesnotincur
theoverheadofsecurity-relatedprocessing.
●IPSecinafirewallisresistanttobypassifalltrafficfrom the
outsidemustuseIP,andthefirewallistheonlymeansof
entrancefrom theInternetintotheorganization.
●IPSecisbelowthetransportlayer(TCP,UDP)andsois
transparenttoapplications.Thereisnoneedtochangesoftware
onauserorserversystem whenIPSecisimplementedinthe
firewallorrouter.EvenifIPSecisimplementedinendsystems,
upper-layersoftware,including
applications,isnotaffected.
●IPSeccanbetransparenttoendusers.Thereisnoneedto
trainusersonsecuritymechanisms,issuekeyingmaterialona
per-userbasis,orrevokekeyingmaterialwhenusersleavethe
organization.

●IPSeccanprovidesecurityforindividualusersifneeded.This
isusefulforoffsiteworkersandforsettingupasecurevirtual
subnetworkwithinanorganizationforsensitiveapplications.
RoutingApplications
Inadditiontosupportingendusersandprotectingpremises
systemsandnetworks,IPSeccanplayavitalroleintherouting
architecturerequiredforinternetworking.[HUIT98]liststhe
followingexamples
oftheuseofIPSec.IPSeccanassurethat
●Arouteradvertisement(anewrouteradvertisesitspresence)
comesfrom anauthorizedrouter
●Aneighboradvertisement(arouterseekstoestablishor
maintainaneighborrelationshipwitharouterinanotherrouting
domain)comesfrom anauthorizedrouter.
●Aredirectmessagecomesfrom theroutertowhichtheinitial
packetwassent.
●Aroutingupdateisnotforged.Withoutsuchsecuritymeasures,
anopponentcandisruptcommunicationsordivertsometraffic.
RoutingprotocolssuchasOSPFshouldberunontopofsecurity
associationsbetweenroutersthataredefinedbyIPSec.

IPSecurityArchitecture

TheIPSecspecificationhasbecomequitecomplex.Togetafeel
fortheoverallarchitecture,webeginwithalookatthedocuments
thatdefineIPSec.ThenwediscussIPSecservicesandintroduce
the
conceptofsecurityassociation.

KeyManagement

ThekeymanagementportionofIPSecinvolvesthedetermination
anddistributionofsecretkeys.A
typicalrequirementisfourkeysforcommunicationbetweentwo
applications:transmitandreceivepairs

forbothAHandESP.TheIPSecArchitecturedocumentmandates
supportfortwotypesofkey
management:
●Manual:Asystem administratormanuallyconfigureseach
system withitsownkeysandwith
thekeysofothercommunicatingsystems.Thisispracticalfor
small,relativelystatic
environments.
●Automated:Anautomatedsystem enablestheon-demand
creationofkeysforSAsand
facilitatestheuseofkeysinalargedistributedsystem withan
evolvingconfiguration.
ThedefaultautomatedkeymanagementprotocolforIPSecis
referredtoasISAKMP/Oakleyandconsists
ofthefollowingelements:
●OakleyKeyDeterminationProtocol:Oakleyisakeyexchange
protocolbasedontheDiffie-
Hellmanalgorithm butprovidingaddedsecurity.Oakleyisgeneric
inthatitdoesnotdictate
specificformats.
●InternetSecurityAssociationandKeyManagementProtocol
(ISAKMP):ISAKMPprovides
aframeworkforInternetkeymanagementandprovidesthe
specificprotocolsupport,including
formats,fornegotiationofsecurityattributes.
ISAKMPbyitselfdoesnotdictateaspecifickeyexchange
algorithm;rather,ISAKMPconsistsofasetof
messagetypesthatenabletheuseofavarietyofkeyexchange
algorithms.Oakleyisthespecifickey
exchangealgorithm mandatedforusewiththeinitialversionof
ISAKMP.
[Page507]
WebeginwithanoverviewofOakleyandthenlookatISAKMP.
●Digitalsignatures:Theexchangeisauthenticatedbysigninga
mutuallyobtainablehash;each

partyencryptsthehashwithitsprivatekey.Thehashisgenerated
overimportantparameters,
suchasuserIDsandnonces.
●Public-keyencryption:Theexchangeisauthenticatedby
encryptingparameterssuchasIDs
andnonceswiththesender'sprivatekey.
●Symmetric-keyencryption:Akeyderivedbysomeout-of-band
mechanism canbeusedto
authenticatetheexchangebysymmetricencryptionofexchange
parameters.
OakleyExchangeExample
TheOakleyspecificationincludesanumberofexamplesof
exchangesthatareallowableunderthe
protocol.TogiveaflavorofOakley,wepresentoneexample,
calledaggressivekeyexchangeinthe
specification,socalledbecauseonlythreemessagesare
exchanged.
Figure16.11showstheaggressivekeyexchangeprotocol.Inthe
firststep,theinitiator(I)transmitsa
cookie,thegrouptobeused,andI'spublicDiffie-Hellmankeyfor
thisexchange.Ialsoindicatesthe
offeredpublic-keyencryption,hash,andauthenticationalgorithms
tobeusedinthisexchange.Also
includedinthismessagearetheidentifiersofIandtheresponder
(R)andI'snonceforthisexchange.
Finally,IappendsasignatureusingI'sprivatekeythatsignsthe
twoidentifiers,thenonce,thegroup,
theDiffie-Hellmanpublickey,andtheofferedalgorithms.

Figure16.11.ExampleofAggressiveOakleyKeyExchange
WhenRreceivesthemessage,RverifiesthesignatureusingI's
publicsigningkey.Racknowledgesthe
messagebyechoingbackI'scookie,identifier,andnonce,aswell
asthegroup.Ralsoincludesinthe
messageacookie,R'sDiffie-Hellmanpublickey,theselected
algorithms(whichmustbeamongthe
offeredalgorithms),R'sidentifier,andR'snonceforthisexchange.
Finally,Rappendsasignatureusing
R'sprivatekeythatsignsthetwoidentifiers,thetwononces,the
group,thetwoDiffie-Hellmanpublic
keys,andtheselectedalgorithms.
WhenIreceivesthesecondmessage,Iverifiesthesignature
usingR'spublickey.Thenoncevaluesin
themessageassurethatthisisnotareplayofanoldmessage.
Tocompletetheexchange,Imustsend
amessagebacktoRtoverifythatIhasreceivedR'spublickey.
ISAKMP
ISAKMPdefinesproceduresandpacketformatstoestablish,
negotiate,modify,anddeletesecurity
associations.AspartofSAestablishment,ISAKMPdefines
payloadsforexchangingkeygenerationand
authenticationdata.Thesepayloadformatsprovideaconsistent

frameworkindependentofthespecific
keyexchangeprotocol,encryptionalgorithm,andauthentication
mechanism.
file:///D|/1/0131873164/ch16lev1sec6.html(5von12)
[14.10.200709:41:55]
Section16.6.KeyManagement
●Interfaces:Thehardwareandsoftwareinterfacestovarious
networksdiffer.Theconceptofa
routermustbeindependentofthesedifferences.
●Reliability:Variousnetworkservicesmayprovideanything
from areliableend-to-endvirtual
circuittoanunreliableservice.Theoperationoftherouters
shouldnotdependonanassumption
ofnetworkreliability.
Theoperationoftherouter,asFigure16.13indicates,dependson
aninternetprotocol.Inthisexample,
theInternetProtocol(IP)oftheTCP/IPprotocolsuiteperforms
thatfunction.IPmustbeimplementedin
allendsystemsonallnetworksaswellasontherouters.In
addition,eachendsystem musthave
compatibleprotocolsaboveIPtocommunicatesuccessfully.The
intermediateroutersneedonlyhaveup
throughIP.

WebSecurity

AComparisonofThreatsontheWeb[RUBI97]

Integrity●Modificationofuserdata
●Trojanhorsebrowser
●Modificationofmemory
●Modificationofmessagetrafficintransit
●Lossofinformation
●Compromiseofmachine

●VulnerabiltytoallotherthreatsCryptographicchecksums
Confidentiality
●EavesdroppingontheNet
●Theftofinfofrom server
●Theftofdatafrom client
●Infoaboutnetworkconfiguration
●Infoaboutwhichclienttalkstoserver
●Lossofinformation
●LossofprivacyEncryption,webproxies
ChangeCipherSpecProtocol
TheChangeCipherSpecProtocolisoneofthethreeSSL-specific
protocolsthatusetheSSLRecord
Protocol,anditisthesimplest.Thisprotocolconsistsofasingle
message(Figure17.5a),whichconsists
ofasinglebytewiththevalue1.Thesolepurposeofthis
messageistocausethependingstatetobe
copiedintothecurrentstate,whichupdatestheciphersuitetobe
usedonthisconnection.

Figure17.5.SSLRecordProtocolPayload

AlertProtocol
TheAlertProtocolisusedtoconveySSL-relatedalertstothepeer
entity.Aswithotherapplicationsthat
useSSL,alertmessagesarecompressedandencrypted,as
specifiedbythecurrentstate.
Eachmessageinthisprotocolconsistsoftwobytes(Figure

17.5b).Thefirstbytetakesthevalue
warning(1)orfatal(2)toconveytheseverityofthemessage.Ifthe
levelisfatal,SSLimmediately
terminatestheconnection.Otherconnectionsonthesame
sessionmaycontinue,butnonew
connectionsonthissessionmaybeestablished.Thesecondbyte
containsacodethatindicatesthe
specificalert.First,welistthosealertsthatarealwaysfatal
(definitionsfrom theSSLspecification):
●unexpected_message:Aninappropriatemessagewas
received.
●bad_record_mac:AnincorrectMACwasreceived.
●decompression_failure:Thedecompressionfunctionreceived
improperinput(e.g.,unableto
decompressordecompresstogreaterthanmaximum allowable
length).
●handshake_failure:Senderwasunabletonegotiatean
acceptablesetofsecurityparameters
giventheoptionsavailable.
●illegal_parameter:Afieldinahandshakemessagewasoutof
rangeorinconsistentwithother
fields.
Theremainderofthealertsarethefollowing:
●close_notify:Notifiestherecipientthatthesenderwillnotsend
anymoremessagesonthis
connection.Eachpartyisrequiredtosendaclose_notifyalert
beforeclosingthewritesideofa
connection.
●no_certificate:Maybesentinresponsetoacertificaterequest
ifnoappropriatecertificateis
available.
●bad_certificate:Areceivedcertificatewascorrupt(e.g.,
containedasignaturethatdidnot
verify).
●unsupported_certificate:Thetypeofthereceivedcertificateis

notsupported.
●certificate_revoked:Acertificatehasbeenrevokedbyits
signer.
●certificate_expired:Acertificatehasexpired.
●certificate_unknown:Someotherunspecifiedissuearosein
processingthecertificate,
renderingitunacceptable.
HandshakeProtocol
ThemostcomplexpartofSSListheHandshakeProtocol.This
protocolallowstheserverandclientto
authenticateeachotherandtonegotiateanencryptionandMAC
algorithm andcryptographickeystobe
usedtoprotectdatasentinanSSLrecord.TheHandshake
Protocolisusedbeforeanyapplicationdata
istransmitted.
[Page538]
TheHandshakeProtocolconsistsofaseriesofmessages
exchangedbyclientandserver.Allofthese
havetheformatshowninFigure17.5c.Eachmessagehasthree
fields:
●Type(1byte):Indicatesoneof10messages.Table17.2lists
thedefinedmessagetypes.
●Length(3bytes):Thelengthofthemessageinbytes.
●Content(0bytes):Theparametersassociatedwiththis
message;

CryptographicComputations
Twofurtheritemsareofinterest:thecreationofasharedmaster
secretbymeansofthekeyexchange,andthegenerationof
cryptographicparametersfrom themastersecret.
TransportLayerSecurity
TLSisanIETFstandardizationinitiativewhosegoalistoproduce
anInternetstandardversionofSSL.
TLSisdefinedasaProposedInternetStandardinRFC2246.RFC
2246isverysimilartoSSLv3.Inthissection,wehighlightthe

differences.

VersionNumber
TheTLSRecordFormatisthesameasthatoftheSSLRecord
Format(Figure17.4),andthefieldsinthe
headerhavethesamemeanings.Theonedifferenceisinversion
values.ForthecurrentversionofTLS,
theMajorVersionis3andtheMinorVersionis1.
[Page545]
MessageAuthenticationCode
TherearetwodifferencesbetweentheSSLv3andTLSMAC
schemes:theactualalgorithm andthescope
oftheMACcalculation.TLSmakesuseoftheHMACalgorithm
definedinRFC2104.Recallfrom Chapter
12thatHMACisdefinedasfollows:
HMACK(M)=H[(K+opad)||H[(K+ipad)||M]]
where
H=embeddedhashfunction(forTLS,eitherMD5orSHA-1)
M =messageinputtoHMAC
K+=secretkeypaddedwithzerosontheleftsothattheresultis
equaltotheblocklengthofthe
hashcode(forMD5andSHA-1,blocklength=512bits)
ipad=00110110(36inhexadecimal)repeated64times(512bits)
opad=01011100(5Cinhexadecimal)repeated64times(512
bits)
SSLv3usesthesamealgorithm,exceptthatthepaddingbytesare
concatenatedwiththesecretkey
ratherthanbeingXORedwiththesecretkeypaddedtotheblock
length.Thelevelofsecurityshouldbe
aboutthesameinbothcases.
ForTLS,theMACcalculationencompassesthefieldsindicatedin
thefollowingexpression:
HMAC_hash(MAC_write_secret,seq_num ||TLSCompressed.type
||
TLSCompressed.version||TLSCompressed.length||

TLSCompressed.fragment)
TheMACcalculationcoversallofthefieldscoveredbytheSSLv3
calculation,plusthefield
TLSCompressed.version,whichistheversionoftheprotocol
beingemployed.
Section17.2.SecureSocketLayerandTransportLayerSecurity
●decode_error:Amessagecouldnotbedecodedbecausea
fieldwasoutofitsspecifiedrangeor
thelengthofthemessagewasincorrect.
●export_restriction:Anegotiationnotincompliancewithexport
restrictionsonkeylengthwas
detected.
●protocol_version:Theprotocolversiontheclientattemptedto
negotiateisrecognizedbutnot
supported.
●insufficient_security:Returnedinsteadofhandshake_failure
whenanegotiationhasfailed
specificallybecausetheserverrequiresciphersmoresecurethan
thosesupportedbytheclient.
●decrypt_error:Ahandshakecryptographicoperationfailed,
includingbeingunabletoverifya
signature,decryptakeyexchange,orvalidateafinishedmessage.
●user_canceled:Thishandshakeisbeingcanceledforsome
reasonunrelatedtoaprotocol
failure.
●no_renegotiation:Sentbyaclientinresponsetoahello
requestorbytheserverinresponse
toaclienthelloafterinitialhandshaking.Eitherofthese
messageswouldnormallyresultinrenegotiation,butthisalert
indicatesthatthesenderisnotabletorenegotiate.Thismessage
isalwaysawarning.
CipherSuites
Thereareseveralsmalldifferencesbetweentheciphersuites
availableunderSSLv3andunderTLS:
●KeyExchange:TLSsupportsallofthekeyexchange

techniquesofSSLv3withtheexceptionofFortezza.
●SymmetricEncryptionAlgorithms:TLSincludesallofthe
symmetricencryptionalgorithmsfoundinSSLv3,withthe
exceptionofFortezza.

	Chapter 3
	Program security:
	In this chapter:programming errors with security implications—buffer overflows, incomplete access controlmalicious code—viruses, worms, trojan horsesprogram development controls against malicious code and vulnerabilities—software engineering principle...
	3.1 SECURE PROGRAMS
	Fixing Faults
	Unexpected Behavior
	Types of Flaws

	3.2. NONMALICIOUS PROGRAM ERRORS
	Buffer Overflows
	Definition
	Figure 3-1. Places Where a Buffer Can Overflow.
	Security Implication

	Incomplete Mediation
	Definition
	Security Implication

	Time-of-Check to Time-of-Use Errors
	Definition
	Figure 3-2. Data Structure for File Access.
	Figure 3-3. Modified Data.
	Security Implication

	Combinations of Nonmalicious Program Flaws

	3.3. VIRUSES AND OTHER MALICIOUS CODE
	Why Worry About Malicious Code?

	Sidebar 3-3 Nonmalicious Flaws Cause Failures
	Malicious Code Can Do Much (Harm)
	Malicious Code Has Been Around a Long Time
	Kinds of Malicious Code
	How Viruses Attach
	Appended Viruses
	Viruses That Surround a Program
	Figure 3-5. Virus Surrounding a Program.
	Integrated Viruses and Replacements
	Figure 3-6. Virus Integrated into a Program.

	Document Viruses
	How Viruses Gain Control
	Figure 3-7. Virus Completely Replacing a Program.

	Homes for Viruses
	One-Time Execution
	Boot Sector Viruses
	Figure 3-8. Boot Sector Virus Relocating Code.
	Memory-Resident Viruses
	Other Homes for Viruses

	Virus Signatures

	Sidebar 3-4 The Viral Threat
	Storage Patterns
	Figure 3-9. Recognizable Patterns in Viruses.
	Execution Patterns
	Transmission Patterns
	Polymorphic Viruses
	The Source of Viruses
	Prevention of Virus Infection
	Truths and Misconceptions About Viruses
	First Example of Malicious Code: The Brain Virus
	What It Does
	How It Spreads
	What Was Learned

	Another Example: The Internet Worm
	What It Did
	What Effect It Had
	How It Worked
	What Was Learned

	More Malicious Code: Code Red
	What It Did
	What Effect It Had
	How It Worked
	What Was Learned

	Malicious Code on the Web: Web Bugs
	What They Do
	What Effect They Have
	How They Work
	What Was Learned

	3.4 TARGETED MALICIOUS CODE
	Trapdoors
	Examples of Trapdoors
	Figure 3-10. Stubs and Drivers.
	Causes of Trapdoors

	Salami Attack
	Examples of Salami Attacks
	Why Salami Attacks Persist

	Covert Channels: Programs That Leak Information
	Figure 3-11. Covert Channel Leaking Information.
	Covert Channel Overview
	How to Create Covert Channels
	Figure 3-12. Covert Channels.
	Storage Channels
	Figure 3-13. File Lock Covert Channel.
	Figure 3-14. File Existence Channel Used to Signal 100.
	Timing Channels
	Figure 3-15. Covert Timing Channel.
	Identifying Potential Covert Channels
	Shared Resource Matrix
	Information Flow Method
	Covert Channel Conclusions

	3.5. CONTROLS AGAINST PROGRAM THREATS
	Developmental Controls
	The Nature of Software Development
	Modularity, Encapsulation, and Information Hiding
	Modularity
	Figure 3-16. Modularity.
	Figure 3-17. Coupling.
	Encapsulation
	Information Hiding
	Figure 3-18. Information Hiding.
	Peer Reviews
	Figure 3-19. Fault Discovery Rate Reported at Hewlett-Packard.
	Hazard Analysis
	Testing
	Good Design
	Prediction
	Static Analysis
	Configuration Management
	Lessons from Mistakes
	Proofs of Program Correctness
	Programming Practice Conclusions

	Operating System Controls on Use of Programs
	Trusted Software
	Mutual Suspicion
	Confinement
	Access Log

	Administrative Controls
	Standards of Program Development
	Separation of Duties

	Program Controls in General

