
BE CSE – IV Semester

18CSES402-Design and Analysis of Algorithms

UNIT 1

What is an algorithm?

Algorithm is a set of steps to complete a task.

For example,

Task: to make a cup of tea.

Algorithm:

1. add water and milk to the kettle,

2. boilit, add tea leaves,

3. Add sugar, and then serve it in cup.

What is Computer algorithm?

‘’a set of steps to accomplish or complete a task that is described precisely enough that a

computer can run it’’.

An algorithm should have the following characteristics −

 Unambiguous − Algorithm should be clear and unambiguous. Each of its steps (or

phases), and their inputs/outputs should be clear and must lead to only one

meaning.

 Input − An algorithm should have 0 or more well-defined inputs.

 Output − An algorithm should have 1 or more well-defined outputs, and should

match the desired output.

 Finiteness − Algorithms must terminate after a finite number of steps.

 Feasibility − Should be feasible with the available resources.

 Independent − An algorithm should have step-by-step directions, which should be

independent of any programming code.

Algorithm Complexity

Suppose X is an algorithm and n is the size of input data, the time and space used by the

algorithm X are the two main factors, which decide the efficiency of X.

 Time Factor − Time is measured by counting the number of key operations such as

comparisons in the sorting algorithm.

 Space Factor − Space is measured by counting the maximum memory space

required by the algorithm.

The complexity of an algorithm f(n) gives the running time and/or the storage space

required by the algorithm in terms of n as the size of input data.

Space Complexity

Space complexity of an algorithm represents the amount of memory space required by

the algorithm in its life cycle. The space required by an algorithm is equal to the sum of

the following two components −

1. A fixed part that is a space required to store certain data and variables,that are

independent of the size of the problem. For example, simple variables and

constants used, program size, etc.

2. A variable part is a space required by variables, whose size depends on the size of

the problem. For example, dynamic memory allocation, recursion stack space, etc.

Space complexity S(P) of any algorithm P is S(P) = C + S(I), where C is the fixed part

and S(I) is the variable part of the algorithm, which depends on instance characteristic I.

Following is a simple example that tries to explain the concept −

Algorithm: SUM(A, B)

Step 1 - START

Step 2 - C ← A + B + 10

Step 3 - Stop

Here we have three variables A, B, and C and one constant. Hence S(P) = 1 + 3. Now,

space depends on data types of given variables and constant types and it will be

multiplied accordingly.

Time Complexity

Time complexity of an algorithm represents the amount of time required by the algorithm

to run to completion. Time requirements can be defined as a numerical function T(n),

where T(n) can be measured as the number of steps, provided each step consumes

constant time.

For example, addition of two n-bit integers takes n steps. Consequently, the total

computational time is T(n) = c ∗ n, where c is the time taken for the addition of two bits.

Here, we observe that T(n) grows linearly as the input size increases.

Asymptotic analysis of an algorithm

Asymptotic analysis of an algorithm refers to defining the mathematical

boundation/framing of its run-time performance. Using asymptotic analysis, we can very

well conclude the best case, average case, and worst case scenario of an algorithm.

The time required by an algorithm falls under three types −

 Best Case − Minimum time required for program execution.

 Average Case − Average time required for program execution.

 Worst Case − Maximum time required for program execution.

Asymptotic Notations

Following are the commonly used asymptotic notations to calculate the running time

complexity of an algorithm.

 Ο Notation

 Ω Notation

 θ Notation

Big Oh Notation, Ο

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running

time. It measures the worst case time complexity or the longest amount of time an

algorithm can possibly take to complete.

The Big O notation is useful when we only have upper bound on time complexity of an

algorithm. Many times we easily find an upper bound by simply looking at the algorithm.

O(g(n)) = { f(n): there exist positive constants c and

 n0 such that 0 <= f(n) <= c*g(n) for all n >= n0}

 Omega Notation, Ω

The notation Ω(n) is the formal way to express the lower bound of an algorithm's running

time. It measures the best case time complexity or the best amount of time an algorithm

can possibly take to complete.

For a given function g(n), we denote by Ω(g(n)) the set of functions.

Ω (g(n)) = {f(n): there exist positive constants c and

 n0 such that 0 <= c*g(n) <= f(n) for all n >= n0}.

 Theta Notation, θ

The notation θ(n) is the formal way to express both the lower bound and the upper bound

of an algorithm's running time. It is represented as follows −

For a given function g(n), we denote Θ(g(n)) is following set of functions.

Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such

 that 0 <= c1*g(n) <= f(n) <= c2*g(n) for all n >= n0}

The above definition means, if f(n) is theta of g(n), then the value f(n) is always between

c1*g(n) and c2*g(n) for large values of n (n >= n0). The definition of theta also requires

that f(n) must be non-negative for values of n greater than n0.

Recursive Algorithms and Recurrence Equations

 Performance of recursive algorithms typically specified with recurrence equations

 Recurrence Equations are also called as Recurrence and Recurrence Relations

 Recurrence relations have specifically to do with sequences (eg Fibonacci

Numbers)

Analyzing Performance of Non-Recursive Routines is (relatively) Easy

 Loop: T(n) = Θ(n)

 for i in 1 .. n loop

 Loop: T(n) = Θ(n2)

 for i in 1 .. n loop

 for j in 1 .. n loop

 end loop;

 end loop;

Analyzing Recursive Routines

 Analysis of recursive routines is not as easy: consider factorial

 fac(n) is

 if n = 1 then return 1

 else return fac(n-1) * 1

Recurrences

 A recurrence defines T(n) in terms of T for smaller values

 Example: T(n) = T(n-1) + 1

o T(n) is defined in terms of T(n-1)

 Recurrences are used in analyzing recursive algorithms

 Also known as: Recurrence Equation, Recurrence Relation

Substituting Up and Down

 Problem: Find value of T(n) = T(n-1) + 1 for n=4, with initial condition T(1)=2

 Substituting up from T(1):

o T(1) = 2, Initial condition

o T(2) = T(1) + 1 = 2+1 = 3

o T(3) = T(2) + 1 = 3+1 = 4

o T(4) = T(3) + 1 = 4+1 = 5

 Subsituting down from T(4):

o Example: T(4) = T(3) + 1 = [T(2) + 1] + 1 = [[T(1) + 1] + 1] + 1 =

2+1+1+1 = 5

Fibonacci

 Algorithm:

 fib(n)

 if n in 1 .. 2 return 1

 else return fib(n-1) + fib(n-2)

T(n)=T(n−1)+T(n−2)+1

More Example Algorithms and their Recurrence Equations

 Factorial (Every Case): T(n)=T(n−1)+1

 Fibonacci (Every Case): T(n)=T(n−1)+T(n−2)+1

 Binary Search (Worst Case): T(n)=T(n/2)+1

 Quick Sort (Worst Case): T(n)=T(n−1)+Θ(n)

 Quick Sort(Best Case): T(n)=2T(n2)+Θ(n)

 Merge Sort(Every Case): T(n)=2T(n2)+Θ(n)

Recursion Tree - Follow the URLs

https://lec.inf.ethz.ch/mavt/informatik/2018/dl/exercises/week09/slides09_recursion_trees.pdf

https://www.youtube.com/watch?v=4V30R3I1vLI

https://www.youtube.com/watch?v=IawM82BQ4II

https://www.youtube.com/watch?v=MhT7XmxhaCE

UNIT 4 AND UNIT 5

 Difference between tractable and intractable problems.

Problems that can be solved in polynomial time are called tractable and the problems that

cannot be solved in Polynomial time are called intractable.

Examples of tractable problems Searching an unordered list

 Searching an ordered list

 Sorting a list

 Multiplication of integers (even though there’s a gap)

 Finding a minimum spanning tree in a graph (even though there’s a gap)

Examples of some Intractable Problems

 Traveling Salesman Problem

 Knapsack Problem

 Bin Packing

 Job Shop Scheduling

Problem Reduction: Definition

 To solve an instance of problem A:

o Transform the instance of problem A into an instance of problem B

o Solve the instance of problem B

o Transform the solution to problem B into a solution of problem A

https://lec.inf.ethz.ch/mavt/informatik/2018/dl/exercises/week09/slides09_recursion_trees.pdf
https://www.youtube.com/watch?v=4V30R3I1vLI
https://www.youtube.com/watch?v=IawM82BQ4II
https://www.youtube.com/watch?v=MhT7XmxhaCE

We say that problem A reduces to problem B

--

P and NP problems.

P versus NP (polynomial versus nondeterministic polynomial) refers to a theoretical

question presented in 1971 by Leonid Levin and Stephen Cook, concerning mathematical

problems that are easy to solve (P type) as opposed to problems that are difficult to solve

(NP type).

Any P type problem can be solved in "polynomial time." (A polynomial is a

mathematical expression consisting of a sum of terms, each term including a variable or

variables raised to a power and multiplied by a coefficient.) A P type problem is a

polynomial in the number of bits that it takes to describe the instance of the problem at

hand. An example of a P type problem is finding the way from point A to point B on a

map. An NP type problem requires vastly more time to solve than it takes to describe the

problem. An example of an NP type problem is breaking a 128-bit digital cipher. The P

versus NP question is important in communications, because it may ultimately determine

the effectiveness (or ineffectiveness) of digital encryption methods.

An NP problem defies any brute-force approach at solution, because finding the correct

solution would take trillions of years or longer even if all the supercomputers in the world

were put to the task. Some mathematicians believe that this obstacle can be surmounted

by building a computer capable of trying every possible solution to a problem

simultaneously. This hypothesis is called P equals NP. Others believe that such a

computer cannot be developed (P is not equal to NP). If it turns out that P equals NP, then

it will become possible to crack the key to any digital cipher regardless of its complexity,

thus rendering all digital encryption methods worthless.

--

P, NP, NP complete and NP hard with example :

P -P is a complexity class that represents the set of all decision problems that can be

solved in polynomial time. That is, given an instance of the problem, the answer yes or

no can be decided in polynomial time.

Example

Given a connected graph G, can its vertices be coloured using two colours so that no edge

is monochromatic?

https://whatis.techtarget.com/definition/polynomial
https://searchsecurity.techtarget.com/definition/cipher

Algorithm: start with an arbitrary vertex, color it red and all of its neighbours blue and

continue. Stop when you run out of vertices or you are forced to make an edge have both

of its endpoints be the same color.

NP -NP is a complexity class that represents the set of all decision problems for which

the instances where the answer is "yes" have proofs that can be verified in polynomial

time.

This means that if someone gives us an instance of the problem and a certificate

(sometimes called a witness) to the answer being yes, we can check that it is correct in

polynomial time.

Example

Integer factorisation is in NP. This is the problem that given integers n and m, is there an

integer f with 1 < f < m, such that f divides n (f is a small factor of n)?

This is a decision problem because the answers are yes or no. If someone hands us an

instance of the problem (so they hand us integers n and m) and an integer f with 1 < f <

m, and claim that f is a factor of n (the certificate), we can check the answer in

polynomial time by performing the division n / f.

NP-Complete -NP-Complete is a complexity class which represents the set of all

problems X in NP for which it is possible to reduce any other NP problem Y to X in

polynomial time.

Intuitively this means that we can solve Y quickly if we know how to solve X quickly.

Precisely, Yis reducible to X, if there is a polynomial time algorithm f to transform

instances y of Y to instances x = f(y) of X in polynomial time, with the property that the

answer to y is yes, if and only if the answer to f(y) is yes.

Example

3-SAT (Boolean satisfiability problem) - This is the problem wherein we are given a

conjunction (ANDs) of 3-clause disjunctions (ORs), statements of the form

1. (x_v11 OR x_v21 OR x_v31) AND

2. (x_v12 OR x_v22 OR x_v32) AND

3. ... AND

4. (x_v1n OR x_v2n OR x_v3n)

where each x_vij is a boolean variable or the negation of a variable from a finite

predefined list (x_1, x_2, ... x_n).

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

It can be shown that every NP problem can be reduced to 3-SAT. The proof of this is

technical and requires use of the technical definition of NP (based on non-deterministic

Turing machines). This is known as Cook's theorem.

What makes NP-complete problems important is that if a deterministic polynomial time

algorithm can be found to solve one of them, every NP problem is solvable in polynomial

time (one problem to rule them all).

NP-hard -Intuitively, these are the problems that are at least as hard as the NP-complete

problems. Note that NP-hard problems do not have to be in NP, and they do not have to

be decision problems.

The precise definition here is that a problem X is NP-hard, if there is an NP-complete

problem Y, such that Y is reducible to X in polynomial time.

But since any NP-complete problem can be reduced to any other NP-complete problem in

polynomial time, all NP-complete problems can be reduced to any NP-hard problem in

polynomial time. Then, if there is a solution to one NP-hard problem in polynomial time,

there is a solution to all NP problems in polynomial time.

Example

The halting problem is an NP-hard problem. This is the problem that given a program P

and input I, will it halt? This is a decision problem but it is not in NP. It is clear that any

NP-complete problem can be reduced to this one. As another example, any NP-complete

problem is NP-hard.

My favorite NP-complete problem is the Minesweeper problem

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm

P versus NP

Every decision problem that is solvable by a deterministic polynomial time algorithm is

also solvable by a polynomial time non-deterministic algorithm.

All problems in P can be solved with polynomial time algorithms, whereas all problems

in NP - P are intractable. It is not known whether P = NP. However, many problems are

known in NP with the property that if they belong to P, then it can be proved that P = NP.

If P ≠ NP, there are problems in NP that are neither in P nor in NP-Complete.

The problem belongs to class P if it’s easy to find a solution for the problem. The

problem belongs to NP, if it’s easy to check a solution that may have been very tedious to

find.

--

Approximation Algorithm

An Approximate Algorithm is a way of approach NP-Completeness for the optimization

problem. This technique does not guarantee the best solution. The goal of an

approximation algorithm is to come as close as possible to the optimum value in a

reasonable amount of time which is at the most polynomial time. Such algorithms are

called approximation algorithm or heuristic algorithm.

 For the traveling salesperson problem, the optimization problem is to find the

shortest cycle, and the approximation problem is to find a short cycle.

 For the vertex cover problem, the optimization problem is to find the vertex cover

with fewest vertices, and the approximation problem is to find the vertex cover

with few vertices.

--

Randomized Algorithms

An algorithm that uses random numbers to decide what to do next anywhere in its logic is

called Randomized Algorithm. For example, in Randomized Quick Sort, we use random

number to pick the next pivot (or we randomly shuffle the array). Typically, this

randomness is used to reduce time complexity or space complexity in other standard

algorithms.

Randomized algorithms are classified in two categories.

Las Vegas: These algorithms always produce correct or optimum result. Time

complexity of these algorithms is based on a random value and time complexity is

evaluated as expected value. For example, Randomized QuickSort always sorts an input

array and expected worst case time complexity of QuickSort is O(nLogn).

Monte Carlo: Produce correct or optimum result with some probability. These

algorithms have deterministic running time and it is generally easier to find out worst

case time complexity. For example this implementation of Karger’s Algorithm produces

minimum cut with probability greater than or equal to 1/n2 (n is number of vertices) and

has worst case time complexity as O(E). Another example is Fermet Method for

Primality Testing.

Example to Understand Classification:

Consider a binary array where exactly half elements are 0 and half are 1. The task is to

find index of any 1.

A Las Vegas algorithm for this task is to keep picking a random element until we find a

1. A Monte Carlo algorithm for the same is to keep picking a random element until we

either find 1 or we have tried maximum allowed times say k.

The Las Vegas algorithm always finds an index of 1, but time complexity is determined

as expect value. The expected number of trials before success is 2, therefore expected

time complexity is O(1).

The Monte Carlo Algorithm finds a 1 with probability [1 – (1/2)k]. Time complexity of

Monte Carlo is O(k) which is deterministic.

Vertex Cover Problem

A vertex cover of an undirected graph is a subset of its vertices such that for every edge

(u, v) of the graph, either ‘u’ or ‘v’ is in vertex cover. Although the name is Vertex

Cover, the set covers all edges of the given graph. Given an undirected graph, the vertex

cover problem is to find minimum size vertex cover.

Following are some examples.

Vertex Cover Problem is a known NP Complete problem, i.e., there is no polynomial

time solution for this unless P = NP. There are approximate polynomial time algorithms

to solve the problem though.

Approximate Algorithm for Vertex Cover:

1) Initialize the result as {}

2) Consider a set of all edges in given graph. Let the set be E.

3) Do following while E is not empty

a) Pick an arbitrary edge (u, v) from set E and add 'u' and 'v' to result

b) Remove all edges from E which are either incident on u or v.

4) Return result

Below diagram to show execution of above approximate algorithm:

Applications of Randomized algorithms

 Randomized algorithms have huge applications in Cryptography.

 Load Balancing.

https://www.geeksforgeeks.org/load-balancing-on-servers-random-algorithm/

 Number-Theoretic Applications: Primality Testing

 Data Structures: Hashing, Sorting, Searching, Order Statistics and Computational

Geometry.

 Algebraic identities: Polynomial and matrix identity verification. Interactive proof

systems.

 Mathematical programming: Faster algorithms for linear programming, Rounding

linear program solutions to integer program solutions

 Graph algorithms: Minimum spanning trees, shortest paths, minimum cuts.

 Parallel and distributed computing: Deadlock avoidance distributed consensus.

Follow the URLs

https://www.afs.enea.it/nicosia/infoteorica/NP_Complete.pdf

https://www.youtube.com/watch?v=e2cF8a5aAhE

https://www.youtube.com/watch?v=dQr4wZCiJJ4

https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_primality_test
https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array-set-2-expected-linear-time/
https://en.wikipedia.org/wiki/Randomized_algorithm#Verifying_matrix_multiplication
https://www.geeksforgeeks.org/kargers-algorithm-for-minimum-cut-set-1-introduction-and-implementation/
https://www.afs.enea.it/nicosia/infoteorica/NP_Complete.pdf
https://www.youtube.com/watch?v=e2cF8a5aAhE
https://www.youtube.com/watch?v=dQr4wZCiJJ4

	Asymptotic Notations
	Big Oh Notation, Ο
	Omega Notation, Ω
	Theta Notation, θ

	Recursive Algorithms and Recurrence Equations
	Analyzing Recursive Routines
	Recurrences
	Substituting Up and Down
	Fibonacci
	More Example Algorithms and their Recurrence Equations
	Problem Reduction: Definition
	P versus NP

	Randomized Algorithms

