DEPARTMENT OF CHEMICAL ENGINEERING

VISION
Our vision is to be a leading Chemical Engineering Department in the Nation, to create and develop technocrats, entrepreneurs and business leaders

MISSION
The department fosters chemical engineering as a profession that interfaces engineering and all aspects of basic sciences to disseminate knowledge in order to prepare the students to be successful leaders and practitioners and to meet the present and future needs of the society by highest degree of standards and ethics.

PROGRAME EDUCATIONAL OBJECTIVES (PEO s):

1. To update the knowledge on biotechnology techniques and tools to apply in industrial processes for commercialization
2. To enhance the knowledge on cell biology and molecular biology techniques
3. To familiarize with the tools and techniques used in recombinant technology for strain improvements for various industrial applications
4. To introduce and update the knowledge on software tools used to study the structure and functions of biomolecules for genome analysis and characterization
5. To update the knowledge on chemical engineering principles applied in various downstream operations for product separation, bioreactor design and modelling & simulation of processes

PROGRAME OUTCOMES (POs):

1. Student could apply the knowledge on cell biology and molecular biology systems in identification and selection of strains for specific industrial applications
2. Student could well-verse with various analytical techniques that are used in different stages of fermentation process such as isolation, identification, strain improvement and other assay applications
3. Student could apply the knowledge in genetic engineering methods to design strains for specific applications in industrial processes
4. Student could use bioinformatic tools in the design and analysis of various biomolecules for their structure-functional relationships
5. Student could apply the knowledge of cell culture techniques in producing animal cells and new vaccines and in the production of plant hybrids and for crop development
6. Student could apply the knowledge of chemical engineering principles in separation and purification of products in downstream operations of fermentation processes and use the knowledge in reactor design and analysis for better performance of the system
Mapping PO with PEO

<table>
<thead>
<tr>
<th>PEO s/PO s</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PEO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PEO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PEO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PEO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
ANNAMALAI UNIVERSITY
FACULTY OF ENGINEERING AND TECHNOLOGY
M.E. / M. Tech (Two-Year Full Time & Three-year Part Time) DEGREE
PROGRAMME

CHOICE BASED CREDIT SYSTEM (CBCS)

REGULATIONS

1. Condition for Admission
Candidates for admission to the first year of the four-semester M.E / M.Tech Degree programme in Engineering shall be required to have passed B.E / B.Tech degree of Annamalai University or any other authority accepted by the syndicate of this University as equivalent thereto. They shall satisfy the condition regarding qualifying marks and physical fitness as may be prescribed by the syndicate of the Annamalai University from time to time. The admission for part time programme is restricted to those working or residing within a radius of 90 km from Annamalainagar. The application should be sent through their employers.

2. Branches of Study in M.E / M.Tech
The Branch and Eligibility criteria of programmes are given in Annexure 1

3. Courses of study
The courses of study and the respective syllabi for each of the M.E / M. Tech programmes offered by the different Departments of study are given separately.

4. Scheme of Examinations
The scheme of Examinations is given separately.

5. Choice Based Credit System (CBCS)
The curriculum includes three components namely Professional Core, Professional Electives and Open Electives in addition to Thesis. Each semester curriculum shall normally have a blend of theory and practical courses.

6. Assignment of Credits for Courses
Each course is normally assigned one credit per hour of lecture / tutorial per week and one credit for two hours or part thereof for laboratory or practical per week. The total credits for the programme will be 65.

7. Duration of the programme
A student of M.E / M.Tech programme is normally expected to complete in four semesters for full-time / six semesters for part-time but in any case not more than four years for full-time / six years for part-time from the date of admission.

8. Registration for courses
A newly admitted student will automatically be registered for all the courses prescribed for the first semester, without any option. Every other student shall submit a completed registration form indicating the list of courses intended to be credited during the next semester. This registration will be done a week before the last working day of the current semester. Late registration with the approval of the Dean on the recommendation of the Head of the Department along with a late fee will be done up to the last working day. Registration for the Thesis Phase - I and II shall be done at the appropriate semesters.
9. Electives

The student has to select two electives in first semester and another two electives in the second semester from the list of Professional Electives. The student has to select two electives in third semester from the list of Open Electives offered by the department/allied department. A student may be allowed to take up the open elective courses of third semester (Full Time program) in the first and second semester, one course in each of the semesters to enable them to carry out thesis in an industry during the entire second year of study provided they should register those courses in the first semester itself. Such students should meet the teachers offering those elective courses themselves for clarifications. No specific slots will be allotted in the time table for such courses.

Further, the two open elective courses to be studied in III semester (Full Time programme) may also be credited through the SWAYAM portal of UGC with the approval of Head of the Department concerned. In such a case, the courses must be credited before the end of III Semester.

10. Assessment

The break-up of continuous assessment and examination marks for theory courses is as follows:

- First assessment (Mid-Semester Test-I) : 10 marks
- Second assessment (Mid-Semester Test-II) : 10 marks
- Third Assessment : 5 marks
- End Semester Examination : 75 marks

The break-up of continuous assessment and examination marks for Practical courses is as follows:

- First assessment (Test-I) : 15 marks
- Second assessment (Test-II) : 15 marks
- Maintenance of record book : 10 marks
- End Semester Examination : 60 marks

The thesis Phase I will be assessed for 40 marks by a committee consisting of the Head of the Department, the guide and a minimum of two members nominated by the Head of the Department. The Head of the Department will be the chairman. The number of reviews must be a minimum of three per semester. 60 marks are allotted for the thesis work and viva voce examination at the end of the third semester. The same procedure will be adopted for thesis Phase II in the fourth semester.

11. Student Counsellors (Mentors)

To help the students in planning their course of study and for general advice on the academic programme, the Head of the Department will attach a certain number of students to a member of the faculty who shall function as student counsellor for those students throughout their period of study. Such student counsellors shall advise the students, give preliminary approval for the courses to be taken by the students during each semester, monitor their progress in SWAYAM courses/open elective courses and obtain the final approval of the Head of the Department.
12. Class Committee
For each of the semesters of M.E / M.Tech programmes, separate class committees will be constituted by the respective Head of the Departments. The composition of the class committees from first to fourth semesters for Full time and first to sixth semesters for Part-time will be as follows:

- Teachers of the individual courses.
- A Thesis coordinator (for Thesis Phase I and II) shall be appointed by the Head of the Department from among the Thesis supervisors.
- A thesis review committee chairman shall be appointed by the Head of the Department.
- One Professor or Associate Professor, preferably not teaching the concerned class, appointed as Chairman by the Head of the Department.
- The Head of the Department may opt to be a member or the Chairman.
- All counselors of the class and the Head of the Department (if not already a member) or any staff member nominated by the Head of the Department may opt to be special invitees.

The class committee shall meet three times during the semester. The first meeting will be held within two weeks from the date of class commencement in which the type of assessment like test, assignment etc. for the third assessment and the dates of completion of the assessments will be decided.

The second meeting will be held within a week after the completion of the first assessment to review the performance and for follow-up action.

The third meeting will be held after all the assessments but before the University semester examinations are completed for all the courses, and at least one week before the commencement of the examinations. During this meeting the assessment on a maximum of 25 marks for theory / 40 marks for practical and project work will be finalized for every student and tabulated and submitted to the Head of the Department for approval and transmission to the Controller of Examinations.

13. Temporary Break Of Study
A student can take a one-time temporary break of study covering the current semester and/or the next semester with the approval of the Dean on the recommendation of the Head of the Department, not later than seven days after the completion of the mid-semester test. However, the student must complete the entire programme within the maximum period of four years for Full time / six years for Part time.

14. Substitute Assessments
A student who has missed, for genuine reasons accepted by the Head of the Department, one or more of the assessments of a course other than the end of semester examination may take a substitute assessment for any one of the missed assessments. The substitute assessment must be completed before the date of the third meeting of the respective class committees.

A student who wishes to have a substitute assessment for a missed assessment must apply to the Head of the Department within a week from the date of the missed assessment.
15. Attendance Requirements
The students with 75% attendance and above are permitted to appear for the University
examinations. However, the Vice Chancellor may give a rebate / concession not
exceeding 10% in attendance for exceptional cases only on Medical Grounds.
A student who withdraws from or does not meet the minimum attendance requirement in
a semester must re-register and repeat the same semester in the subsequent academic
years.

16. Passing and declaration of Examination Results
All assessments of all the courses on an absolute marks basis will be considered and
passed by the respective results passing boards in accordance with the rules of the
University. Thereafter, the controller of examinations shall convert the marks for each
course to the corresponding letter grade as follows, compute the grade point average
(GPA) and cumulative grade point average (CGPA) and prepare the mark sheets.

<table>
<thead>
<tr>
<th>Marks</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 to 100</td>
<td>‘S’</td>
</tr>
<tr>
<td>80 to 89</td>
<td>‘A’</td>
</tr>
<tr>
<td>70 to 79</td>
<td>‘B’</td>
</tr>
<tr>
<td>60 to 69</td>
<td>‘C’</td>
</tr>
<tr>
<td>55 to 59</td>
<td>‘D’</td>
</tr>
<tr>
<td>50 to 54</td>
<td>‘E’</td>
</tr>
<tr>
<td>Less than 50</td>
<td>‘RA’</td>
</tr>
<tr>
<td>Withdrawn from the Examination</td>
<td>‘W’</td>
</tr>
</tbody>
</table>

A student who obtains less than 30 / 24 marks out of 75 / 60 in the theory / practical
examinations respectively or is absent for the examination will be awarded grade RA.
A student who earns a grade of S, A, B, C, D or E for a course is declared to have
successfully completed that course and earned the credits for that course. Such a course
cannot be repeated by the student.\A student who obtains letter grade RA / W in the mark sheet must reappear for the
examination of the courses.
The following grade points are associated with each letter grade for calculating the grade
point average and cumulative grade point average.

- S - 10; A - 9; B - 8; C - 7; D - 6; E - 5; RA - 0

Courses with grade RA / W are not considered for calculation of grade point average or
cumulative grade point average.
A student can apply for re-totaling of one or more of his examination answer papers
within a week from the date of issue of mark sheet to the student on payment of
the prescribed fee per paper. The application must be made to the Controller of
Examinations with the recommendation of the Head of the Department.
After the results are declared, mark sheets will be issued to the students. The mark sheet
will contain the list of courses registered during the semester, the grades scored and the
grade point average for the semester.

GPA is the sum of the products of the number of credits of a course with the grade point
scored in that course, taken over all the courses for the semester, divided by the sum of
the number of credits for all courses taken in that semester.
CGPA is similarly calculated considering all the courses taken from the time of admission.

17. Awarding Degree
After successful completion of the programme, the degree will be awarded with the following classifications based on CGPA.
For First Class with Distinction the student must earn a minimum of 65 credits within four semesters for full-time / six semesters for Part time from the time of admission, pass all the courses in the first attempt and obtain a CGPA of 8.25 or above.
For First Class, the student must earn a minimum of 65 credits within two years and six months for full-time / three years and six months for Part time from the time of admission and obtain a CGPA of 6.75 or above.
For Second class, the student must earn a minimum of 65 credits within four years for full-time / six years for Part time from the time of admission.

18. Ranking Of Candidates
The candidates who are eligible to get the M.E / M.Tech degree in First Class with Distinction will be ranked on the basis of CGPA for all the courses of study from I to IV semester for M.E / M.Tech full-time / I to VI semester for M.E / M.Tech part-time.
The candidates passing with First Class and without failing in any subject from the time of admission will be ranked next to those with distinction on the basis of CGPA for all the courses of study from I to IV semester for full-time / I to VI semester for M.E / M.Tech part-time.

19. Transitory Regulations
If a candidate studying under the old regulations M.E / M.Tech could not attend any of the courses in his/her courses, shall be permitted to attend equal number of courses, under the new regulation and will be examined on those subjects. The choice of courses will be decided by the concerned Head of the department. However he/she will be permitted to submit the thesis as per the old regulations. The results of such candidates will be passed as per old regulations.
The University shall have powers to revise or change or amend the regulations, the scheme of examinations, the courses of study and the syllabi from time to time.
ANNEXURE 1

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Department</th>
<th>Programme (Full Time & Part time)</th>
<th>Eligible B.E./B.Tech Programme *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ii. Environmental Engineering &</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Construction Engg. and Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Geotechnical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Disaster Management & Engg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Welding Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Power System</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Electronics & Instrumentation Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii.</td>
<td>Rehabilitative Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii.</td>
<td>Micro Electronics and MEMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Chemical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td></td>
<td>B.E. / B.Tech – Chemical Engg, Petroleum Engg, Petrochemical Technology</td>
</tr>
<tr>
<td>ii.</td>
<td>Food Processing Technology</td>
</tr>
<tr>
<td></td>
<td>B.E. / B.Tech - Chemical Engg, Food Technology, Biotechnology, Biochemical Engg, Agricultural Engg</td>
</tr>
<tr>
<td>iii.</td>
<td>Industrial Bio Technology</td>
</tr>
<tr>
<td></td>
<td>B.E. / B.Tech - Chemical Engg, Food Technology, Biotechnology, Leather Technology</td>
</tr>
<tr>
<td>iv.</td>
<td>Industrial Safety Engineering</td>
</tr>
<tr>
<td></td>
<td>B.E. / B.Tech – Any Branch of Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Computer Science & Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Computer Science & Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Information Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Information Technology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Electronics & Communication Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Communication Systems</td>
</tr>
<tr>
<td></td>
<td>B.E. / B.Tech - Electronics and Communication Engg, Electronics Engg</td>
</tr>
</tbody>
</table>

* AMIE in the relevant discipline is considered equivalent to B.E.
ANNAMALAI UNIVERSITY
FACULTY OF ENGINEERING AND TECHNOLOGY
COURSES OF STUDY AND SCHEME OF EXAMINATIONS
Full-Time

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-I</td>
<td>IBTC 101</td>
<td>Biochemistry and Enzymology</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC-II</td>
<td>IBTC 102</td>
<td>Cell and Molecular Biology</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC-III</td>
<td>IBTC 103</td>
<td>Instrumentation methods</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC-IV</td>
<td>IBTC 104</td>
<td>Bioinformatics</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PE-I</td>
<td>IBTE 105</td>
<td>Professional Elective – I</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PE-II</td>
<td>IBTE 106</td>
<td>Professional Elective – II</td>
<td>4</td>
<td></td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PC Lab-I</td>
<td>IBTP 107</td>
<td>Microbiology and Biochemistry laboratory</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>3</td>
<td>-</td>
<td>190</td>
<td>510</td>
<td>700</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-V</td>
<td>IBTC 201</td>
<td>Genetic Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC-VI</td>
<td>IBTC 202</td>
<td>Bioprocess Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC-VII</td>
<td>IBTC 203</td>
<td>Separation Techniques</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC-VIII</td>
<td>IBTC 204</td>
<td>Bioprocess Modelling & Simulation</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PE-III</td>
<td>IBTE 205</td>
<td>Professional Elective – III</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PE-IV</td>
<td>IBTE 206</td>
<td>Professional Elective – IV</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>PC Lab-II</td>
<td>IBTP 207</td>
<td>Bioprocess and Genetic Engineering Laboratory</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Seminar</td>
<td>IBTS 208</td>
<td>Seminar</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>5</td>
<td>-</td>
<td>290</td>
<td>510</td>
<td>800</td>
<td>21</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Category</td>
<td>Course Code</td>
<td>Course</td>
<td>L</td>
<td>P</td>
<td>T</td>
<td>CA</td>
<td>FE</td>
<td>Total</td>
<td>Credits</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IBTE 301</td>
<td>Open Elective – I</td>
<td>4</td>
<td></td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IBTE 302</td>
<td>Open Elective – II</td>
<td>4</td>
<td></td>
<td></td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Thesis</td>
<td>IBTT 303</td>
<td>Thesis Phase-I</td>
<td></td>
<td></td>
<td>4</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ind Train</td>
<td>IBTI 304</td>
<td>Industrial Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>g</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>8</td>
<td></td>
<td>4</td>
<td>90</td>
<td>210</td>
<td>300</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: * - Four weeks during the summer vacation at the end of IInd Semester.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thesis</td>
<td>IBTT 401</td>
<td>Thesis Phase-II</td>
<td></td>
<td></td>
<td>8</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>8</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>13</td>
</tr>
</tbody>
</table>

L-Lecture; P-Practical; T-Thesis; CA-Continuous Assessment; FE-Final Examination
Part Time

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>P</th>
<th>T</th>
<th>CA</th>
<th>FE</th>
<th>Total Credits</th>
<th>Equivalent Course Code in M.Tech. Full Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-I</td>
<td>PIBTC 101</td>
<td>Biochemistry and Enzymology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 101</td>
</tr>
<tr>
<td>2</td>
<td>PC-II</td>
<td>PIBTC 102</td>
<td>Cell and Molecular Biology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 102</td>
</tr>
<tr>
<td>3</td>
<td>PC-III</td>
<td>PIBTC 103</td>
<td>Instrumentation methods</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 103</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>225</td>
<td>300</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-IV</td>
<td>PIBTC 201</td>
<td>Genetic Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 201</td>
</tr>
<tr>
<td>2</td>
<td>PC-V</td>
<td>PIBTC 202</td>
<td>Bioprocess Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 202</td>
</tr>
<tr>
<td>3</td>
<td>PC-VI</td>
<td>PIBTC 203</td>
<td>Separation Techniques</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 203</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>225</td>
<td>300</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester – III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-VII</td>
<td>PIBTC 301</td>
<td>Bioinformatics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTC 104</td>
</tr>
<tr>
<td>2</td>
<td>PE-I</td>
<td>PIBTE 302</td>
<td>Professional Elective – I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTE 105</td>
</tr>
<tr>
<td>3</td>
<td>PE-II</td>
<td>PIBTE 303</td>
<td>Professional Elective – II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>IBTE 106</td>
</tr>
<tr>
<td>4</td>
<td>PC-Lab-I</td>
<td>PIBTP 304</td>
<td>Microbiology and Biochemistry laboratory</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>IBTP 107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
<td>3</td>
<td>-</td>
<td>115</td>
<td>285</td>
<td>400</td>
<td>11</td>
</tr>
<tr>
<td>Sl.No</td>
<td>Category</td>
<td>Course Code</td>
<td>Course Code</td>
<td>Course</td>
<td>L</td>
<td>P</td>
<td>T</td>
<td>CA</td>
<td>FE</td>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

S e m e s t e r – IV

1. PC-VIII PIBTC 401 Bioprocess Modelling & Simulation 4 - - 25 75 100 3 IBTC 204
2. PE-III PIBTE 402 Professional Elective – III 4 - - 25 75 100 3 IBTE 205
3. PE-IV PIBTE 403 Professional Elective – IV 4 - - 25 75 100 3 IBTE 206
4. PC Lab-II PIBTP 404 Bioprocess and Genetic Engineering Laboratory - 3 - 40 60 100 2 IBTP 207
5. Seminar PIBTS 405 Seminar - 2 - 100 - 100 1 IBTS 208

Total 12 5 - 215 285 500 12

S e m e s t e r – V

1. OE-I PIBTE 501 Open Elective – I 4 - - 25 75 100 3 IBTE 301
2. OE-II PIBTE 502 Open Elective – II 4 - - 25 75 100 3 IBTE 302
3. Thesis PIBTT 503 Thesis Phase-I - - 4 40 60 100 4 IBTT 303
4. Ind Training PIBTI 305 Industrial Training * - 100 - 100 2 IBTI 304

Total 8 - 4 90 210 300 12

Note: * - Four weeks during the summer vacation at the end of IVth Semester

S e m e s t e r – VI

1. Thesis PIBTT 601 Thesis Phase-II - - 8 40 60 100 13 PIBTT 401

Total - - 8 40 60 100 13

L-Lecture ;P-Practical; T-Thesis; CA-Continuous Assessment; FE-Final Examination
LIST OF PROFESSIONAL ELECTIVES

<table>
<thead>
<tr>
<th>S.No</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Genomics and Proteomics</td>
</tr>
<tr>
<td>2</td>
<td>Food Technology</td>
</tr>
<tr>
<td>3</td>
<td>Statistics for Biotechnologists</td>
</tr>
<tr>
<td>4</td>
<td>Animal and Plant Tissue Culture</td>
</tr>
<tr>
<td>5</td>
<td>Biology of the Immune system</td>
</tr>
<tr>
<td>6</td>
<td>Advanced Microbiology</td>
</tr>
<tr>
<td>7</td>
<td>Research and Research Methodology in Biotechnology</td>
</tr>
<tr>
<td>8</td>
<td>Bioreactor Engineering</td>
</tr>
<tr>
<td>9</td>
<td>Advanced Process Control</td>
</tr>
<tr>
<td>10</td>
<td>Nanobiotechnology</td>
</tr>
</tbody>
</table>

LIST OF OPEN ELECTIVES

<table>
<thead>
<tr>
<th>S.No</th>
<th>Open Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stem Cells in Health Care</td>
</tr>
<tr>
<td>2</td>
<td>Pharmaceutical Technology</td>
</tr>
<tr>
<td>3</td>
<td>Environmental Biotechnology</td>
</tr>
<tr>
<td>4</td>
<td>Advances in Agricultural Biotechnology</td>
</tr>
<tr>
<td>5</td>
<td>Entrepreneurship and Intellectual Property Rights and Biosafety</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
The objective of the course is to enable the students to develop understanding in the basics of Biochemistry and Enzymology.
- To provide basic knowledge on biomolecules and the cell metabolism
- To provide knowledge on enzymes: classification, structure & functions, active site and mechanism
- To provide knowledge on enzyme catalysis and kinetics; enzyme applications

Introduction to biomolecules

Intermediary metabolism
Biosynthesis and degradation of fatty acids and cholesterol, Biosynthesis and degradation of amino acids – General aspects, Removal of amino groups, Urea cycle, Biosynthesis and degradation of purines, pyrimidines and nucleic acids. Glycolysis, gluconeogenesis, Pentose phosphate shunt, TCA cycle, interconnection of pathways, metabolic regulation, Bioenergetics: energy rich compounds, Respiratory chain, TP cycle.

Enzyme kinetics

Enzyme active site and catalysis
Definition of active site – Investigation of active site structure and chemical nature of enzyme catalysis: The identification of binding site and catalytic site, three dimensional structure of active site. General mechanisms of catalysis: strain, proximity, orientation effects. Transition state, stabilization and catalysis. Mechanism of reaction catalyzed by enzyme without cofactor, Metal activated enzyme and metalloenzyme, Coenzymes in enzyme catalyzed reactions.

Applications of enzymes
REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to understand:
1. the role of biomolecules in cellular system and its metabolic activities
2. the structure and functions of various enzyme groups and its catalytic mechanism
3. and implement the application of enzymes in industries using different reactor models

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
</tbody>
</table>

IBTC 102 | CELL AND MOLECULAR BIOLOGY |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
- To enable the students to understand the knowledge about the cellular organelles and its functions, transport systems, mutation & repair mechanism, transcription & translation and cell signalling mechanism.

Introduction
The cell: A macromolecular assembly, Cellular compartmentization, Organellar architecture. The Nucleus: Chromosomal DNA and its packaging, the global structure of Chromosomes, Chromosome replication, Organization and evolution of the nuclear genome, Cytoskelton. Organization of the bacterial chromosome, organization of eukaryotic chromosome,

Cell junctions and transport system

DNA replication, Mutation, repair and recombination
recombination in eukaryotes, site specific recombination, transposition-transposase—replicative transposition, non-replicative transposition.

Transcription, splicing and translation

Cell signaling and cell cycle
Cell signaling: general principles of cell signaling, signaling via G-protein linked cell surface receptors, signaling via enzyme linked cell surface receptors, Tyrosine kinase receptors, Second messengers, Cell cycle and division: The general strategy of the cell cycle, The mechanism of cell division, The early embryonic cell cycle, in yeasts and multicellular Animals. Cancer: Cancer as a micro evolutionary process, Tumor cells, Proto—oncogenes and viral oncogenes, Tumor suppressor genes.

REFERENCES:
2. Molecular biology by David freifelder
3. Molecular biology- Baltimore
6. The Cell by Cooper, ASM Press

COURSE OUTCOMES:
After learning the course the students will be able to
1. Know the system of cellular organelles and its functions
2. Understand the transport system followed in cellular organelles
3. Understand the mutation and repairing mechanism, cell cycle and cell signalling system

<table>
<thead>
<tr>
<th>CoS</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To enable the students to understand the knowledge about the analytical techniques used in various molecular biology applications: microscopy, spectroscopy, chromatography, electrophoretic, radioisotope technique, protein separation and biomedical instrumentation.

Microscopy
Light microscopy, phase contrast microscopy, fluorescence microscopy, dark field microscopy, electron microscopy (SEM & TEM) Laser confocal microscopy and digital image analysis

Spectroscopy
Traditional Spectrophotometer, Diode Array Spectrophotometer Absorption Spectrophotometer, Fluorescence Spectrometer, Spectrofluorimetry, IR, Raman, UV, visible spectroscopy and mass spectroscopy.

Chromatography and Electrophoresis
Adsorption chromatography, partition chromatography, gas chromatography, ion exchange chromatography, gel filtration chromatography, affinity chromatography, HPLC, FPLC, Gel Electrophoresis, (Agarose & SDS- PAGE), Isoelectric focusing, 2D Gel electrophoresis, Pulse-field Gel electrophoresis, Southern, Northern, and Western Blotting.

Radioisotope techniques
Autoradiography, Radioimmuno assay (RIA), ELISA RIA, Radioreceptor assay (RRA), Liquid Scintillation counter, nature of radioactivity, detection, measurements, counters, safety aspects

Isolation, Separation and Detection of Proteins
Protein separation and Detection- Gel electrophoresis, Coomassie blue staining, gel drying, ELISA and western blotting Immunocytochemistry and immunoflorescence.

Biomedical Instrumentation
Electrocardiography (EKG), Electromyography (EMG), Electro-occulography (EOG), Electroencephalography (EEG), Other physiological measurements, Phonocardiogram Respiratory Measurements, Sphygmomanometry, Temperature, Photoplethysmography Data Acquisition & Telemetry.

REFERENCES:
3. Carr, Joseph J. and John M. Brown., Introduction to Biomedical Equipment Technology.

COURSE OUTCOMES:
After learning the course the students will be able to
1. Handle and use different microscopy to study the microbial structures
2. Apply the spectrophotometric and chromatographic principles in biomolecule assays
3. Use radioisotope techniques for immune assays
4. Isolate and quantify proteins and familiar with biomedical instrumentations

| Mapping with Programme outcomes |
|-----|-----|-----|-----|-----|-----|-----|
| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1 | ✓ | ✓ | | | | |
| CO2 | ✓ | ✓ | ✓ | | | |
| CO3 | ✓ | | ✓ | | | |
| CO4 | ✓ | | | | | |

IBTC 104 BIOINFORMATICS

COURSE OBJECTIVES:
- To educate the students in application of software tools for the identification of microbial species
- To provide knowledge on sequence analysis in microbial identification
- To provide knowledge in application of software tools for structure related analysis and data array of biomolecules

Sequence-alignment related problems
Sequence databases; Similarity matrices; Pairwise alignment; BLAST; Statistical significance of alignment; Sequence assembly; Multiple sequence alignment; Clustal; Phylogenetics: distance based approaches, maximum parsimony.

Pattern analysis in sequences
Motif representation: consensus, regular expressions; PSSMs; Markov models; Regulatory sequence identification using Meme; Gene finding: composition based finding, sequence motif-based finding.

Structure-related problems
Representation of molecular structures (DNA, mRNA, protein), secondary structures, domains and motifs; Structure classification (SCOP, CATH); Visualization software (Pymol, Rasmol etc.); Experimental determination of structures (X-ray crystallography, NMR); Structure databases; Secondary structure prediction; RNA structure prediction; Mfold; Protein structure prediction by comparative modelling approaches (homology modelling, threading); Ab initio structure prediction: force fields, backbone conformer generation by Monte Carlo approaches, side-chain packing; Energy minimization; Molecular dynamics; Rosetta; Structure comparison (DALI, VAST etc.); CASP; Protein-ligand docking; Computer-aided drug design (pharmacophore identification); QSAR; Protein-Protein interactions.
System-wide analyses
Transcriptomics: Microarray technology, expression profiles, data analysis; SAGE; Proteomics: 2D gel electrophoresis; Mass Spectrometry; Protein arrays; Metabolomics: 13C NMR based metabolic flux analysis.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. Use software tools for identification of newly isolated microbial species
2. Analyse the sequence of biomolecules (DNA, RNA, Proteins) related structure-function relationships
3. Apply software tools for array of data of biomolecules of different species

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Po1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

IBTP 107 MICROBIOLOGY AND BIOCHEMISTRY LABORATORY L T P
0 0 3

COURSE OBJECTIVES:
- Transfer living microbes using aseptic technique
- Demonstrate proficiency and use of streak plate isolation technique; bacterial staining techniques; wet mounts; and proper culture handling
- Visually recognize and explain the macroscopic and microscopic characteristics of fungi, protozoa, and bacteria
- Understand and explain environmental factors that influence microbes
- Properly obtain, culture, identify, and explain microorganisms in environmental cultures

Microbiology
1. Maintenance and identification of microorganisms.
2. Biochemical Characterization
3. Methods of quantification of microorganisms from soil, air and water.
4. Fermentation: growth curve, shake flask bioreactor, importance including off - gas analysis.

Biochemistry
2. Adsorption chromatography
3. Ion Exchange chromatography
4. Electrophoresis in Agarose and SDS gels
5. Membrane separation of proteins
6. Extraction of lipids from liver (normal and fatty) and thin layer chromatography
7. Estimation of carbohydrates-glucose and starch
8. Estimation of proteins and nucleic acid

REFERENCES:
3. Collins and Lyne, Microbiological Methods, Butterworths, Singapore (1986), 5th Ed.

COURSE OUTCOMES:
1. Students will be able to successfully perform protocols of a number of biochemical and microbiological procedures
2. Develop laboratory skills and be conversant with techniques and equipment

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
</tbody>
</table>

IBTC 201 GENETIC ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
- To enable the students to understand the basic concepts of genetic engineering by introducing the following the tools used in recombinant DNA technology: cloning and expression of genes, DNA library, DNA sequencing, PCR technique and gene transfer and gene therapy

Cloning and expression of genes
Overview of Restriction and Modification system, Restriction endonucleases, Cloning vehicles: Plasmids – Host range, Copy number control, Compatibility, λ phage, lytic and lysogenic lifecycle, Insertional and Replacement vectors, in vitro packaging, Single strand DNA vector – M13 Phage, Cosmids, Phasmids, PAC, BAC and YAC. Expression vector – Characteristics, RNA probe synthesis, High level expression of proteins, Protein solubilization, purification and export.

Construction of DNA libraries
DNA sequencing and analysis of gene expression
DNA sequencing – Importance, Chemical & Enzymatic methods, Pyrosequencing, Automated sequence, Genome sequencing methods – top down approach, bottom up approach.

PCR and mutagenesis

Gene transfer & gene therapy

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. perform the recombinant technique to improve the strains for specific applications
2. develop skills in cloning and expression of genes in host cells
3. expertise in applying PCR tools in molecular biology techniques

<p>| Mapping with Programme outcomes |</p>
<table>
<thead>
<tr>
<th>Cos</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

IBTC 202 BIOPROCESS ENGINEERING

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVE:
- To enable the students to understand the concepts of fermentation technology applied to industrial processes for making products: fermenters, reaction kinetics, media formulation, utilization of microbial cultures, design aspects of bioreactors

Overview
Overview of fermentation industry, general requirements of fermentation processes, basic configuration of fermenter and ancillaries, main parameters to be monitored and controlled in fermentation processes.
Reaction kinetics
Types of reaction, order of reaction, Michealis-Menten constant, effect of temperature on reaction rate, activated complexes, catalysed reactions, thermal death of micro organisms, enzyme inhibition. Fermentation Kinetics: Continuous fermentation, advantages and limitations, theory of single and two stage continuous fermentation systems application.

Media formulation
Media formulation and preparations-complex and synthetic media, Selection of components, buffers, pH adjustment. Media and air- Batch and Continuous In-situ sterilization in fermenter.

Microbial culture
Isolation, selection and improvement of cultures – screening methods, culture preservation, strain improvement. Aseptic culture transfer and incubation, inoculum age/size, studies on growth kinetics in batch, continuous and fed batch cultures. Details of Industrial manufacture of important biotechnological products.

Bioreactors
Ideal bioreactors, various configurations, Mechanical construction, various parts and accessories - Introduction to Mass and Heat transfer: Agitation and aeration, Modes of reactor operations.

Industrial fermentations
Details of the process parameters and materials for the industrial manufacture of Antibiotics, solvents, amino acids, organic acids and Biopharmaceuticals.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. Apply the knowledge of fermentation technology in industrial processes
2. Handle and utilize microbial systems for biological reactions for making products
3. Design and use of reactor systems for bioprocesses

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

25
COURSE OBJECTIVES:
- To make the student to understand the basics of bioseparation techniques
- To make them to understand the engineering principles of solid-liquid separation and cell distribution
- To make them to understand the fundamentals of chromatography and its application in biomolecules separation
- To make the students to learn about the final polishing operations in bio-products separation with case studies

Introduction to bioseparation
Characterization of biomolecules and fermentation broth. Guidelines to recombinant protein purification.

Solid-liquid separation and cell disruption

Concentration and purification
Liquid-liquid extraction – theory and practice with emphasis on aqueous two phase extraction. Solid liquid extraction. Precipitation techniques using salt and solvent. Separation by ultrafiltration, Dialysis, Electrophoresis

Chromatography
Theory, practice and selection of media for – Gel filtration chromatography, Ion exchange chromatography, Hydrophobic interaction chromatography, reverse phase chromatography, Affinity chromatography – Metal affinity chromatography, dye affinity chromatography, immunosorbent affinity chromatography & Expanded bed chromatography. Scale up criteria for chromatography, calculation of no of theoretical plates and design

Final polishing and case studies
Freeze drying, spray drying and crystallization. Purification of cephalosporin, aspartic acid, Recombinant Streptokinase, Monoclonal antibodies, Tissue plasminogen activator, Taq polymerase, Insulin.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. implement various separation techniques in downstream operations of fermentation processes
2. Apply the principles of extraction and chromatography in various biomolecules separation for quality and quantity assays

<table>
<thead>
<tr>
<th>Programme outcomes</th>
<th>CO1</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PO1</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PO3</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PO4</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PO5</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Course Objectives:
- To introduce the fundamental aspects of modeling of various biological systems.
- To address the various modeling paradigms, based on the level of detail, the extent of data available as well as the question the model must address.
- To outline the applications of such modeling techniques.

Modeling of Biological Systems
Modeling Principles, model development from first principles. Modeling approaches for Biological systems – structured and unstructured systems; Compartment models; Deterministic and stochastic approaches for modeling structured systems.

Modelling of Diffusion Systems (Biofilm and Immobilized Enzyme Systems)
External mass transfer, internal diffusion and reaction within biocatalysts, derivation of finite model for diffusion-reaction systems, dimensionless parameters from diffusion-reaction models, the effectiveness factor concept, case studies; oxygen diffusion effects in a biofilm, biofilm nitrification.

Modeling Bioreactor
Bioreactor modelling: Ideal and non-ideal bioreactors; Stirred tank models; characterization of mass and energy transfer distributions in stirred tanks, Tower Reactor Model; Flow modeling, bubble column flow models, mass transfer modeling, structured models for mass transfer in tower reactors, process models in tower reactors, airlift models.

Linear System Analysis
Study of linear systems, linearization of non-linear systems; Simulation of linear models using MATLAB; Parameter estimation and sensitivity analysis; Steady state and unsteady state systems; stability analysis; Case study of recombinant protein production.

Hybrid and other Modeling Techniques
Advanced modeling techniques such as fuzzy logic, neural network, hybrid systems and fuzzy logic systems; case studies.

References:
COURSE OUTCOMES:
After learning the course the student will be able to
1. Apply the basics of modelling of biological systems in different reactor models
2. Apply the knowledge of MATLAB programming in solving biological problems
3. Apply the knowledge of hybrid modelling techniques in solving complex problems

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

IBTP 207 | BIOPROCESS AND GENETIC ENGINEERING LABORATORY | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To develop practical skills in microbial fermentation techniques
- To evaluate enzyme kinetics
- To carry out enzyme immobilized reaction
- To develop practical skills in solid substrate fermentation
- To familiarize molecular biology techniques for develop recombinant strains

List of Experiments

Bioprocess laboratory
1. Growth kinetics of bacteria, Actinomycetes and Fungi
2. Fermentation studies – batch, controlled run, fed-batch and continuous cultivation.
3. RTD and Performance Studies of Bio Reactors
4. Solid- state fermentation techniques
5. Immobilization – studies with conventional enzymes and plant based active principles.
6. Kinetics – study for conversion of glucose to ethanol
7. Polyethylene glycol studies for product recovery.
8. Sedimentation and Filtration - Principles and practical applications.
10. Analytical techniques for estimation of ethanol, glutamate, acetate and other metabolites.

Genetic engineering laboratory
1. Genome isolation
2. DNA isolation and determination
3. RNA isolation
4. Agarose gel electrophoresis
5. SDS-PAGE
6. PCR amplification
7. Cloning, recombinant techniques

REFERENCES:
1. Collins and Lyne, Microbiological Methods, Butterworths, Singapore (1986), 5th Ed.

COURSE OUTCOMES:
1. Student can able to perform fermentations for production of various bio-products
2. Student can well-verse with molecular biology techniques and can apply for strain developments

| Mapping with Programme outcomes |
|-------------------------------|-----|-----|-----|-----|-----|
| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1 | √ | | √ | | | |
| CO2 | | | √ | √ | | |

IBTT 303 | THESIS PHASE – I |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To introduce the students for searching research problems
- To make the students to prepare various methodologies for experimentation to pursue their researches in the selected fields

COURSE OUTCOMES:
After learning the course, the students should be able to
1. Collect informations through literature survey
2. The students could able to design research methodologies in any related fields of applied biotechnological processes

| Mapping with Programme outcomes |
|-------------------------------|-----|-----|-----|-----|-----|
| Cos | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1 | √ | | √ | √ | | |
| CO2 | √ | √ | √ | √ | | |

IBTI 304 | INDUSTRIAL TRAINING |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To train the students in the field work related the Industrial Biotechnology and to have a practical knowledge in carrying out Industrial Biotechnology field related works.
- To train and develop skills in solving problems during execution of certain works related to Industrial Bio Technology.
The students individually undergo a training program in reputed concerns in the field of Process Control and Instrumentation during the summer vacation (at the end of second semester for full – time / fourth semester for part – time) for a minimum stipulated period of four weeks. At the end of the training, the student has to submit a detailed report on the training they had, within ten days from the commencement of the third semester for Full-time / fifth semester for part-time. The students will be evaluated by a team of staff members nominated by head of the department through a viva-voce examination.

COURSE OUTCOMES
1. The students can face the challenges in the practice with confidence.
2. The student will be benefited by the training with managing the situation arises during the execution of works related to Industrial Biotechnology.

<table>
<thead>
<tr>
<th>IBTT 401</th>
<th>THESIS PHASE - II</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To make the students to take any challenges and to find the solutions through the research skills
- To make the students to learn and develop the research skills in the area of biotechnological applications in various fields
- To make the students to empathize in experimentations and to prepare thesis report in specified field of research undertaken

The thesis work on a specialized topic in industrial biotechnology, already selected in the Third Semester will be continued in the fourth semester. A report must be submitted at the end of the Fourth semester and there will be a Viva Voce examination on the thesis.

COURSE OUTCOMES:

After completing the course, the students should be able to
1. Take up any research problem and could be attempted with proper methodologies and experimentations
2. To expertise in experimental designs and interpretation of the data
3. To prepare the project reports with standard procedures

```
<table>
<thead>
<tr>
<th>Co1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co2</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co3</td>
<td></td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

30
PROFESSIONAL ELECTIVES

<table>
<thead>
<tr>
<th>IBTE XXX</th>
<th>GENOMICS AND PROTEOMICS</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To enable the students to know about the sequence of gene and protein of different microbial species, genome of microbes, mapping techniques, functional genomics, protein sequencing and analysis and protein profiling

Overview of genomes
Genomes of Bacteria, archaea and eukaryota

Genome mapping and sequencing techniques
Cytogenetic, genetic and physical, mapping techniques. Molecular markers for mapping. Genome sequencing; placing small fragments on map; STS assembly; gap closure; pooling strategies. Top down and bottom up approach; linking and jumping of clones.

Functional genomics
Gene finding; annotation; ORF and functional prediction; Subtractive DNA library screening; differential display and representational difference analysis; SAGE; TOGA.

Proteomics techniques
Protein level estimation; Edman protein microsequencing; protein cleavage; 2D gel electrophoresis; metabolic labeling; detection of proteins on SDS gels; pattern analysis; Mass spectrometry- principles of MALDI-TOF; Tandem MS-MS; Peptide mass fingerprinting.

Protein profiling
Post translational modification; protein-protein interactions; Yeast 2 Hybrid system; glycoprotein analysis; phosphoprotein analysis; Protein arrays and Protein chips.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. Apply the knowledge of genome and physical mapping of microbes for various fields of applications
2. Use the tools to identify the functional regions of genome for recombinant applications
3. Apply the techniques of protein separation and protein profiling in specific enzymatic applications
COURSE OBJECTIVES:
To make the students
- To study the importance and significance of microorganisms related to food.
- to aware the knowledge about various food preservation techniques used in different food products

Importance and significance of microorganisms in food science. Micro-organisms importance in food – Factors affecting the growth of micro organisms in food – Intrinsic and Extrinsic parameters that affect microbial growth.
Food spoilage: characteristic features, dynamics and significance of spoilage of different groups of foods – Cereal and cereal products, vegetables and fruits, meat poultry and sea foods, milk and milk products, packed and canned foods.

Processing and preservation by heat: Blanching, pasteurization, sterilization and UHT processing, canning, extrusion cooking, dielectric heating, microwave heating, baking, roasting and frying. Retort processing of Ready to eat (RTE) products. Drying – water activity, microbial spoilage due to moisture. Dehydration of fruits, vegetables, milk, animal products Newer methods of thermal processing – batch and continuous.

Processing and preservation by low Temperature and irradiation – refrigeration, freezing and dehydrofreezing. Food irradiation, history and mechanism, the electro-magnetic spectrum, forms of radiant energy. Principles of using electromagnetic radiation in food processing. ionizing radiations and non ionizing radiations, advantages and disadvantages. Controlling undesirable changes in food during irradiation.

Processing and preservation by drying, concentration and evaporation : Various methods employed in production of dehydrated commercial products , selection of methods based on characteristics of foods to be produced, advantages and disadvantages of different methods, sun-drying , tray drying, tunnel drying , spray drying , drum drying , freeze drying and fluidized bed drying. Physical and chemical changes during drying control of chemical changes, desirable and undesirable changes. Packaging and storage of dehydrated products. Ultra-filtration, reverse osmosis, Freeze drying and freeze concentration.

REFERENCES:

COURSE OUTCOMES:
1. Students will understand the role of microorganisms on food materials.
2. Acquire knowledge about the microorganisms associated with spoilage of various food products.
3. Apply the knowledge of suitable preservation techniques in storage of specific food materials.
4. To know about various food processing operations.

<table>
<thead>
<tr>
<th>COS</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
To make the students to understand
- the data characteristics and form of distribution of data structure
- the exact method of data analysis for the problem under investigation
- and to draw valid inferences and to plan for future investigations

Introduction

Distribution
Bivariate distribution-conditional and marginal distribution-Discrete distribution-Binomial, Poisson, geometric distribution-Continuous distribution, Normal, exponential and negative exponential, gamma distributions-simple problems-properties.

Correlation
Correlation coefficient, properties-problems-Rank correlation-Regression equation problems-
curve fitting by the method of least squares-fitting curves of the form ax+b, ax^2+bx+c, abx and axb- Bivariate correlation application to biological problems.

Sampling

Concept of sampling-Methods of sampling-sampling distributions and Standard Error-Small samples and large samples-Test of hypothesis-Type I, Type II Errors-Critical region-Large sample tests for proportion, mean-Exact test based on normal, t, f and chi-square distribution-problems-Test of goodness of fit.

Basic principles of experimentation-Analysis of variance-one-way, Two-way classifications-Randomised block design, Latin square design-problems.

REFERENCES:

COURSE OUTCOMES:

After learning the course the student will be able to

1. Understand and apply the knowledge of statistical techniques in the analysis of biological data.
2. Apply the fundamental ideas of statistical tools for data analysis, interpretation and inference based on experimental data collected from the conduct of biological experiments.
3. Use the sampling techniques and regression analysis in bio problems for development of correlations of the system

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
</tbody>
</table>

IBTE XXX

<table>
<thead>
<tr>
<th>ANIMAL AND PLANT TISSUE CULTURE</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To make the students to understand and apply the knowledge of cell and animal culture techniques in the production of vaccines and drugs and for crop improvements
Introduction
Basic cell culture techniques, Types of cell culture media; Ingredients of media; Physiochemical properties; CO2 and bicarbonates; Buffering; Oxygen; Osmolarity; Temperature; Surface tension and foaming; Balance salt solutions; Antibiotics growth supplements; Sterilization.

Tissue culture
Different tissue culture techniques; Types of primary culture; Chicken embryo fibroblast culture; Chicken liver and kidney culture; Secondary culture; Trypsinization; Cell separation; Continuous cell lines; Suspension culture; Organ culture etc.; Behavior of cells in culture conditions: division, growth pattern, metabolism of estimation of cell number; Development of cell lines;

Cell cloning and selection; Transfection and transformation of cells; Commercial scale production of animal cells, stem cells and their application; Application of animal cell culture for in vitro testing of drugs; Testing of toxicity of environmental pollutants in cell culture; Application of cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins.

Plant tissue culture

Explant selection, sterilization and inoculation; Various media preparations; MS, B5, SH PC L-2; Callus and cell suspension culture; Induction and growth parameters; Chromosomal variability in callus culture. Plant regeneration from embryo, meristem and callus culture. Androgenesis: Anther and pollen culture; Isolation and culture of protoplasts.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students will be able to
1. Apply the knowledge of animal cell culture techniques in producing animal cells for medical and human applications
2. Develop new vaccine for therapeutic applications
3. Develop new plant cells for producing hybrids and for crop improvements

<table>
<thead>
<tr>
<th>Cos</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>C02</td>
<td>√</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 3</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:
- To introduce the fundamental aspects of immune system
- To address the various cell immune system
- To outline the Tumor Immunology, AIDS and other immunodeficiencies

Introduction

Antibody
Antibody structure and function, antigen and antibody interactions, Major histocompatibility complex, HLA. Generation of antibody diversity and complement system.

Cells of immune system

Immune response and regulation
Antigen processing and presentation, generation of humoral and cell mediated immune responses, cytokines and their role in immune regulation, T- cell regulation, MHC-regulation, Immunological tolerance, Hypersensitivity, Autoimmunity, Immunosenescence. Transplantation, Immunity to infectious agents (intracellular parasites, helimenths& viruses,) Tumor Immunology, AIDS and other immunodeficiencies. Immuno techniques- Generation of monoclonal and polyclonal antibodies, Hybridoma Technology and Monoclonal Antibodies.

REFERENCES:
1. Roitt. I. M., Essentials of Immunology.
2. Kuby J., Immunology (V or VI edition).
3. Advanced Immunology (1991) Male D., Champion B. Cooke A. and Owen M.
4. Principle and practice of Immunoassay (Ilnded.) Christopher P. Price and David J.

COURSE OUTCOMES:
After learning the course the students will be able to:
1. Apply the basics of immune system in immunology assays
2. Carryout immunological techniques in industry
3. Apply the concept of hybridoma technology and monoclonal antibodies
COURSE OBJECTIVES:
- To introduce new approaches to bacterial taxonomy
- To address the various fermentation methods
- To outline the biodeterioration control and soil

New approaches to Bacterial taxonomy, determination and significance of DNA Base composition, nucleic acid hybridization, RNA fingerprinting, bacterial phylogeny.

Metabolic diversity of aerobic heterotrophs – mechanisms in uptake of substrates Entner-Doudoroff pathway, sugar degradation via Pentose Phosphate cycle, methyl glyoxal bypass, diversity in energy metabolism.

Bacterial Fermentation – Alcohol fermentation, lactate fermentation, butyrate&butanol – acetone fermentation, Anaerobic food chains; Chemolithotrophic and phototropic metabolism.

Degradation of natural substances – Cellulose degradation, microbial conversion in the rumen, xylan degradation, degradation of starch, fructans, mannanspectin, agar, chitin, lignin; formation of humus, utilization of hydrocarbons – methane, ethane, propane, butane, aromatic hydrocarbons, xenobiotics.

Biodeterioration control and soil, waste and water management – Indicator microorganisms, fouling biofilms, treatment of solid waste, landfills, composting, treatment of liquid waste, biological oxygen demand.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Apply the knowledge of microbiology for RNA finger printing
2. Understand knowledge about fermentation methods
3. Apply the concept of BOD ,treatment of solid waste
Mapping with Programme outcomes

<table>
<thead>
<tr>
<th>Co</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co 3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IBTE XXX

<table>
<thead>
<tr>
<th>RESEARCH AND RESEARCH METHODOLOGY IN BIOTECHNOLOGY</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To develop understanding of the basic framework of research process.
- To understanding of various research designs and techniques
- To develop an understanding of the ethical dimensions of conducting applied research.

Research and its methodologies (With examples)

Objectives of research, research process – observation, analysis, inference, hypothesis, axiom, theory, experimentation, types of research (basic, applied, qualitative, quantitative, analytical etc). Features of translational research, the concept of laboratory to market (bench to public) and Industrial R&D.

Research in biotechnology – an overview

Biological systems and their characteristic. Type and outcome of research, Exploratory and product-oriented research in various fields of biotechnology (health, agri, food, industrial etc) – types of expertise and facilities required. Interdisciplinary nature of biotech research, sources of literature for biotech research.

Experimental research: basic concepts in design and methodology

Precision, accuracy, sensitivity and specificity; variables, biochemical measurements, types of measurements, enzymes and enzymatic analysis, antibodies and immunoassays, instrumental methods, bioinformatics and computation, experimental planning – general guidelines.

Results and analysis

Importance and scientific methodology in recording results, importance of negative results, different ways of recording, industrial requirement, artifacts versus true results, types of analysis (analytical, objective, subjective) and cross verification, correlation with published results, discussion, outcome as new idea, hypothesis, concept, theory, model etc.

Scientific and technical publication

Different types of scientific and technical publications in the area of biotechnology, and their specifications, Ways to protect intellectual property – Patents, technical writing skills, definition and importance of impact factor and citation index - assignment in technical writing.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Develop testable hypotheses, differentiate research design and/or statistics, evaluate aptness of research conclusions, and generalize them appropriately
2. Design and conduct quantitative or qualitative research studies in laboratory or field settings.
3. Use research data to formulate or evaluate new research questions, using reason and persuasion in a logical argument

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cos</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To acquire basic understanding of transport process in bioreactor
- To understanding design procedures for commonly used process parameter
- To develop an understanding of the design and analysis of biological reactors

Transport process in bioreactor
Gas-liquid mass transfer in cellular systems, determination of oxygen transfer rates, mass transfer for freely rising or falling bodies, forced convection mass transfer, Overall kla estimation and power requirements for sparged and agitated vessels, mass transfer across free surfaces, other factors affecting kla, non Newtonian fluids, Heat transfer correlations, thermal death kinetics of microorganisms, batch and continuous heat, sterilisation of liquid media, filter sterilisation of liquid media, Air. Design of sterilisation equipment batch and continuous.

Monitoring of bioprocesses
On-line data analysis for measurement of important physico-chemical and biochemical parameters; Methods of on-line and off-line biomass estimation; microbial calorimetry; Flow injection analysis for measurement of substrates, product and other metabolites; State and parameter estimation techniques for biochemical processes. Case studies on applications of FIA and Microbial calorimetry.

Modern biotechnological processes
Recombinant cell culture processes, guidelines for choosing host-vector systems, plasmid stability in recombinant cell culture, limits to over expression, Modelling of recombinant bacterial cultures; Bioreactor strategies for maxmising product formation; Case studies on high cell density cultivation and plasmid stabilization methods. Bioprocess design
considerations for plant and animal cell cultures. Analysis of multiple interacting microbial populations – competition: survival of the fittest, predation and parasitism: Lotka Volterra model.

Design and analysis of biological reactors

Ideal bioreactors-batch, fed batch, continuous, cell recycle, plug flow reactor, two stage reactors, enzyme catalyzed reactions. Reactor dynamics and stability. Reactors with non ideal mixing. Other types of reactors- fluidized bed reactors, packed bed reactors, bubble column reactors, trickle bed reactors.

Scaleup of reactors

Scaleup by geometry similitude, oxygen transfer, power correlations, mixing time.

REFERENCES:

3. Lee, James M. Biochemical Engineering, PHI, USA.

COURSE OUTCOMES:

After learning the course the students should be able to

1. Apply the basics of process equipment design and its important parameters
2. Design reactor vessels for a specific bioprocess/fermentation industry
3. Able to apply the concept of design and analysis of biological reactors

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBTE XXX</th>
<th>ADVANCED PROCESS CONTROL</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

- To acquire basics of feedback control system
- To understanding the analysis and control of advanced control systems
- To develop an automatic controllers

Analysis and design of feedback control system

Dynamic behaviour, stability analysis, design of feedback controllers, design of feedback control systems using frequency response techniques, PID controller for multicapacity processes.

Optimum controller setting

Optimum settings from the plant response, continuous cycling method, damped oscillation method, reaction curved method.
Analysis and control of advanced control systems
Feedback control of systems with large dead time, control systems with multiple loops, feed forward and ratio control, adaptive and inferential control systems.

Automatic controllers
Electronic, controllers, operational amplifiers, electronic controller input and output, PID and on-off control models, microprocessors, general architecture, algorithms, applications in chemical process control.

Process control using digital computers:
Characteristics and performance of control computers, signals-types, signal transmission, analog feedback control systems. The direct digital control concept, advantages of DDC, computer process interface for data acquisition and control, computer control loops.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Apply the basics of process control
2. Apply the knowledge of control of advanced control systems
3. Apply the concept of process control in biotechnology

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

IBTE XXX | NANOBIO TECHNOLOGY | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To provide fundamental concepts of nanotechnology
- To understanding the advanced knowledge on the application of nanotechnology to biological sciences
- To update knowledge about nanodrug delivery and nanomedicine.

Nanoscale and nanobiotechnology
Introduction to Nanoscience and Nanotechnology; Milestones in Nanotechnology; Overview of Nanobiotechnology and Nanoscale processes; Physicochemical properties of materials in Nanoscales.
Abrication and characterization of nanomaterials
Types of Nanomaterials (Quantum dots, Nanoparticles, Nanocrystals, Dendrimers, Buckyballs, Nanotubes); Gas, liquid, and solid –phase synthesis of nanomaterials; Lithography techniques (Photolithography, Dip-pen and Electron beam lithography); Thin film deposition; Electrospinning. Bio-synthesis of nanomaterials.

Properties and measurement of nanomaterials
Optical Properties: Absorption, Fluorescence, and Resonance; Methods for the measurement of nanomaterials; Microscopy measurements: SEM, TEM, AFM and STM. Confocal and TIRF imaging.

Nanobiology and bioconjugation of nanomaterials
Properties of DNA and motor proteins; Lessons from nature on making nanodevices; Reactive groups on biomolecules (DNA & Proteins); Surface modification and conjugation to nanomaterials. Fabrication and application of DNA nanowires; Nanofluidics to solve biological problems.

Nano drug delivery and nanomedicine
Properties of nanocarriers; drug delivery systems used in nanomedicine; Enhanced Permeability and Retention effect; Blood-brain barrier; Active and passive targeting of diseased cells; Health and environmental impacts of nanotechnology.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Apply the basics of nanotechnology in biotechnology
2. Apply the knowledge of measurement of nanomaterials in biotechnology
3. Able to apply the concept of nanobiology

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO 3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPEN ELECTIVES

<table>
<thead>
<tr>
<th>IBTE XXX</th>
<th>STEM CELLS IN HEALTH CARE</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To strengthen the knowledge of students on stem cell basics and their applications for the benefit of mankind.
- To impart knowledge about stem cell and stem cell signaling
- To understand cell based gene therapy and benefits to human.

Stem cells
Introduction: Tissue organization - Stem cells - Sources - Unique properties of stem cells - classification - Embryonic stem cells-adult stem cells - similarities and differences between adult and embryonic stem cells – Functional characterization.

Embryonic stem cells

Adult stem cells
Somatic stem cells-test for identification of adult stem cells- adult stem cell differentiation-trans differentiation-plasticity-different types of adult stem cells-liver stem cells-skeletal muscle stem cells-bone marrow derived stem cells – Stem cell specific transcription factors - Induced pluripotent cells.

Cancer stem cell signaling

Stem cells in tissue engineering

REFERENCES:
COURSE OUTCOMES:
After learning the course the students should be able to
1. Understand the applications of Embryonic stem cells
2. Understand the adult stem cells
3. Understand the stem cells in tissue engineering

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 PO1 PO2 PO3 PO4 PO5 PO6</td>
</tr>
<tr>
<td>CO1 √</td>
</tr>
<tr>
<td>CO2 √</td>
</tr>
<tr>
<td>CO3 √</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To understand the role of patents in the drug industry
- To understand the pharmacokinetics and pharmacodynamic principles
- To understand the concept of advanced drug delivery systems

Introduction
History of pharmaceutical industry, Drugs discovery and Development phases; Drugs and Cosmetics ACT and regulatory aspects; Definition: Generics and its advantages; Biogenerics and Biosimilars; The role of patents in the drug industry; Protein-based biopharmaceuticals; International Non-proprietary Names (INN) nomenclature system biosimilars regulation.

Dosage form: science, pharmacokinetics and pharmacodynamics
Definition of Dosage forms, Classification of dosage forms (solid unit dosages – Tablets, capsules; liquids – solutions, lotions, suspension etc; semi-solid – ointments, creams, gel, suppositories, etc; Parenterals, Aerosols etc), Introduction to pharmacokinetics and pharmacodynamic principles (factors affecting the ADME process); bioavailability, bioequivalence.

Drug delivery and characterisation of biogeneric recombinants
Advanced drug delivery systems – controlled release, transdermals, liposomes and drug targeting. Approaches to the characterization of biosimilars; Problems in characterizing biologics (Types of biologic, Peptides, Non-glycosylated proteins, Glycosylated proteins, Monoclonal antibodies); Equivalence issues; Post-translational modifications; Effect of microheterogeneity.

Pharmacology principles, classification of drugs and mechanism
Understanding principles of pharmacology, pharmacodynamics Study of a few classes of therapeutics like laxatives, antacids and drugs used in peptic ulcers, drugs used in coughs and colds, analgesics, contraceptives, antibiotics (folate inhibitors, protein synthesis inhibitors, DNA inhibitors), hormonal agonists and antagonists.

Case studies on biopharmaceutical product development
Erythropoietin, Insulin, Somatotropin, Interleukin-2, Interferon Granulocyte- macrophage CSF, Factor VIIa, Factor IX, Factor VIII, Tissue plasminogen activator, Monoclonal antibodies and engineered Mabs
REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Understand the students about the drug discovery and development phases
2. Understand on the drug delivery and characterisation of biogeneric recombinants
3. Update knowledge about various biopharmaceutical product development

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co5</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IBTE XXX</th>
<th>ENVIRONMENTAL BIOTECHNOLOGY</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To understand the scientific and engineering principles of microbiological treatment technologies to clean up contaminated environments.
- To understand the advancements in biotechnological field such as molecular biology and genetic engineering strategies
- To make them understand the paves the way for the alternate sources of energy to avoid environmental issues.

Microbial flora of soil, Ecological adaptations, Interactions among soil microorganisms, biogeochemical role of soil microorganisms. Biodegradation, Microbiology of degradation and its mechanism, Bioaugmentation, Biosorption, Biodegrading, Bioremediation- Types of Bioremediation, Bioreactors for Bioremediation, Metabolic pathways for Biodegradation for specific organic pollutants.

Pollution- Sources of pollutants for Air, Water (ground water, marine), Noise, Land and its characteristics- Pollution control and management- Environmental monitoring & sampling, Physical, chemical and biological methods and analysis- Air pollution- control and treatment strategies. Modes of Biological treatment methods for wastewater- aerobic digestion, anaerobic digestion, Anoxic digestion, the activated sludge process, Design and modeling of activated sludge processes, Aerobic digestion, Design of a trickling biological filter, Design of anaerobic digester.

Molecular biology tools for Environmental management, rDNA technology in waste treatment, Genetically modified organisms in Waste management, Genetic Sensors, Metagenomics, Bioprospecting, Nanoscience in Environmental management.

Phytoremediation for heavy metal pollution, Biosensors development to monitor pollution. Alternate Source of Energy, Biomass as a source of energy, Biocomposting, Vermiculture, Biofertilizers, Organic farming, Biofuels, Bimineralization, Bioethanol and Biohydrogen, Bioelectricity through microbial fuel cell, energy management and safety.

REFERENCES:
4. Environmental Biotechnology by Alan Scrag (1999); Longman.

COURSE OUTCOMES:
After learning the course the students should be able to
1. Understand the different sources of pollutants
2. Understand the industrial waste management
3. Understand the air pollution control and treatment strategies.

<table>
<thead>
<tr>
<th>Cos</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

46
COURSE OBJECTIVES:

- To strengthen the knowledge of students on basic techniques and tools in plant tissue culture
- To impart knowledge about biotechnology for crop improvement
- To understand the concept of map based cloning

Biotechnology for Crop Improvement. Conventional methods for crop improvement (Pedegree breeding, Heterosis breeding, Mutation breeding). Tissue culture in crop improvement, Micropropagation for virus-free plants, Somaclonal variation, Somatic hybridization, Haploids in plant breeding,

Genetic engineering for increasing crop productivity by manipulation of Photosynthesis, Nitrogen fixation, Nutrient uptake efficiency. Genetic engineering for biotic stress tolerance (Insects, fungi, bacteria, viruses, weeds). Genetic engineering for abiotic stress (drought, flooding, salt and temperature)

Genetic engineering for quality improvement of Protein, lipids, carbohydrates, vitamins & mineral nutrients, Plants as bioreactor, Molecular breeding, constructing molecular maps, Molecular tagging of genes/traits. Marker-assisted selection of qualitative and quantitative traits. Physical maps of chromosomes. The concept of gene synteny. The concept of map-based cloning and their use in transgenics

REFERENCES:
COURSE OUTCOMES:
After learning the course the students should be able to
1. Undertake propagation of plant in culture and plan commercial production of plants through micropropagation
2. Certify tissue culture raised plants
3. Undertake trade specific modification through plant genetic manipulation and somatic hybridization

Mapping with Programme outcomes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	✔					
CO2		✔				
CO 3			✔			

IBTE XXX ENTREPRENEURSHIP AND INTELLECTUAL PROPERTY RIGHTS AND BIOSAFETY

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:
- To understand the functions and kinds of entrepreneurs
- To understand the IPs of relevance to biotechnology
- To understand the concept of prior art

Entrepreneurship
Definition. Functions and kinds of entrepreneurs. Intrapreneur, Entrepreneurship and economic development, Entrepreneurial competencies and traits, developing competencies. Project identification, selection and financing. Project report - content and significance, Planning Commission’s guidelines for formulating project reports - methods of project appraisals.

Introduction to intellectual
Types of Intellectual property (IP): Patents, Trademarks, Copyright & Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications, Protection of GMOs IP as a factor in R&D; IPs of relevance to Biotechnology Agreements and Treaties. History of GATT & TRIPS Agreement; Madrid Agreement; Hague Agreement; WIPO Treaties; Budapest Treaty; PCT; Indian Patent Act 1970 & recent amendments.

Basics of patents and concept of prior art
Introduction to Patents; Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; Specifications: Provisional and complete; Forms and fees. Invention in context of “prior art”; Patent databases; Searching International Databases; Country-wise patent searches (USPTO, esp@cenet(EPO), PATENT Scope(WIPO), IPO, etc.)

Patenting procedures
National & PCT filing procedure; Time frame and cost; Status of the patent applications filed; Precautions while patenting – disclosure/non-disclosure; Financial assistance for patenting - introduction to existing schemes Patent licensing and agreement Patent infringement meaning, scope, litigation, case studies
Biosafety
Introduction; Historical Backround; Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Biosafety Levels of Specific Microorganisms; Recommended Biosafety Levels for Infectious Agents and Infected Animals; Biosafety guidelines - Government of India; Definition of GMOs & LMOs; Roles of Institutional Biosafety Committee, RCGM, GEAC etc. for GMO applications in food and agriculture; Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication; Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

REFERENCES:

COURSE OUTCOMES:
After learning the course the students should be able to
1. Understand the methods of project appraisals
2. Understand the patenting procedures
3. Understand the biosafety and risk assessment methods

<table>
<thead>
<tr>
<th>Mapping with Programme outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>