
ANNAMALAI UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.E. [COMPUTER SCIENCE AND ENGINEERING]

VI – SEMESTER

08EP609 : Mobile App Development Lab

Name : ___

Reg. No. : ___

ANNAMALAI UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

B.E. [COMPUTER SCIENCE AND ENGINEERING]

VI – SEMESTER

08EP609 : Mobile App Development Lab

Certified that this is a bona fide record of work done by

Mr./Ms.___

Reg. No.___

of B.E. (Computer Science and Engineering) in the 08EP609: Mobile App

Development Laboratory during the even semester of the academic year 2018 –

2019.

Staff in-charge

Internal Examiner External Examiner

Annamalainagar
Date: … /…. / 2019.

08EP609 : Mobile APP Development Lab B.E. [C.S.E] 2016 - 2020

CONTENTS

S. No. Date List of Experiments Page No. Signature

1. Study of Android Studio IDE 01

2. Displaying “Welcome to Android Laboratory” 20

3. Designing Simple Toast 25

4. Designing User Interface based on Layouts 27

5. Displaying different Shapes 31

6. Designing Simple Calculator Application 34

7. Navigation in Android 39

8. Displaying the Notification 47

9. Creating an Alarm 52

10. Designing BMI Calculator Application 57

11. Displaying images using Multithreading 62

Department of Computer Science and Engineering, F.E.A.T., A.U.

Ex. No. 01.
Date:

Study of Android Studio IDE
Introduction:
 Android Studio is the official Integrated Development Environment (IDE) for
Android app development, based on IntelliJ IDEA . On top of IntelliJ's powerful code editor
and developer tools, Android Studio offers even more features that enhance the productivity
when building Android apps, such as:

• A flexible Gradle-based build system
• A fast and feature-rich emulator
• A unified environment where developer can develop for all Android devices
• Instant Run to push changes to the running app without building a new APK
• Code templates and GitHub integration to help the developer to build common app

features and import sample code
• Extensive testing tools and frameworks
• Lint tools to catch performance, usability, version compatibility, and other problems
• C++ and NDK support

Built-in support for Google Cloud Platform,
making it easy to integrate Google Cloud
Messaging and App Engine Each project
in Android Studio contains one or more
modules with source code files and resource
files. Types of modules include:
• Android app modules
• Library modules
• Google App Engine modules
•
 By default, Android Studio displays
the project files in the Android project view,
as shown in figure. This view is organized
by modules to provide quick access to the
project's key source files.
 All the build files are visible at the
top level under Gradle Scripts and each app
module contains the following folders:

• manifests: Contains the
AndroidManifest.xml file.

• java: Contains the Java source code
files, including JUnit test code.

• res: Contains all non-code resources,
such as XML layouts, UI strings, and
bitmap images.

 The Android project structure on
disk differs from this flattened
representation. To see the actual file
structure of the project, select Project from
the Project dropdown (showing as Android).

Page | 1

 Developer can also customize the
view of the project files to focus on specific
aspects of the app development. For
example, selecting the Problems view of any
project displays links to the source files
containing any recognized coding and
syntax errors, such as a missing XML
element closing tag in a layout file.
 The project files in Problems view,
showing a layout file with a problem.

The user interface

 The Android Studio main window is made up of several logical areas identified in
figure. The Android Studio main window.

1. The toolbar used to carry out a wide range of actions, including running an app and
launching Android tools.

2. The navigation bar helps to navigate through the project and open files for editing. It
provides a more compact view of the structure visible in the Project window.

3. The editor window is where developer can create and modify code. Depending on the
current file type, the editor can change. For example, when viewing a layout file, the
editor displays the Layout Editor.

4. The tool window bar runs around the outside of the IDE window and contains the
buttons that allows the developer to expand or collapse individual tool windows.

Page | 2

5. The tool windows give the access to specific tasks like project management, search,
version control, and more. Developer can expand them and collapse them.

6. The status bar displays the status of the project and the IDE itself, as well as any
warnings or messages.

 Developer can organize the main window to give him more screen space by hiding or
moving toolbars and tool windows. Developer can also use keyboard shortcuts to access most
IDE features.

 At any time, one can search across the source code, databases, actions, elements of the
user interface, and so on, by double-pressing the Shift key, or clicking the magnifying glass
in the upper right-hand corner of the Android Studio window. This can be very useful, when
the developer trying to locate a particular IDE action.

Tool windows
 Instead of using pre-set perspectives, Android Studio follows the developer context
and automatically brings up relevant tool windows as he work. By default, the most
commonly used tool windows are pinned to the tool window bar at the edges of the
application window.

• To expand or collapse a tool window, click the tool’s name in the tool window bar.
Developer can also drag, pin, unpin, attach, and detach tool windows.

• To return to the current default tool window layout, click Window > Restore Default
Layout or customize the default layout by clicking Window > Store Current
Layout as Default.

• To show or hide the entire tool window bar, click the window icon in the bottom left-
hand corner of the Android Studio window.

• To locate a specific tool window, hover over the window icon and select the tool
window from the menu.

 Developer can also use keyboard shortcuts to open tool windows. Following Table
lists the shortcuts for the most common windows.

Tool window Windows and Linux Mac
Project Alt+1 Command+1
Version Control Alt+9 Command+9
Run Shift+F10 Control+R
Debug Shift+F9 Control+D
Logcat Alt+6 Command+6
Return to Editor Esc Esc
Hide All Tool Windows Control+Shift+F12 Command+Shift+F12

 If the developer wants to hide all toolbars, tool windows, and editor tabs, click View
> Enter Distraction Free Mode. This enables Distraction Free Mode. To exit Distraction
Free Mode, click View > Exit Distraction Free Mode.

 Developer can use Speed Search to search and filter within most tool windows in
Android Studio. To use Speed Search, select the tool window and then type the search query.

Code completion

Page | 3

 Android Studio has three types of code completion, which can be accessed using
keyboard shortcuts.

Type Description Windows and Linux Mac
Basic
Completion

Displays basic
suggestions for variables,
types, methods,
expressions, and so on. If
you call basic completion
twice in a row, you see
more results, including
private members and non-
imported static members.

Control+Space Control+Space

Smart
Completion

Displays relevant options
based on the context.
Smart completion is aware
of the expected type and
data flows. If you call
Smart Completion twice
in a row, you see more
results, including chains.

Control+Shift+Space Control+Shift+Space

Statement
Completion

Completes the current
statement for you, adding
missing parentheses,
brackets, braces,
formatting, etc.

Control+Shift+Enter Shift+Command+Enter

Developer can also perform quick fixes and show intention actions by pressing Alt+Enter.

Sample code
 The Code Sample Browser in Android Studio helps to find high-quality, Google-
provided Android code samples based on the currently highlighted symbol in the project.
Android Studio provides a selection of code samples and templates to accelerate the app
development. Browse sample code to learn how to build different components for the
applications. Use templates to create new app modules, individual activities, or other specific
Android project components.
In the Browse Samples dialog
 Developer can use the samples browser to select, preview, and import one or more
sample apps as projects. Developer can also browse the source code through GitHub.

1. Select File > New > Import Sample.
2. Use the search box or the scroll bar to browse the samples.
3. When you find a sample that interests you, highlight it and take a look at the preview.
4. If you want to import it as a project, click Next and then Finish.

 Browse Samples dialog with sample highlighted in the left column and previewed in
the right column.

Page | 4

Inline from the editor
 The Code Sample Browser in Android Studio helps to find Android code samples
based on the currently highlighted symbol in the project.

1. In the code, highlight a variable, type, or method.
2. Right-click to display the context menu.
3. From the context menu, select Find Sample Code. (The results of the search appear

in a tool window as shown.)
4. In the left pane of the tool window, select a sample.

 Then, scroll through the right pane to find highlighted code lines that are used in the
selected sample.

The Code Sample Browser.

Navigation

Here are some tips to help you move around Android Studio.

• Switch between your recently accessed files using the Recent Files action. Press
Control+E to bring up the Recent Files action. By default, the last accessed file is
selected. You can also access any tool window through the left column in this action.

Page | 5

• View the structure of the current file using the File Structure action. Bring up the File
Structure action by pressing Control+F12. Using this action, you can quickly
navigate to any part of your current file.

• Search for and navigate to a specific class in your project using the Navigate to Class
action. Bring up the action by pressing Control+N. Navigate to Class supports
sophisticated expressions, including camel humps, paths, line navigate to, middle
name matching, and many more. If you call it twice in a row, it shows you the results
out of the project classes.

• Navigate to a file or folder using the Navigate to File action. Bring up the Navigate to
File action by pressing Control+Shift+N. To search for folders rather than files, add a
/ at the end of your expression.

• Navigate to a method or field by name using the Navigate to Symbol action. Bring up
the Navigate to Symbol action by pressing Control+Shift+Alt+N.

• Find all the pieces of code referencing the class, method, field, parameter, or
statement at the current cursor position by pressing Alt+F7.

Style and formatting
 During editing, Android Studio automatically applies formatting and styles as
specified in the code style settings. One can customize the code style settings by
programming language, including specifying conventions for tabs and indents, spaces,
wrapping and braces, and blank lines. To customize the code style settings, click File >
Settings > Editor > Code Style.

 Although the IDE automatically applies formatting, one can also explicitly call the
Reformat Code action by pressing Control+Alt+L, or auto-indent all lines by pressing
Control+Alt+I.

Code before formatting.

Code after formatting.

Version control basics
 Android Studio supports a variety of version control systems (VCS’s), including Git,
GitHub, CVS, Mercurial, Subversion, and Google Cloud Source Repositories.
 After importing the app into Android Studio, use the Android Studio VCS menu
options to enable VCS support for the desired version control system, create a repository,
import the new files into version control, and perform other version control operations:

1. From the Android Studio VCS menu, click Enable Version Control Integration.
2. From the drop-down menu, select a version control system to associate with the

project root, and then click OK.
Page | 6

 The VCS menu now displays a number of version control options based on the system
selected.

Gradle build system
 Android Studio uses Gradle as the foundation of the build system, with more
Android-specific capabilities provided by the Android plugin for Gradle. This build system
runs as an integrated tool from the Android Studio menu, and independently from the
command line. Developer can use the features of the build system to do the following:

• Customize, configure, and extend the build process.
• Create multiple APKs for your app, with different features using the same project and

modules.
• Reuse code and resources across source sets.

 By employing the flexibility of Gradle, one can achieve all of this without modifying
the app's core source files. Android Studio build files are named build.gradle. They are plain
text files that use Groovy syntax to configure the build with elements provided by the
Android plugin for Gradle. Each project has one top-level build file for the entire project and
separate module-level build files for each module. When importing an existing project,
Android Studio automatically generates the necessary build files.

Build variants
 The build system can help to create different versions of the same application from a
single project. This is useful when developer have both a free version and a paid version of
the app, or if he wants to distribute multiple APKs for different device configurations on
Google Play.

Multiple APK support
 Multiple APK support allows to efficiently create multiple APKs based on screen
density or ABI. For example, one can create separate APKs of an app for the hdpi and mdpi
screen densities, while still considering them a single variant and allowing them to share test
APK, javac, dx, and ProGuard settings.

Resource shrinking
 Resource shrinking in Android Studio automatically removes unused resources from
the packaged app and library dependencies. For example, if the application is using Google
Play services to access Google Drive functionality, and are not currently using Google Sign-
In, then resource shrinking can remove the various drawable assets for the SignInButton
buttons.

Managing dependencies
 Dependencies for the project are specified by name in the build.gradle file. Gradle
takes care of finding the dependencies and making them available in the build. Developer can
declare module dependencies, remote binary dependencies, and local binary dependencies in
the build.gradle file. Android Studio configures projects to use the Maven Central Repository
by default. This configuration is included in the top-level build file for the project.

Debug and profile tools
 Android Studio assists the developer in debugging and improving the performance of
the code, including inline debugging and performance analysis tools.
Inline debugging

Page | 7

 Use of inline debugging is to enhance the code walk-throughs in the debugger view
with inline verification of references, expressions, and variable values. Inline debug
information includes:

• Inline variable values
• Referring objects that reference a selected object
• Method return values
• Lambda and operator expressions
• Tooltip values

An inline variable value is shown below.

 To enable inline debugging, in the Debug window, click Settings and select the
checkbox for Show Values Inline.

Performance profilers
 Android Studio provides performance profilers to more easily track the app’s memory
and CPU usage, find de-allocated objects, locate memory leaks, optimize graphics
performance, and analyze network requests. With the app running on a device or emulator,
open the Android Profiler tab.

Heap dump
 When profiling memory usage in Android Studio, developer can simultaneously
initiate garbage collection and dump the Java heap to a heap snapshot in an Android-specific
HPROF binary format file. The HPROF viewer displays classes, instances of each class, and
a reference tree to help you track memory usage and find memory leaks.

Memory Profiler
 Develope can use Memory Profiler to track memory allocation and watch where
objects are being allocated when he perform certain actions. Knowing these allocations
enables him to optimize his app’s performance and memory use by adjusting the method calls
related to those actions.

Data file access
 The Android SDK tools, such as Systrace, and logcat, generate performance and
debugging data for detailed app analysis.
 To view the available generated data files, open the Captures tool window. In the list
of the generated files, double-click a file to view the data. Right-click any .hprof files to
convert them to the standard investigate your RAM usage file format.

Code inspections
 Whenever compiling the program, Android Studio automatically runs configured Lint
and other IDE inspections to help the developer to easily identify and correct problems with
the structural quality of the code.

Page | 8

 The Lint tool checks the Android project source files for potential bugs and
optimization improvements for correctness, security, performance, usability, accessibility,
and internationalization.

The results of a Lint inspection in Android Studio.

 In addition to Lint checks, Android Studio also performs IntelliJ code inspections and
validates annotations to streamline the coding workflow.

Annotations in Android Studio
 Android Studio supports annotations for variables, parameters, and return values to
help in catching bugs, such as null pointer exceptions and resource type conflicts. The
Android SDK Manager packages the Support-Annotations library in the Android Support
Repository for use with Android Studio. Android Studio validates the configured annotations
during code inspection.

Log messages
 When developer build and run the app with Android Studio, he can view adb output
and device log messages in the Logcat window.

Performance profiling
 Developer can profile the app's CPU, memory, and network performance, by opening
the Android Profiler, by clicking View > Tool Windows > Android Profiler.
Installing Android Studio
Setting up Android Studio takes just a few clicks.
Windows
To install Android Studio on Windows, proceed as follows:

1. If downloaded an .exe file (recommended), double-click to launch it.
If downloaded a .zip file, unpack the ZIP, copy the android-studio folder into the
Program Files folder, and then open the android-studio > bin folder and launch
studio64.exe (for 64-bit machines) or studio.exe (for 32-bit machines).

2. Follow the setup wizard in Android Studio and install any SDK packages that it
recommends.

Configure Android Studio
 Android Studio provides wizards and templates that verify the system requirements,
such as the Java Development Kit (JDK) and available RAM, and configure default settings,
such as optimized default Android Virtual Device (AVD) emulation and updated system
images.
Android Studio provides access to two configuration files through the Help menu:

• studio.vmoptions: Customize options for Studio's Java Virtual Machine (JVM), such
as heap size and cache size.

Page | 9

• idea.properties: Customize Android Studio properties, such as the plugins folder path
or maximum supported file size.

Create and manage virtual devices
 An Android Virtual Device (AVD) is a configuration that defines the characteristics
of an Android phone, tablet, Wear OS, or Android TV device that developer wants to
simulate in the Android Emulator. The AVD Manager is an interface can be launched from
Android Studio that helps to create and manage AVDs.

To open the AVD Manager, do one of the following:

• Select Tools > AVD Manager.

• Click AVD Manager in the toolbar.

About AVDs
 An AVD contains a hardware profile, system image, storage area, skin, and other
properties. It is recommended to create an AVD for each system image that an app could
potentially support based on the <uses-sdk> setting in the manifest.

Hardware profile
 The hardware profile defines the characteristics of a device as shipped from the
factory. The AVD Manager comes preloaded with certain hardware profiles, such as Pixel
devices, and can define or customize the hardware profiles as needed.
 Notice that only some hardware profiles are indicated to include Play Store. This
indicates that these profiles are fully CTS compliant and may use system images that include
the Play Store app.

System images
 A system image labeled with Google APIs includes access to Google Play services. A
system image labeled with the Google Play logo in the Play Store column includes the
Google Play Store app and access to Google Play services, including a Google Play tab in
the Extended controls dialog that provides a convenient button for updating Google Play
services on the device.
 To ensure app security and a consistent experience with physical devices, system
images with the Google Play Store included are signed with a release key, which means that
you cannot get elevated privileges (root) with these images. If developer require elevated

Page | 10

privileges (root) to aid with the app troubleshooting, use the Android Open Source Project
(AOSP) system images that do not include Google apps or services.

Storage area
 The AVD has a dedicated storage area on the development machine. It stores the
device user data, such as installed apps and settings, as well as an emulated SD card. If
needed, use the AVD Manager to wipe user data, so the device has the same data as if it were
new.

Skin
 An emulator skin specifies the appearance of a device. The AVD Manager provides
some predefined skins. Developer can also define his own or use skins provided by third
parties.

AVD and app features
 Be sure the AVD definition includes the device features of the app depend on.
Hardware Profile Properties and AVD Properties for lists of features can be defined in the
AVDs.

Create an AVD
 To launch an app into an emulator, instead run the app from Android Studio and then
in the Select Deployment Target dialog that appears, click Create New Virtual Device.

To create a new AVD:

1. Open the AVD Manager by clicking Tools > AVD Manager.

2. Click Create Virtual Device, at the bottom of the AVD Manager dialog.

The Select Hardware page appears.
Notice that only some hardware profiles are indicated to include Play Store. This
indicates that these profiles are fully CTS compliant and may use system images that
include the Play Store app.

Page | 11

3. Select a hardware profile, and then click Next.

If you don't see the hardware profile you want, you can create or import a hardware
profile.
The System Image page appears.

4. Select the system image for a particular API level, and then click Next.

 The Recommended tab lists recommended system images. The other tabs
include a more complete list. The right pane describes the selected system image. x86
images run the fastest in the emulator.
 If you see Download next to the system image, you need to click it to
download the system image. You must be connected to the internet to download it.
 The API level of the target device is important, because your app won't be able
to run on a system image with an API level that's less than that required by your app,
as specified in the minSdkVersion attribute of the app manifest file. For more
information about the relationship between system API level and minSdkVersion, see
Versioning Your Apps.
 If your app declares a <uses-library> element in the manifest file, the app
requires a system image in which that external library is present. If you want to run

Page | 12

your app on an emulator, create an AVD that includes the required library. To do so,
you might need to use an add-on component for the AVD platform; for example, the
Google APIs add-on contains the Google Maps library.

The Verify Configuration page appears.

5. Change AVD properties as needed, and then click Finish.

 Click Show Advanced Settings to show more settings, such as the skin.
 The new AVD appears in the Your Virtual Devices page or the Select
Deployment Target dialog.

To create an AVD starting with a copy:

1. From the Your Virtual Devices page of the AVD Manager, right-click an AVD and
select Duplicate.
Or click Menu and select Duplicate.
The Verify Configuration page appears.

2. Click Change or Previous if you need to make changes on the System Image and
Select Hardware pages.

3. Make your changes, and then click Finish.
The AVD appears in the Your Virtual Devices page.

Create a hardware profile
 The AVD Manager provides predefined hardware profiles for common devices so you
can easily add them to your AVD definitions. If you need to define a different device, you
can create a new hardware profile. You can define a new hardware profile from the
beginning, or copy a hardware profile as a start. The preloaded hardware profiles aren't
editable.
 To create a new hardware profile from the beginning:

1. In the Select Hardware page, click New Hardware Profile.
2. In the Configure Hardware Profile page, change the hardware profile properties as

needed.
3. Click Finish.

Page | 13

Your new hardware profile appears in the Select Hardware page. You can optionally
create an AVD that uses the hardware profile by clicking Next. Or, click Cancel to
return to the Your Virtual Devices page or Select Deployment Target dialog.

To create a hardware profile starting with a copy:

1. In the Select Hardware page, select a hardware profile and click Clone Device.
Or right-click a hardware profile and select Clone.

2. In the Configure Hardware Profile page, change the hardware profile properties as
needed.

3. Click Finish.
Your new hardware profile appears in the Select Hardware page. You can optionally
create an AVD that uses the hardware profile by clicking Next. Or, click Cancel to
return to the Your Virtual Devices page or Select Deployment Target dialog.

Edit existing AVDs
 From the Your Virtual Devices page, you can perform the following operations on
an existing AVD:

• To edit an AVD, click Edit this AVD and make your changes.
• To delete an AVD, right-click an AVD and select Delete. Or click Menu and select

Delete.
• To show the associated AVD .ini and .img files on disk, right-click an AVD and

select Show on Disk. Or click Menu and select Show on Disk.
• To view AVD configuration details that you can include in any bug reports to the

Android Studio team, right-click an AVD and select View Details. Or click Menu
and select View Details.

Edit existing hardware profiles
 From the Select Hardware page, you can perform the following operations on an
existing hardware profile:

• To edit a hardware profile, select it and click Edit Device. Or right-click a hardware
profile and select Edit. Next, make your changes.

• To delete a hardware profile, right-click it and select Delete.
You can't edit or delete the predefined hardware profiles.

Run and stop an emulator, and clear data
 From the Your Virtual Devices page, you can perform the following operations on
an emulator:

• To run an emulator that uses an AVD, double-click the AVD. Or click Launch .
• To stop a running emulator, right-click an AVD and select Stop. Or click Menu

and select Stop.
• To clear the data for an emulator, and return it to the same state as when it was first

defined, right-click an AVD and select Wipe Data. Or click Menu and select Wipe
Data.

Import and export hardware profiles
 From the Select Hardware page, you can import and export hardware profiles:

• To import a hardware profile, click Import Hardware Profiles and select the XML
file containing the definition on your computer.

• To export a hardware profile, right-click it and select Export. Specify the location
where you want to store the XML file containing the definition.

Page | 14

Hardware profile properties
 You can specify the following properties of hardware profiles in the Configure
Hardware Profile page. AVD configuration properties override hardware profile properties,
and emulator properties that you set while the emulator is running override them both.
The predefined hardware profiles included with the AVD Manager aren't editable. However,
you can copy them and edit the copies.

Hardware Profile
Property

Description

Device Name Name of the hardware profile. The name can contain uppercase or
lowercase letters, numbers from 0 to 9, periods (.), underscores
(_), parentheses (()), and spaces. The name of the file storing the
hardware profile is derived from the hardware profile name.

Device Type Select one of the following:
• Phone/Tablet
• Wear OS
• Android TV

Screen Size The physical size of the screen, in inches, measured at the
diagonal. If the size is larger than your computer screen, it’s
reduced in size at launch.

Screen Resolution Type a width and height in pixels to specify the total number of
pixels on the simulated screen.

Round Select this option if the device has a round screen, such as some
Wear OS devices.

Memory: RAM Type a RAM size for the device and select the units, one of B
(byte), KB (kilobyte), MB (megabyte), GB (gigabyte), or TB
(terabyte).

Input: Has Hardware
Buttons
(Back/Home/Menu)

Select this option if your device has hardware navigation buttons.
Deselect it if these buttons are implemented in software only. If
you select this option, the buttons won’t appear on the screen.
You can use the emulator side panel to "press" the buttons, in
either case.

Input: Has Hardware
Keyboard

Select this option if your device has a hardware keyboard.
Deselect it if it doesn’t. If you select this option, a keyboard won’t
appear on the screen. You can use your computer keyboard to
send keystrokes to the emulator, in either case.

Navigation Style Select one of the following:
• None - No hardware controls. Navigation is through the

software.
• D-pad - Directional Pad support.
• Trackball
• Wheel

These options are for actual hardware controls on the device itself.
However, the events sent to the device by an external controller
are the same.

Supported Device States Select one or both options:
• Portrait - Oriented taller than wide.
• Landscape - Oriented wider than tall.

If you select both, you can switch between orientations in the

Page | 15

emulator. You must select at least one option to continue.
Cameras To enable the camera, select one or both options:

• Back-Facing Camera - The lens faces away from the user.
• Front-Facing Camera - The lens faces toward the user.

Later, you can use a webcam or a photo provided by the emulator
to simulate taking a photo with the camera.

Sensors: Accelerometer Select if the device has hardware that helps the device determine
its orientation.

Sensors: Gyroscope Select if the device has hardware that detects rotation or twist. In
combination with an accelerometer, it can provide smoother
orientation detection and support a six-axis orientation system.

Sensors: GPS Select if the device has hardware that supports the Global
Positioning System (GPS) satellite-based navigation system.

Sensors: Proximity
Sensor

Select if the device has hardware that detects if the device is close
to your face during a phone call to disable input from the screen.

Default Skin Select a skin that controls what the device looks like when
displayed in the emulator. Remember that specifying a screen size
that's too big for the resolution can mean that the screen is cut off,
so you can't see the whole screen. See Create an emulator skin for
more information.

AVD properties
 You can specify the following properties for AVD configurations in the Verify
Configuration page. The AVD configuration specifies the interaction between the
development computer and the emulator, as well as properties you want to override in the
hardware profile.
 AVD configuration properties override hardware profile properties. Emulator
properties that you set while the emulator is running override them both.
AVD Property Description
AVD Name Name of the AVD. The name can contain uppercase or lowercase

letters, numbers from 0 to 9, periods (.), underscores (_), parentheses (
()), dashes (-), and spaces. The name of the file storing the AVD
configuration is derived from the AVD name.

AVD ID
(Advanced)

The AVD filename is derived from the ID, and you can use the ID to
refer to the AVD from the command line.

Hardware Profile Click Change to select a different hardware profile in the Select
Hardware page.

System Image Click Change to select a different system image in the System Image
page. An active internet connection is required to download a new
image.

Startup Orientation Select one option for the initial emulator orientation:
• Portrait - Oriented taller than wide.
• Landscape - Oriented wider than tall.

An option is enabled only if it’s selected in the hardware profile. When
running the AVD in the emulator, you can change the orientation if
both portrait and landscape are supported in the hardware profile.

Camera
(Advanced)

To enable a camera, select one or both options:
• Front - The lens faces away from the user.
• Back - The lens faces toward the user.

The Emulated setting produces a software-generated image, while the

Page | 16

Webcam setting uses your development computer webcam to take a
picture.
This option is available only if it's selected in the hardware profile; it's
not available for Wear OS and Android TV.

Network: Speed
(Advanced)

Select a network protocol to determine the speed of data transfer:
• GSM - Global System for Mobile Communications
• HSCSD - High-Speed Circuit-Switched Data
• GPRS - Generic Packet Radio Service
• EDGE - Enhanced Data rates for GSM Evolution
• UMTS - Universal Mobile Telecommunications System
• HSDPA - High-Speed Downlink Packet Access
• LTE - Long-Term Evolution
• Full (default) - Transfer data as quickly as your computer

allows.
Network: Latency
(Advanced)

Select a network protocol to set how much time (delay) it takes for the
protocol to transfer a data packet from one point to another point.

Emulated
Performance:
Graphics

Select how graphics are rendered in the emulator:
• Hardware - Use your computer graphics card for faster

rendering.
• Software - Emulate the graphics in software, which is useful if

you're having a problem with rendering in your graphics card.
• Automatic - Let the emulator decide the best option based on

your graphics card.
Emulated
Performance: Boot
option (Advanced)

• Cold boot - Start the device each time by powering up from the
device-off state.

• Quick boot - Start the device by loading the device state from a
saved snapshot. For details, see Run the emulator with Quick
Boot.

Emulated
Performance:
Multi-Core CPU
(Advanced)

Select the number of processor cores on your computer that you’d like
to use for the emulator. Using more processor cores speeds up the
emulator.

Memory and
Storage: RAM

The amount of RAM on the device. This value is set by the hardware
manufacturer, but you can override it, if needed, such as for faster
emulator operation. Increasing the size uses more resources on your
computer. Type a RAM size and select the units, one of B (byte), KB
(kilobyte), MB (megabyte), GB (gigabyte), or TB (terabyte).

Memory and
Storage: VM Heap

The VM heap size. This value is set by the hardware manufacturer, but
you can override it, if needed. Type a heap size and select the units, one
of B (byte), KB (kilobyte), MB (megabyte), GB (gigabyte), or TB
(terabyte). For more information on Android VMs, see Memory
Management for Different Virtual Machines.

Memory and
Storage: Internal
Storage

The amount of nonremovable memory space available on the device.
This value is set by the hardware manufacturer, but you can override it,
if needed. Type a size and select the units, one of B (byte), KB
(kilobyte), MB (megabyte), GB (gigabyte), or TB (terabyte).

Memory and
Storage: SD Card

The amount of removable memory space available to store data on the
device. To use a virtual SD card managed by Android Studio, select
Studio-managed, type a size, and select the units, one of B (byte), KB
(kilobyte), MB (megabyte), GB (gigabyte), or TB (terabyte). A

Page | 17

minimum of 100 MB is recommended to use the camera. To manage
the space in a file, select External file and click ... to specify the file
and location. For more information, see mksdcard and AVD data
directory.

Device Frame:
Enable Device
Frame

Select to enable a frame around the emulator window that mimics the
look of a real device.

Custom Skin
Definition
(Advanced)

Select a skin that controls what the device looks like when displayed in
the emulator. Remember that specifying a screen size that's too big for
the skin can mean that the screen is cut off, so you can't see the whole
screen. See Create an emulator skin for more information.

Keyboard: Enable
Keyboard Input
(Advanced)

Select this option if you want to use your hardware keyboard to interact
with the emulator. It's disabled for Wear OS and Android TV.

Create an emulator skin
 An Android emulator skin is a collection of files that define the visual and control
elements of an emulator display. If the skin definitions available in the AVD settings don't
meet your requirements, you can create your own custom skin definition, and then apply it to
your AVD.

Each emulator skin contains:

• A hardware.ini file
• Layout files for supported orientations (landscape, portrait) and physical configuration
• Image files for display elements, such as background, keys and buttons

To create and use a custom skin:

1. Create a new directory where you will save your skin configuration files.
2. Define the visual appearance of the skin in a text file named layout. This file defines

many characteristics of the skin, such as the size and image assets for specific buttons.
For example:
parts {
 device {
 display {
 width 320
 height 480
 x 0
 y 0
 }
 }

portrait {
 background {
 image background_port.png
 }

 buttons {
 power {
 image button_vertical.png
 x 1229
 y 616

Page | 18

 }
 }
}
...
}

3. Add the bitmap files of the device images in the same directory.
4. Specify additional hardware-specific device configurations in a hardware.ini file for

the device settings, such as hw.keyboard and hw.lcd.density.
5. Archive the files in the skin folder and select the archive file as a custom skin.

System requirements for installing Android Studio

Windows

• Microsoft® Windows® 7/8/10 (32- or 64-bit)
• 3 GB RAM minimum, 8 GB RAM recommended; plus 1 GB for the Android

Emulator
• 2 GB of available disk space minimum, 4 GB Recommended (500 MB for IDE + 1.5

GB for Android SDK and emulator system image)
• 1280 x 800 minimum screen resolution

Requirements and recommendations for installing the emulator
 To install the Android Emulator, select the Android Emulator component in the
SDK Tools tab of the SDK Manager.

 The Android Emulator has additional requirements beyond the basic system
requirements for Android Studio:

• SDK Tools 26.1.1 or higher
• 64-bit processor
• Windows: CPU with UG (unrestricted guest) support
• HAXM 6.2.1 or later (HAXM 7.2.0 or later recommended)

The use of hardware acceleration has additional requirements on Windows and Linux:

• Intel processor on Windows or Linux: Intel processor with support for Intel VT-
x, Intel EM64T (Intel 64), and Execute Disable (XD) Bit functionality

• AMD processor on Linux: AMD processor with support for AMD Virtualization
(AMD-V) and Supplemental Streaming SIMD Extensions 3 (SSSE3)

• AMD processor on Windows: Android Studio 3.2 or higher and Windows 10 April
2018 release or higher for Windows Hypervisor Platform (WHPX) functionality

In addition, Virtual Technology must be enabled in BIOS Setup to Load the Emulator.
 To work with Android 8.1 (API level 27) and higher system images, an attached
webcam must have the capability to capture 720p frames.

Page | 19

Ex. No. 02.
Date:

Displaying “Welcome to Android Laboratory”
Aim:
 To develop a Simple Android Application that displays a text.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.

• Then type the Application name as “Hello″, change the project location and click
Next.

• Then select the Minimum SDK as shown below and click Next.

Page | 20

https://codingconnect.net/wp-content/uploads/2016/02/new-project.png
https://codingconnect.net/wp-content/uploads/2016/02/new-project.png�

 Then select the Empty Activity and click Next.

• Finally click Finish.

Page | 21

https://codingconnect.net/wp-content/uploads/2016/02/minimum-sdk-e1456069978476.png
https://codingconnect.net/wp-content/uploads/2016/02/empty-activity-e1456120797105.png
https://codingconnect.net/wp-content/uploads/2016/02/minimum-sdk-e1456069978476.png�
https://codingconnect.net/wp-content/uploads/2016/02/empty-activity-e1456120797105.png�

• It will take some time to build and load the project.
• After completion it will look as given below.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Under design tab click the default text at the centre and select the text and locate the

text values under the attribute window show at the right side.
• Change the text from “Hello world!” to your desired text “Welcome to Android

Laboratory”

Page | 22

https://codingconnect.net/wp-content/uploads/2016/02/finish-e1456121463611.png
https://codingconnect.net/wp-content/uploads/2016/02/new-e1456122290334.png
https://codingconnect.net/wp-content/uploads/2016/02/finish-e1456121463611.png�
https://codingconnect.net/wp-content/uploads/2016/02/new-e1456122290334.png�

• Now click on Text as shown below.
• If needed change the below java code to the requirement.

 Click Play icon or Shift+F10 and select any of the Available Virtual devices from the
list or create a New AVD.

Page | 23

https://codingconnect.net/wp-content/uploads/2016/02/text-e1456124006902.png
https://codingconnect.net/wp-content/uploads/2016/02/text-e1456124006902.png�

Emulator will be loaded and display the
output of the app developed as show below.

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application that displays a text is developed and executed
successfully in emulator and Mobile device.

Page | 24

Ex. No. 03.
Date:

Designing Simple Toast
Aim:
 To develop a Simple Toast application.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “Toast App″, change the project location and click

Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:
• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@drawable/images1"
 tools:context=".MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This is an Example of Toast Text Display"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

</android.support.constraint.ConstraintLayout>

 Note : Copy and paste the background image1.png under res/drawable folder

Now click on the Design tab and now the application will look as given below.

Page | 25

Java Coding for the Android Application:
• Click on app -> java -> com.example. toastapp -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.toastapp;

import android.os.Bundle;
import android.app.Activity;
import android.widget.Toast;

public class MainActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Displaying Toast with 'Studytonight is Best' message
 Toast.makeText(getApplicationContext(),"I Will TOAST U if U R Absent",
 Toast.LENGTH_LONG).show();
 }
}

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays
the output of the app developed as
shown below.

Select Build APK(s) from Build Menu and build
the .apk file for this application. Locate the apk file
created and copy it to the mobile Phone to install it
and run it from it for verification.

Result:
 Thus a Simple Android Application to display the Toast message is developed and
executed successfully in emulator and Mobile device.

Page | 26

Ex. No. 04.
Date:

Designing User Interface based on Layouts
Aim:
 To develop a Simple Android Application to design a User Interface based on Layouts.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “UIApplication″, change the project location and

click Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text as shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="30dp"
 android:gravity="center"
 android:text="Thank You Very Much to Dr. G.Ramachandran Sir"
 android:textSize="25sp"
 android:textStyle="bold" />

 <Button
 android:id="@+id/button1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"
 android:gravity="center"
 android:text="@string/change_font_size"
 android:textSize="25sp" />
 <Button
 android:id="@+id/button2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"
 android:gravity="center"

Page | 27

 android:text="@string/change_color"
 android:textSize="25sp" />
</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Java Coding for the Android Application:

• Click on app -> java -> com.example.exno1 -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.uiapplication;

import android.graphics.Color;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity
{
 int ch=1;
 float font=30;
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final TextView t= (TextView) findViewById(R.id.textView);
 Button b1= (Button) findViewById(R.id.button1);
 b1.setOnClickListener(new View.OnClickListener() {
 @Override

Page | 28

 public void onClick(View v) {
 t.setTextSize(font);
 font = font + 5;
 if (font == 50)
 font = 30;
 }
 });
 Button b2= (Button) findViewById(R.id.button2);
 b2.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 switch (ch) {
 case 1:
 t.setTextColor(Color.RED);
 break;
 case 2:
 t.setTextColor(Color.GREEN);
 break;
 case 3:
 t.setTextColor(Color.BLUE);
 break;
 case 4:
 t.setTextColor(Color.CYAN);
 break;
 case 5:
 t.setTextColor(Color.YELLOW);
 break;
 case 6:
 t.setTextColor(Color.MAGENTA);
 break;
 }
 ch++;
 if (ch == 7)
 ch = 1;
 }
 });
 }
}

Page | 29

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to design a User Interface based on Layouts is
developed and executed successfully in emulator and Mobile device.

Page | 30

Ex. No. 05.
Date:

Displaying different Shapes
Aim:
 To develop a Simple Android Application to display different shapes.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “Shapes″, change the project location and click

Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Delete the text there and type the below xml code.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <ImageView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:id="@+id/imageView" />
</RelativeLayout>

• Now click the Design tab and the screen will look like as shown,

Page | 31

• Now click on MainActivity.java shown below.
• Delete the system generated java code and type the below code

package com.example.cse.shapes;

import android.app.Activity;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.drawable.BitmapDrawable;
import android.os.Bundle;
import android.widget.ImageView;

public class MainActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Creating a Bitmap
 Bitmap bg = Bitmap.createBitmap(720, 1280, Bitmap.Config.ARGB_8888);

 //Setting the Bitmap as background for the ImageView
 ImageView i = (ImageView) findViewById(R.id.imageView);
 i.setBackgroundDrawable(new BitmapDrawable(bg));

 //Creating the Canvas Object
 Canvas canvas = new Canvas(bg);

 //Creating the Paint Object and set its color & TextSize
 Paint paint = new Paint();
 paint.setColor(Color.BLUE);
 paint.setTextSize(50);

 //To draw a Rectangle
 canvas.drawText("Rectangle", 420, 150, paint);
 canvas.drawRect(400, 200, 650, 700, paint);
 paint.setColor(Color.GREEN);
 //To draw a Circle
 canvas.drawText("Circle", 120, 150, paint);
 canvas.drawCircle(200, 350, 150, paint);
 paint.setColor(Color.MAGENTA);

 //To draw a Square
 canvas.drawText("Square", 120, 800, paint);
 canvas.drawRect(50, 850, 350, 1150, paint);
 paint.setColor(Color.BLACK);
 //To draw a Line
 canvas.drawText("Line", 480, 800, paint);
 canvas.drawLine(520, 850, 520, 1150, paint);
 }
}

Page | 32

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and
display the output of the app
developed as show below.

Select Build APK(s) from Build Menu and build the
.apk file for this application. Locate the apk file
created and copy it to the mobile Phone to install it
and run it from it for verification.

Result:
 Thus a Simple Android Application that displays different shapes is developed and
executed successfully in emulator and Mobile device.

Page | 33

Ex. No. 06.
Date:

Designing Simple Calculator Application
Aim:
 To develop a Simple Android Application to design a Simple Calculator App.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “CalcApp″, change the project location and click

Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:
• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="20dp">

 <LinearLayout
 android:id="@+id/linearLayout1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="20dp">

 <EditText
 android:id="@+id/editText1"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:inputType="numberDecimal"
 android:textSize="20sp" />

 <EditText
 android:id="@+id/editText2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:inputType="numberDecimal"
 android:textSize="20sp" />

 </LinearLayout>

 <LinearLayout

Page | 34

 android:id="@+id/linearLayout2"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="20dp">

 <Button
 android:id="@+id/Add"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="+"
 android:textSize="30sp"/>

 <Button
 android:id="@+id/Sub"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="-"
 android:textSize="30sp"/>

 <Button
 android:id="@+id/Mul"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="*"
 android:textSize="30sp"/>

 <Button
 android:id="@+id/Div"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="/"
 android:textSize="30sp"/>

 </LinearLayout>

 <TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginTop="50dp"
 android:text="Answer is"
 android:textSize="30sp"
 android:gravity="center"/>

</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Page | 35

Java Coding for the Android Application:

• Click on app -> java -> com.example. calcapp -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.calcapp;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.text.TextUtils;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity implements OnClickListener
{
 //Defining the Views
 EditText Num1;
 EditText Num2;
 Button Add;
 Button Sub;
 Button Mul;
 Button Div;
 TextView Result;

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Referring the Views
 Num1 = (EditText) findViewById(R.id.editText1);
 Num2 = (EditText) findViewById(R.id.editText2);

Page | 36

 Add = (Button) findViewById(R.id.Add);
 Sub = (Button) findViewById(R.id.Sub);
 Mul = (Button) findViewById(R.id.Mul);
 Div = (Button) findViewById(R.id.Div);
 Result = (TextView) findViewById(R.id.textView);

 // set a listener
 Add.setOnClickListener(this);
 Sub.setOnClickListener(this);
 Mul.setOnClickListener(this);
 Div.setOnClickListener(this);
 }

 @Override
 public void onClick (View v)
 {

 float num1 = 0;
 float num2 = 0;
 float result = 0;
 String oper = "";
 // check if the fields are empty
 if (TextUtils.isEmpty(Num1.getText().toString()) ||
TextUtils.isEmpty(Num2.getText().toString()))
 return;

 // read EditText and fill variables with numbers
 num1 = Float.parseFloat(Num1.getText().toString());
 num2 = Float.parseFloat(Num2.getText().toString());

 // defines the button that has been clicked and performs the corresponding operation
 // write operation into oper, we will use it later for output
 switch (v.getId())
 {
 case R.id.Add:
 oper = "+";
 result = num1 + num2;
 break;
 case R.id.Sub:
 oper = "-";
 result = num1 - num2;
 break;
 case R.id.Mul:
 oper = "*";
 result = num1 * num2;
 break;
 case R.id.Div:
 oper = "/";
 result = num1 / num2;
 break;
 default:
 break;

Page | 37

 }
 // form the output line
 Result.setText(num1 + " " + oper + " " + num2 + " = " + result);
 }
}

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to design a Simple Calculator App is developed
and executed successfully in emulator and Mobile device.

Page | 38

Ex. No. 07.
Date:

Navigation in Android
Aim:
 To develop a Simple Android Application to design a simple Navigation between two
activities.

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “NavigationApp″, change the project location and

click Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Creating Second Activity for the Android Application:
• Click on File -> New -> Activity -> Empty Activity.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text as shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="100dp">
 <TextView
 android:id="@+id/textView"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="30dp"
 android:text="Details Form"
 android:textSize="25sp"
 android:gravity="center"/>
 </LinearLayout>

 <GridLayout
 android:id="@+id/gridLayout"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_marginTop="100dp"

Page | 39

 android:layout_marginBottom="200dp"
 android:columnCount="2"
 android:rowCount="3">
 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="0"
 android:layout_column="0"
 android:text="Name"
 android:textSize="20sp"
 android:gravity="center"/>

 <EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="0"
 android:layout_column="1"
 android:ems="10"/>

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="1"
 android:layout_column="0"
 android:text="Reg.No"
 android:textSize="20sp"
 android:gravity="center"/>

 <EditText
 android:id="@+id/editText2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="1"
 android:layout_column="1"
 android:inputType="number"
 android:ems="10"/>

 <TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="2"
 android:layout_column="0"

Page | 40

 android:text="Dept"
 android:textSize="20sp"
 android:gravity="center"/>

 <Spinner
 android:id="@+id/spinner"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="10dp"
 android:layout_row="2"
 android:layout_column="1"
 android:spinnerMode="dropdown"/>

 </GridLayout>

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentStart="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentBottom="true"
 android:layout_centerVertical="true"
 android:layout_marginStart="157dp"
 android:layout_marginLeft="157dp"
 android:layout_marginBottom="66dp"
 android:text="Submit" />

</RelativeLayout>

Now click on the Design tab and now the application will look as given below.

Page | 41

Designing Layout for Second Activity:

• Click on app -> res -> layout -> activity_second.xml.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.cse.navigationapp.SecondActivity"
 android:orientation="vertical"
 android:gravity="center">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"
 android:text="New Text"
 android:textSize="30sp"/>

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"
 android:text="New Text"
 android:textSize="30sp"/>

 <TextView
 android:id="@+id/textView3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"
 android:text="New Text"
 android:textSize="30sp"/>

</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Page | 42

Java Coding for the Android Application:

Java Coidng for Main Activity:

• Click on app -> java -> com.example.navigationapp -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.navigationapp;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;

public class MainActivity extends AppCompatActivity {

 //Defining the Views
 EditText e1,e2;
 Button bt;
 Spinner s;

 //Data for populating in Spinner
 String [] dept_array={"CSE","ECE","Mech","Civil"};

 String name,reg,dept;

 @Override

Page | 43

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //Referring the Views
 e1= (EditText) findViewById(R.id.editText);
 e2= (EditText) findViewById(R.id.editText2);

 bt= (Button) findViewById(R.id.button);

 s= (Spinner) findViewById(R.id.spinner);

 //Creating Adapter for Spinner for adapting the data from array to Spinner
 ArrayAdapter adapter= new
ArrayAdapter(MainActivity.this,android.R.layout.simple_spinner_item,dept_array);
 s.setAdapter(adapter);

 //Creating Listener for Button
 bt.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {

 //Getting the Values from Views(Edittext & Spinner)
 name=e1.getText().toString();
 reg=e2.getText().toString();
 dept=s.getSelectedItem().toString();

 //Intent For Navigating to Second Activity
 Intent i = new Intent(MainActivity.this,SecondActivity.class);

 //For Passing the Values to Second Activity
 i.putExtra("name_key", name);
 i.putExtra("reg_key",reg);
 i.putExtra("dept_key", dept);

 startActivity(i);

 }
 });
 }
}

Page | 44

Java Coding for Second Activity:
• Click on app -> java -> com.example. navigationapp -> SecondActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.navigationapp;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.TextView;

public class SecondActivity extends AppCompatActivity {

 TextView t1,t2,t3;

 String name,reg,dept;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);

 t1= (TextView) findViewById(R.id.textView1);
 t2= (TextView) findViewById(R.id.textView2);
 t3= (TextView) findViewById(R.id.textView3);

 //Getting the Intent
 Intent i = getIntent();

 //Getting the Values from First Activity using the Intent received
 name=i.getStringExtra("name_key");
 reg=i.getStringExtra("reg_key");
 dept=i.getStringExtra("dept_key");

 //Setting the Values to Intent
 t1.setText(name);
 t2.setText(reg);
 t3.setText(dept);

 }

Page | 45

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to Navigation between two activities is
developed and executed successfully in emulator and Mobile device.

Page | 46

Ex. No. 08.
Date:

Displaying the Notification
Aim:
 To develop a Simple Android Application to create and display the Notification

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “Notification″, change the project location and

click Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Create the Second Activity with the name “SecondAcitivity”
• Click on File -> New -> Activity -> Empty Activity.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text as shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_margin="10dp"
 android:orientation="vertical">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Message"
 android:textSize="30sp" />

 <EditText
 android:id="@+id/editText"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 android:textSize="30sp" />

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="30dp"
 android:layout_gravity="center"
 android:text="Notify"
 android:textSize="30sp"/>

Page | 47

</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Designing Layout for Second Activity:
• Click on app -> res -> layout -> acivity_second.xml.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".SecondActivity">

</android.support.constraint.ConstraintLayout>

Now click on the Design tab and now the application will look as given below.

Page | 48

Java Coding for the Android Application:

Java Coidng for Main Activity:

• Click on app -> java -> com.example.notification -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.notification;

import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends AppCompatActivity
{
 Button notify;
 EditText e;
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 notify= (Button) findViewById(R.id.button);
 e= (EditText) findViewById(R.id.editText);

 notify.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {

Page | 49

 Intent intent = new Intent(MainActivity.this, SecondActivity.class);
 PendingIntent pending = PendingIntent.getActivity(MainActivity.this, 0, intent, 0);
 Notification noti = new Notification.Builder(MainActivity.this).setContentTitle("New
Message").setContentText(e.getText().toString()).setSmallIcon(R.mipmap.ic_launcher).setContentInt
ent(pending).build();
 NotificationManager manager = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);
 noti.flags |= Notification.FLAG_AUTO_CANCEL;
 manager.notify(0, noti);
 }
 });
 }
}

Java Coding for Second Activity:
• Click on app -> java -> com.example. notificaation -> SecondActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.notification;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class SecondActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);
 }
}

Page | 50

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to display the notification is developed and
executed successfully in emulator and Mobile device.

Page | 51

Ex. No. 09.
Date:

Creating an Alarm
Aim:
 To develop a Simple Android Application to create and display the Notification

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “Notification″, change the project location and

click Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Create the Second Activity with the name “activity_alarm_receiver”
• Click on File -> New -> Activity -> Empty Activity.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical">

 <TimePicker
 android:id="@+id/timePicker"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center" />

 <ToggleButton
 android:id="@+id/toggleButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:layout_margin="20dp"
 android:checked="false"
 android:onClick="OnToggleClicked" />

</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Page | 52

Designing Layout for Second Activity:
• Click on app -> res -> layout -> activity_alarm_receiver.xml.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".AlarmReceiver">

</android.support.constraint.ConstraintLayout>

Now click on the Design tab and now the application will look as given below.

Page | 53

Java Coding for the Android Application:

Java Coidng for Main Activity:

• Click on app -> java -> com.example.notification -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.alarm;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.TimePicker;
import android.widget.Toast;
import android.widget.ToggleButton;

import java.util.Calendar;

public class MainActivity extends AppCompatActivity
{
 TimePicker alarmTimePicker;
 PendingIntent pendingIntent;
 AlarmManager alarmManager;

 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 alarmTimePicker = (TimePicker) findViewById(R.id.timePicker);
 alarmManager = (AlarmManager) getSystemService(ALARM_SERVICE);
 }
 public void OnToggleClicked(View view)
 {
 long time;
 if (((ToggleButton) view).isChecked())
 {
 Toast.makeText(MainActivity.this, "ALARM ON", Toast.LENGTH_SHORT).show();
 Calendar calendar = Calendar.getInstance();
 calendar.set(Calendar.HOUR_OF_DAY, alarmTimePicker.getCurrentHour());
 calendar.set(Calendar.MINUTE, alarmTimePicker.getCurrentMinute());
 Intent intent = new Intent(this, AlarmReceiver.class);
 pendingIntent = PendingIntent.getBroadcast(this, 0, intent, 0);

 time=(calendar.getTimeInMillis()-(calendar.getTimeInMillis()%60000));
 if(System.currentTimeMillis()>time)
 {
 if (calendar.AM_PM == 0)
 time = time + (1000*60*60*12);
 else
 time = time + (1000*60*60*24);
 }

Page | 54

 alarmManager.setRepeating(AlarmManager.RTC_WAKEUP, time, 10000, pendingIntent);
 }
 else
 {
 alarmManager.cancel(pendingIntent);
 Toast.makeText(MainActivity.this, "ALARM OFF", Toast.LENGTH_SHORT).show();
 }
 }
}

Java Coding for Second Activity:

• Click on app -> java -> com.example.alarm -> alarmreceive.java.
(if it is not present, then create it as new)

• Then delete the code which is there and type the code as given below.

package com.example.cse.alarm;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.media.Ringtone;
import android.media.RingtoneManager;
import android.net.Uri;
import android.widget.Toast;

public class AlarmReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 Toast.makeText(context, "Alarm! Wake up! Wake up!", Toast.LENGTH_LONG).show();
 Uri alarmUri = RingtoneManager.getDefaultUri(RingtoneManager.TYPE_ALARM);
 if (alarmUri == null)
 {
 alarmUri =
RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);
 }
 Ringtone ringtone = RingtoneManager.getRingtone(context, alarmUri);
 ringtone.play();
 }
}

XML Coding for Android Manifest file:

• Click on app -> manifests -> AndroidManifest.xml.
• Then delete the code which is there and type the code as given below

<?xml version="1.0" encoding="utf-8"?>
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.cse.alarm" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"

Page | 55

 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme" >
 <activity android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <receiver android:name=".AlarmReceiver" >
 </receiver>
 </application>

 </manifest>

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.
(If the analog clock is not supported, then the
digital clock will be displayed.)

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to simulate the alarm is developed and executed
successfully in emulator and Mobile device.

Page | 56

Ex. No. 10.
Date:

Designing BMI Calculator Application
Aim:
 To develop a Simple Android Application to design a Simple BMI Calculator

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “BMICalc″, change the project location and click

Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:
• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text shown below.
• Then delete the code which is there and type the code as given below.

<!-- Linear layout start here -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/images1"
 android:fadingEdge="horizontal"
 android:orientation="vertical" >

 <!-- Text view for BMI Text -->
 <TextView
 android:id="@+id/tv1"
 android:layout_width="124dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:paddingLeft="15dp"
 android:paddingTop="40dp"
 android:shadowColor="@android:color/black"
 android:shadowDx="4"
 android:shadowDy="4"
 android:text="BMI"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:textColor="@android:color/white"
 android:textSize="50sp"
 android:typeface="serif" />

 <!-- Textview for calculator text -->
 <TextView
 android:id="@+id/tv2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:text="Calculator"
 android:textColor="@android:color/white"
 android:textSize="20dp"
 android:textStyle="bold" />

 <!-- Textview for WEIGHT(KG) text -->
 <TextView
 android:id="@+id/tv3"
 android:layout_width="wrap_content"

Page | 57

 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:paddingTop="30dp"
 android:text="WEIGHT (KG)"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:textColor="@android:color/white"
 android:textStyle="bold|italic"
 android:typeface="serif" />

 <!-- Edit text for entering weight with hint in kgs -->
 <EditText
 android:id="@+id/et1"
 android:layout_width="96dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:hint="IN KGs"
 android:ems="10"
 android:fadingEdgeLength="10dp"
 android:inputType="numberDecimal"
 android:textAlignment="center" >
 <requestFocus />
 </EditText>

 <!-- Text view for HEIGHT(CM)text -->
 <TextView
 android:id="@+id/tv4"
 android:layout_width="151dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:foregroundGravity="center_horizontal"
 android:gravity="center_horizontal"
 android:paddingTop="30dp"
 android:text="HEIGHT (CM)"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:textColor="@android:color/white"
 android:textStyle="bold|italic"
 android:typeface="serif" />

 <!-- Edit text for entering height with hint in cm -->
 <EditText
 android:id="@+id/et2"
 android:layout_width="96dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:hint="IN CMs"
 android:ems="10"
 android:inputType="numberDecimal" >
 </EditText>

<!--Button for calculating the formula, when pressed, with calculate written over it-->
 <Button
 android:id="@+id/ib1"
 android:layout_width="158dp"
 android:layout_height="51dp"
 android:layout_gravity="center"
 android:layout_marginTop="20dp"
 android:fadingEdge="vertical"
 android:longClickable="true"
 android:nextFocusRight="@android:color/holo_orange_dark"
 android:text="Calculate"
 android:visibility="visible" />

 <!-- Text view for showing result -->
 <TextView
 android:id="@+id/tv5"
 android:layout_width="278dp"
 android:layout_height="wrap_content"
 android:layout_gravity="center"

Page | 58

 android:gravity="center"
 android:paddingTop="20dp"
 android:text=""
 android:textColor="@android:color/holo_orange_dark"
 android:textSize="20dp"
 android:textStyle="bold" />

</LinearLayout>
 <!-- Linear layout ends here -->

Now click on the Design tab and now the application will look as given below.

Java Coding for the Android Application:

• Click on app -> java -> com.example. calcapp -> MainActivity.
• Then delete the code which is there and type the code as given below.

package akn.bmicalc;

//Import necessary package and file
import android.os.Bundle;
import android.app.Activity;
import android.text.TextUtils;
import android.view.Menu;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

//Main activity class start here
public class MainActivity extends Activity {

 //Define layout
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

// Get the references to the widgets

Page | 59

 final EditText e1 = (EditText) findViewById(R.id.et1);
 final EditText e2 = (EditText) findViewById(R.id.et2);
 final TextView tv5 = (TextView) findViewById(R.id.tv5);

 findViewById(R.id.ib1).setOnClickListener(new View.OnClickListener() {

 // Logic for validation, input can't be empty
 @Override
 public void onClick(View v) {

 String str1 = e1.getText().toString();
 String str2 = e2.getText().toString();

 if(TextUtils.isEmpty(str1)){
 e1.setError("Please enter your weight");
 e1.requestFocus();
 return;
 }

 if(TextUtils.isEmpty(str2)){
 e2.setError("Please enter your height");
 e2.requestFocus();
 return;
 }

//Get the user values from the widget reference
 float weight = Float.parseFloat(str1);
 float height = Float.parseFloat(str2)/100;

//Calculate BMI value
 float bmiValue = calculateBMI(weight, height);

//Define the meaning of the bmi value
 String bmiInterpretation = interpretBMI(bmiValue);

 tv5.setText(String.valueOf(bmiValue + " - " + bmiInterpretation));

 }
 });

 }

 //Calculate BMI
 private float calculateBMI (float weight, float height) {
 return (float) Math.round((weight / (height * height))*100)/100;
 }

 // Interpret what BMI means
 private String interpretBMI(float bmiValue) {

 if (bmiValue < 16) {

Page | 60

 return "Severely underweight";
 } else if (bmiValue < 18.5) {

 return "Underweight";
 } else if (bmiValue < 25) {

 return "Normal";
 } else if (bmiValue < 30) {

 return "Overweight";
 } else {
 return "Obese";
 }
 }
}

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays
the output of the app developed as
shown below.

Select Build APK(s) from Build Menu and build
the .apk file for this application. Locate the apk file
created and copy it to the mobile Phone to install it
and run it from it for verification.

Result:
 Thus a Simple Android Application to design a Simple BMI Calculator is developed
and executed successfully in emulator and Mobile device.

Page | 61

Ex. No. 11.
Date:

Displaying images using Multithreading
Aim:
 To develop a Simple Android Application to display the images using multithreading

Procedure:

Creating a New project:

• Open Android Studio and then click on File -> New -> New project.
• Then type the Application name as “Multithread″, and click Next.
• Then select the Minimum SDK as shown below and click Next.
• Then select the Empty Activity and click Next.
• Finally click Finish.

Designing layout for the Android Application:

• Click on app -> res -> layout -> activity_main.xml.
• Now click on Text shown below.
• Then delete the code which is there and type the code as given below.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <ImageView
 android:id="@+id/imageView"
 android:layout_width="250dp"
 android:layout_height="250dp"
 android:layout_gravity="center"
 android:layout_margin="50dp" />

 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 android:orientation="horizontal">

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="left"
 android:layout_margin="10dp"
 android:text="Annamalai University." />

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Page | 62

 android:layout_gravity="right"
 android:layout_margin="10dp"
 android:text=" C S E " />
 </LinearLayout>
</LinearLayout>

Now click on the Design tab and now the application will look as given below.

Java Coding for the Android Application:

Java Coidng for Main Activity:

• Click on app -> java -> com.example.multithread -> MainActivity.
• Then delete the code which is there and type the code as given below.

package com.example.cse.multithread;

import android.os.Bundle;
import android.support.v7.app.AppCompatActivity;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;
public class MainActivity extends AppCompatActivity
{
 ImageView img;
 Button bt1,bt2;
 @Override
 protected void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 bt1 = (Button)findViewById(R.id.button);
 bt2= (Button) findViewById(R.id.button2);
 img = (ImageView)findViewById(R.id.imageView);

 bt1.setOnClickListener(new View.OnClickListener()
 {

Page | 63

 @Override
 public void onClick(View v)
 {
 new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 img.post(new Runnable()
 {
 @Override
 public void run()
 {
 img.setImageResource(R.drawable.au_logo);
 }
 });
 }
 }).start();
 }
 });

 bt2.setOnClickListener(new View.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 new Thread(new Runnable()
 {
 @Override
 public void run()
 {
 img.post(new Runnable()
 {
 @Override
 public void run()
 {
 img.setImageResource(R.drawable.cse_logo);
 }
 });
 }
 }).start();
 }
 });
 }
}

• Copy the images to be displayed and locate the drawable under app->res->drawable and paste it
under ic_launcher_background.xml as shown.
• Image should

o be png type
o have the file size < 100kb
o not have the resolution of > 300 x 300
o have the file name using only the characters from a-z, 0-9 and underscore

Page | 64

 Click Play icon or press Shift+F10 and select any of the Available Virtual devices
from the list or create a New AVD.

Emulator will be loaded and displays the
output of the app developed as shown below.
(If the analog clock is not supported, then the
digital clock will be displayed.)

Select Build APK(s) from Build Menu and
build the .apk file for this application. Locate
the apk file created and copy it to the mobile
Phone to install it and run it from it for
verification.

Result:
 Thus a Simple Android Application to display the image using multithreading is
developed and executed successfully in emulator and Mobile device.

Page | 65

	01 Front Page MAD
	ANNAMALAI UNIVERSITY
	FACULTY OF ENGINEERING AND TECHNOLOGY
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	B.E. [COMPUTER SCIENCE AND ENGINEERING]
	VI – SEMESTER
	08EP609 : Mobile App Development Lab

	ANNAMALAI UNIVERSITY
	FACULTY OF ENGINEERING AND TECHNOLOGY
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	B.E. [COMPUTER SCIENCE AND ENGINEERING]
	VI – SEMESTER
	08EP609 : Mobile App Development Lab
	Certified that this is a bona fide record of work done by Mr./Ms.___

	02 Table of Content
	List of Experiments

	Ex. No. 001 to 011
	Ex. No. 01.
	Date:
	Tool windows
	Code completion
	Sample code
	In the Browse Samples dialog
	Inline from the editor
	Navigation
	Style and formatting
	Version control basics

	Gradle build system
	Build variants
	Multiple APK support
	Resource shrinking
	Managing dependencies

	Debug and profile tools
	Inline debugging
	Performance profilers
	Heap dump
	Memory Profiler
	Data file access
	Code inspections
	Annotations in Android Studio
	Log messages
	Performance profiling

	Installing Android Studio
	Windows

	Configure Android Studio
	Create and manage virtual devices
	About AVDs
	Hardware profile
	System images
	Storage area
	Skin
	AVD and app features

	Create an AVD
	Create a hardware profile
	Edit existing AVDs
	Edit existing hardware profiles
	Run and stop an emulator, and clear data
	Import and export hardware profiles
	Hardware profile properties
	AVD properties
	Create an emulator skin
	System requirements for installing Android Studio
	Windows

	Requirements and recommendations for installing the emulator
	Ex. No. 02.
	Date:
	Displaying “Welcome to Android Laboratory”
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:

	Ex. No. 03.
	Date:
	Designing Simple Toast
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:
	Java Coding for the Android Application:

	Date:
	Designing User Interface based on Layouts
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:
	Java Coding for the Android Application:

	Ex. No. 05.
	Date:
	Displaying different Shapes
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:

	Ex. No. 06.
	Date:
	Designing Simple Calculator Application
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:
	Java Coding for the Android Application:

	Ex. No. 07.
	Date:
	Navigation in Android
	Aim:
	Procedure:
	Creating a New project:
	 Creating Second Activity for the Android Application:
	Designing layout for the Android Application:
	Designing Layout for Second Activity:

	Java Coding for the Android Application:
	Java Coidng for Main Activity:
	Java Coding for Second Activity:

	Ex. No. 08.
	Date:
	Displaying the Notification
	Aim:
	Procedure:
	Creating a New project:
	 Create the Second Activity with the name “SecondAcitivity”
	Designing layout for the Android Application:
	Designing Layout for Second Activity:

	Java Coding for the Android Application:
	Java Coidng for Main Activity:
	Java Coding for Second Activity:

	Ex. No. 09.
	Date:
	Creating an Alarm
	Aim:
	Procedure:
	Creating a New project:
	 Create the Second Activity with the name “activity_alarm_receiver”
	Designing layout for the Android Application:
	Designing Layout for Second Activity:

	Java Coding for the Android Application:
	Java Coidng for Main Activity:
	Java Coding for Second Activity:
	XML Coding for Android Manifest file:

	Ex. No. 10.
	Date:
	Designing BMI Calculator Application
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:
	Java Coding for the Android Application:

	Ex. No. 11.
	Date:
	Displaying images using Multithreading
	Aim:
	Procedure:
	Creating a New project:
	Designing layout for the Android Application:
	Java Coding for the Android Application:
	Java Coidng for Main Activity:

